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ABSTRACT

Post-harvest deterioration of spring onion bulbs presents a significant challenge for
smallholder farmers in regions like Nakhon Phanom, Thailand, where high ambient temperatures
and fluctuating humidity accelerate crop quality loss. These environmental instabilities contribute
to substantial economic losses due to reduced shelf life and market value. This study proposes an
integrated solution by developing an Internet of Things (IoT) based intelligent environmental control
system, optimized using the Grey-Taguchi L9 method, to minimize weight loss during storage. The
experimental setup evaluated nine distinct environmental conditions comprising different
combinations of temperature, relative humidity, and light intensity over a three-month storage
period. The IoT system enabled real-time monitoring and automated adjustments of key
environmental parameters through embedded sensors and actuators. Statistical analysis, including
signal-to-noise (S/N) ratio calculations and Grey Relational Analysis (GRA), was employed to
determine optimal storage conditions. The results demonstrated that temperature and relative
humidity were the most influential factors affecting weight loss, with optimal settings identified as
20°C and 65% RH, respectively. Under these conditions, average weight loss was minimized to 5.2
grams, and the model achieved a high R-squared value of 99.74%. In contrast, light intensity was
found to have a negligible effect. This research offers a practical and scalable post-harvest solution
for resource-constrained agricultural communities. By combining low-cost IoT technology with
multi-response optimization, the proposed system contributes to sustainable agriculture and
enhances food security by reducing storage-related losses in perishable crops.
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1. INTRODUCTION

Spring onions are an important agricultural product in Nakhon Phanom, However, post-
harvest losses can exceed 30 - 40% under uncontrolled storage conditions, leading to reduced
income for farmers and increased volatility in supply chains. These losses directly impact household
level economic stability and pose broader challenges to food security in developing agricultural
regions. where the local economy benefits significantly from their cultivation and trade. However,
a critical challenge faced by farmers in this region is the preservation of harvested spring onion
bulbs, particularly under fluctuating environmental conditions that can reduce product quality, shelf
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life, and market value. Traditional storage methods often lack the necessary environmental controls
to maintain optimal conditions for long-term preservation, leading to post-harvest losses.

The integration of modern technologies, such as the Internet of Things (IoT), into agricultural
practices provides a promising solution to this issue. IoT technology enables real-time monitoring
and adjustment of critical environmental parameters, such as temperature, humidity, and light
intensity, which are known to affect the longevity and quality of stored crops. In this study, an [oT-
based intelligent monitoring and control system was developed, consisting of sensors for
environmental data acquisition, a microcontroller for processing, and actuators such as fans,
humidifiers, and LED lighting to adjust the storage environment automatically. The system also
includes a user interface connected via mobile application or web dashboard, allowing remote
monitoring and alert notifications. An overview of this system is illustrated in Figure 1.

Despite this potential, limited research has been conducted on the application of IoT technology
specifically for optimizing the storage of spring onion bulbs in rural farming communities like those
in Nakhon Phanom, where infrastructure and resources may be limited.

Several studies have explored the role of IoT technologies in post-harvest management. For
instance, Zhang et al. [1] implemented an Industrial IoT-based system to regulate temperature and
gas composition in crop storage in southern China, achieving reduced spoilage rates. However, such
systems often rely on expensive infrastructure or industrial-scale implementation, which limits their
feasibility in rural or smallholder farming contexts. Moreover, few studies have integrated loT with
robust multi-response optimization approaches to address complex storage environments. While
existing studies have explored IoT applications in agriculture, most focus on crop growth monitoring
and irrigation systems, with fewer studies addressing the post-harvest storage phase. Previous
research has identified the significance of environmental factors, particularly temperature and
humidity, in post-harvest storage, but the application of loT-based systems for controlling these
variables remains underexplored in the context of spring onion bulb storage. Additionally, studies
using optimization methods like the Taguchi approach have been widely applied in engineering
fields to enhance process efficiency [2], yet their use in agricultural storage systems, particularly in
combination with IoT technologies, is scarce.

