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Abstract

The Mori-Tanaka model combined with an orientation distribution function of the reinforcements
can be used to calculate the anisotropic elastic properties of a short fiber reinforced composite from
the volume fraction and orientation of the reinforcements. The applicability of the model has been
demonstrated in rice husks reinforced polypropylene composite. However, because the elastic moduli
of the rice husks and the matrix are within an order of magnitude, the model cannot show the ability
to capture the effects of high modulus reinforcements. This work further investigates the responses of
the Mori-Tanaka model with an orientation distribution function under a range of model parameters to
gain an insight into the model behavior and its limitations. The parameters under study include the
reinforcement morphological and geometrical properties, such as orientation distribution, volume
fraction and dimensions, and the relative moduli between the matrix and the reinforcements. The
model is theoretically shown to be suitable for modeling short fiber reinforced composite but with

limitations.

Keywords: Short Fiber Composite, Parametric Study, Fiber Orientation Distribution, Anisotropy,
Mori-Tanaka Model
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