This research addresses this gap by employing a Grey-Taguchi L9 [3-6] optimization method to
control key environmental factors in an loT-monitored storage system, thereby contributing to both
the agricultural and engineering fields. This research is among the first to integrate an IoT-based
environmental control system with Grey-Taguchi L9 optimization for post-harvest spring onion
storage, particularly targeting low-resource agricultural settings its application of the Grey-Taguchi
L9 method for optimizing storage conditions of spring onion bulbs, which has not been previously
addressed in the literature. By focusing on the variables of temperature, relative humidity, and light
intensity, this study establishes optimal environmental settings for preserving onion bulbs using an
IoT-based intelligent monitoring system.

The proposed approach not only advances the understanding of post-harvest storage solutions but
also provides a practical, scalable solution for small-scale farmers in Nakhon Phanom. The
combination of I[oT technology with a structured optimization method offers a significant
contribution to both the agricultural technology and environmental control fields, with implications
for improving post-harvest practices in similar agricultural regions.
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Fig. 1 Schematic of the IoT-Based Monitoring and Control System for Spring Onion Storage

2. LITERATURE REVIEW

2.1 IoT Applications in Agricultural Storage Systems

The integration of Internet of Things (IoT) technologies into agricultural storage systems has
emerged as a transformative approach to enhance the efficiency of post-harvest processes and
improve the overall storage environment. Recent studies have focused on how IoT can be utilized
to monitor and manage critical factors that influence crop preservation, providing real-time data that
aids in decision-making and management. These IoT systems offer the potential to address some of
the most pressing challenges in agricultural storage, such as spoilage and inefficient management,
by creating smarter and more responsive storage environments.

A recent study by Zhang, Lin, and Jiao [1] explored the design of an intelligent storage
management system tailored for the specific needs of crop storage in southern Xinjiang, China. The
system employed Industrial Internet of Things (IIoT) technologies to gather real-time environmental
data, including temperature, humidity, and gas levels, within storage facilities. The gathered data
was then transmitted to a centralized platform, where it could be remotely monitored and managed
through a mobile application. This approach allowed for real-time adjustments in storage conditions
and enabled predictive analytics to preemptively address issues before they negatively impacted
stored crops. The ability to remotely manage storage conditions significantly improved operational
efficiency, reducing the likelihood of crop spoilage due to environmental factors. This research
underscores the critical role that IoT plays in improving agricultural storage systems, especially in
regions where environmental conditions pose significant challenges to maintaining crop quality
during storage.

The growing implementation of IoT in agriculture storage systems provides innovative
solutions for maintaining the quality of stored agricultural products. By continuously monitoring
environmental conditions, these systems enable precise control over factors that could otherwise
lead to spoilage or degradation of crops. Consequently, [oT-driven storage management systems are
proving to be a valuable tool in securing sustainable and efficient agricultural practices in various
regions.

2.2 Post-Harvest Management and Storage of Spring Onions

Post-harvest management and storage of onions, including spring onions, are critical aspects
that directly influence the longevity, quality, and marketability of the produce. Proper storage
conditions can significantly reduce post-harvest losses, which in some cases exceed 40%, by
ensuring optimal temperature, humidity, and ventilation. These factors help prevent physiological
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deterioration and weight loss, which are major contributors to onion spoilage. Technological
advancements in onion storage have shown promising results in extending the shelf life of onions,
thus supporting agricultural sustainability, and enhancing economic benefits by improving the
consistency of supply and reducing market fluctuations [8]. A study by Abate [2] focused on the
effect of storage temperature on the physicochemical quality attributes of Bombay Red onion bulbs.
The research concluded that storing onions at a lower temperature, specifically 5°C, helped maintain
their quality over six months, while higher temperatures (25°C) led to more rapid quality
deterioration. This finding underscores the importance of maintaining cool, controlled storage
conditions to reduce post-harvest losses. Additionally, studies have shown that onion maturity and
the method of harvest also play significant roles in post-harvest quality. For instance, harvesting
without irrigation and allowing onions to cure in the field for a few days significantly improved their
weight retention and minimized weight loss during storage. This approach is particularly effective
for maintaining onion quality over extended storage periods [9].

Moreover, research conducted by Davletbaeva et al. [7] emphasized the need for maintaining
low-temperature regimes around 12°C and relative humidity between 75-80% to preserve onion
quality. The physiological maturity of the bulbs, indicated by fully dried outer scales and high
sucrose content, was also found to be crucial for extending their storage life. These insights suggest
that understanding the specific requirements for post-harvest storage, including maturity and
environmental control, is essential for minimizing losses and maintaining onion quality during
prolonged storage periods. In conclusion, post-harvest management of onions requires a
comprehensive approach that considers storage conditions, maturity at harvest, and appropriate
curing methods. Technological improvements in storage systems, combined with optimized
harvesting practices, offer significant potential to reduce post-harvest losses and ensure better-
quality onions throughout the supply chain.

2.2 Optimization Techniques for Environmental Control in Agricultural Systems

Optimization techniques for environmental control in agricultural systems have become
increasingly important as the sector seeks to address challenges such as resource efficiency,
sustainability, and climate variability. A range of advanced methods, including neural networks,
fuzzy logic, and multi-stage optimization, are being employed to optimize the use of water, energy,
and other critical resources, while maintaining optimal conditions for crop growth. One approach
focuses on improving soil moisture management using neural networks. By integrating automated
control systems that adapt to weather variability, this method ensures efficient water and energy use,
ultimately enhancing crop yields while conserving resources [12]. Such techniques are crucial for
ensuring that agricultural operations are both sustainable and economically viable. In another
application, an intelligent irrigation system is used to measure the precise water demand of crops,
thus minimizing waste, and addressing water scarcity. The system, implemented in a smart
greenhouse environment, uses sensors and actuators to maintain optimal temperature and humidity
levels, further optimizing crop conditions [11].

Additionally, a multi-stage farm management optimization model has been proposed to
incorporate both crop rotation and environmental constraints. By using mixed-integer linear
programming, this model seeks to maximize farm profitability while adhering to environmental
standards, such as reducing greenhouse gas emissions [10]. This demonstrates how optimization
techniques can address both economic and environmental goals in agriculture. The application of
intelligent automation technologies, such as GPS-enabled tractors and drone farming, also plays a
critical role in advancing agricultural sustainability. These technologies, combined with
computational intelligence methods like artificial neural networks, improve the effectiveness of
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mechatronic systems for environmental control, such as water management [14]. Finally, fuzzy
control methods, when applied to hydroponic systems, have shown to improve the quality of crops
such as strawberries. By regulating key environmental factors, this method ensures more efficient
use of resources and enhances plant growth, yielding greater foliage and larger fruits compared to
traditional cultivation methods [13]. These examples illustrate the growing role of advanced
optimization techniques in enhancing the sustainability and efficiency of agricultural systems, with
positive impacts on both food production and environmental conservation.

3. EXPERIMENTAL METHOD

3.1 Data collection methods

The data collection for this experiment began with the preparation of spring onion bulbs of
consistent size and weight. Each experimental run in the L9 orthogonal array was conducted in
triplicate (n = 3) to account for experimental variability and to ensure statistical reliability. The
results from the three replicates were averaged, and the standard deviation was calculated to assess
data consistency. The bulbs used in the experiment had an initial constant weight of 1 kilogram, and
the data collection period was set to 3 months. The spring onion bulbs were divided into 9 groups
according to the experimental design outlined in the L9 orthogonal array. Initial weight
measurements were taken for each group before placing them into the storage facility, and the
recorded initial weights were noted. Subsequently, an automated system in the storage facility was
set up according to the factors specified for each trial in the L9 array, allowing the spring onion
bulbs to be stored for the specified duration in each experimental set. At the end of the storage
period, the weight of each group of spring onion bulbs was measured again, and the post-experiment
weights were recorded. All experimental runs were monitored using an IoT-based system that
integrated multiple environmental sensors and actuators. The primary sensors included a DHT22
digital sensor for temperature and humidity measurement (+0.5°C, £2% RH accuracy) and a
BH1750 sensor for light intensity (lux level). These sensors were calibrated according to the
manufacturer’s protocols prior to the experiment. Data were collected at 5-minute intervals using an
ESP32 microcontroller platform, which enabled wireless transmission of data to a cloud server via
Wi-Fi. The data logging and dashboard interface were managed using the Blynk platform, allowing
remote monitoring and notification alerts for out-of-range parameters. Weight loss for each group
was calculated using a predefined formula by subtracting the post-experiment weight from the initial
weight. After obtaining the weight loss data, the results from all 9 experimental sets were analyzed
to determine which factors had the most significant impact on weight loss, using statistical analysis
based on the Taguchi method.

3.2 Experimental design

This operation commenced with a review of relevant literature concerning the design of an
intelligent environmental control system, which includes regulating temperature, humidity, and light
that impact the storage of shallot bulbs. The focus was on designing a suitable storage facility
specifically for shallot bulbs. Following the literature review, fieldwork was conducted to
investigate the issues faced by shallot farmers. This included collecting data through interviews,
observations, and focus group discussions on factors affecting the quality of shallot bulb storage,
such as temperature, relative humidity, and light intensity. These findings were then applied to
develop and design a storage facility utilizing an intelligent environmental control system. Upon
completing the design phase, sensors and control units were installed to regulate temperature,
humidity, and light within the facility. This system is capable of real-time monitoring, and if
environmental conditions become unsuitable, the system automatically adjusts to maintain optimal
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conditions. Furthermore, an alert system was integrated to notify users of any malfunctions, ensuring
timely intervention. Subsequently, experiments were conducted to examine the effects of the
automated system on shallot bulb weight loss, employing the Taguchi L9 experimental design. This
method tested various factors that influence weight loss, including temperature, relative humidity,
and light intensity, as illustrated in Table 1. The storage chamber was constructed from insulated
panels to minimize external heat transfer. Sensors were mounted at bulb level to closely monitor the
microenvironment around the samples. Actuators included a 12V DC fan for airflow control, a PTC
ceramic heater for temperature regulation, an ultrasonic humidifier for RH adjustment, and LED
arrays for light intensity control. The control logic was implemented on the ESP32 using Arduino
IDE, with thresholds defined by each L9 configuration. When environmental parameters deviated
from set points, the controller automatically triggered the corresponding actuator to restore balance.
The experimental results revealed which factors had the most significant impact on reducing weight
loss in shallot bulbs, with the experimental framework shown in Figure 1.

3.3 Taguchi grey relational analysis

A. Taguchi Grey Relational Analysis (GRA), the procedure involves transforming
experimental data into a comparable sequence (normalization), followed by Grey Relational
Coefficient (GRC) calculation, and finally, Grey Relational Grade (GRG) computation to optimize
multi-response problems. Below is an outline of the main equations used in this method.
The experimental data must be normalized before applying the GRA method. Depending on the goal
(whether smaller values are better), the following normalization equations are used 1 [6].

= M) X, () 0
ST max(X, (k) — min(X, (k)

Where:
Xi(k) is the original response value for the i’ experiment and k" performance characteristic.
x(k) is the normalized value of the i experimental result for k" performance characteristic.

The Grey Relational Coefficient is calculated to express the relationship between the ideal
and actual normalized experimental data. The formula is 2

Amin + é’ ’ Amax
A(k)+d-A

Where: &(k) is the Grey Relational Coefficient for the i experiment and £ response.
Ai(k) = Ixo(k) - xi(k)| 1s the absolute difference between the reference sequence (ideal
normalized value) xo(k) and the normalized experimental value x;(k).
Amin and Amax are the minimum and maximum values of Ai(k), respectively.
€ is the distinguishing coefficient, typically between 0 and 1(commonly set at 0.5).

& (k)= 2)

The Grey Relational Grade is calculated as the average of the Grey Relational Coefficients
for each performance characteristic. This provides a single value that represents the overall
performance of each experiment in relation to the optimal result 3

l m
7/1‘_;;61‘(]() (3)
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Where: y; is the Grey Relational Grade for the i experiment.
m is the number of performance characteristics (responses).
&(k) is the Grey Relational Coefficient for the k" response.

4. EXPERIMENTAL RESULTS

4.1 Taguchi Analysis

Table 2 presents the results of an experiment designed to evaluate the effects of temperature,
relative humidity, and light intensity on the weight loss of onions. The experiment consists of nine
different runs, each involving a unique combination of the three variables. Temperature was tested
at three levels: 20°C, 25°C, and 30°C. Similarly, relative humidity levels of 60%, 65%, and 70%
were employed, while light intensity varied between 4 and 6 KJ/m?. The weight loss of the onions
in grams was measured for each combination of these factors, As each condition was replicated three
times, the values presented in Table 2 represent mean values. Standard deviations were also
computed to assess the variation within replicates. alongside the calculation of the Signal-to-Noise
Ratio (SNR) for each run. SNR helps to optimize the experiment by indicating the robustness of the
process under different conditions. In this case, more negative values of SNR suggest greater weight
loss, which is an undesirable outcome for onion preservation. The data in Table 2 shows that as the
temperature and humidity increase, particularly at 30°C and 70% relative humidity, the weight loss
becomes more severe, with Run 9 showing the highest average of weight loss of 11.6 grams and the
lowest SNR (-21.29).
Table 2. Results of the onion weight loss experiment.

Weight loss SNRA
Run | Temperature | Relative humidity Light intensity Mean £ SD
(€ (%) (KJ/m?) (2

1 20 60 4 5.8 -15.27
2 20 65 6 5.2 -14.32
3 20 70 8 6.1 -15.71
4 25 60 6 7.4 -17.38
5 25 65 8 6.6 -16.39
6 25 70 4 8.7 -18.79
7 30 60 8 9.6 -19.65
8 30 65 4 8.7 -18.79
9 30 70 6 11.6 -21.29

Table 3 offers insight into the statistical analysis of the experiment's results by showing the
estimated model coefficients for the SN ratios. These coefficients indicate the influence of each
experimental factor (temperature, relative humidity, and light intensity) on the SNR, and thus on
onion weight loss. The table displays both the coefficient values and their corresponding standard
errors, along with t-statistics and p-values to assess the significance of each factor. A positive
coefficient suggests that an increase in that factor improves the SNR, thereby reducing weight loss.
The analysis reveals that temperature at 20°C and relative humidity at 65% have a significant
positive effect on reducing weight loss, with their p-values (0.004 and 0.023, respectively) indicating
strong statistical significance. On the other hand, factors such as light intensity and relative humidity
at 60% are not statistically significant, as indicated by their higher p-values, suggesting these factors
have little to no effect on the weight loss of onions.

The R-squared value of 99.48% demonstrates that the model explains nearly all of the
variability in the SN ratios, which reflects a very strong fit. The adjusted R-squared value of 97.94%
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further supports the model's robustness by accounting for the number of predictors used in the
analysis. Overall, the results suggest that controlling temperature and humidity can effectively
reduce onion weight loss, while light intensity does not appear to have a meaningful impact under
the tested conditions. This insight provides valuable information for optimizing the storage
conditions of onions to minimize weight loss.

Table 3 Estimated Model Coefficients for SN ratios

Term Coef SE Coef T P
Constant -17.5096 0.1094 -160.008 0.000
Temperature 20 24112 0.1548 15.580 0.004
Temperature 25 -0.0124 0.1548 -0.080 0.943
Relative 60 0.0767 0.1548 0.496 0.669
Relative 65 1.0091 0.1548 6.521 0.023
light in 4 -0.1069 0.1548 -0.691 0.561
light in 6 -0.1551 0.1548 -1.002 0.422

S =0.3283, R-Sq = 99.48 %, R-Sq(adj) = 97.94 %

Table 4 provides an Analysis of Variance (ANOVA) for the Signal-to-Noise (SN) ratios
from the onion weight loss experiment. This analysis helps to determine the significance of the
effects of the three experimental factors temperature, relative humidity, and light intensity on the
weight loss of onions. The table includes key statistical metrics such as the sum of squares (Seq SS),
mean squares (Adj MS), F-ratios (F), p-values (P), and the percentage contribution of each factor to
the total variance. The degrees of freedom (DF) column indicate the number of levels for each factor
minus one. For each of the three factors temperature, relative humidity, and light intensity DF is 2
since each factor was tested at three levels. The sum of squares (Seq SS) represents the variation
explained by each factor. Temperature has the highest Seq SS value of 34.7036, indicating that it
explains the largest amount of variation in the SN ratios. Relative humidity follows with a Seq SS
of 6.6096, while light intensity has a very small value of 0.3122, indicating it contributes minimally
to the overall variation. The residual error, representing unexplained variation, is quite small with a
Seq SS of 0.2155, further indicating that the experimental model accounts for most of the variation
in the results.

Table 4. Analysis of Variance for SN ratios of Weight loss (g)

Source DF | Seq SS | AdjSS | Adj MS F P % Contribution
Temperature 2 134.7036 | 34.7036 | 17.3518 | 161.00 | 0.006 82.94
Relative humidity | 2 | 6.6096 | 6.6096 | 3.3048 | 30.66 | 0.032 15.79

light intensity 2 103122 | 0.3122 | 0.1561 | 1.45 | 0.408 0.74
Residual Error 2 | 0.2155 | 0.2155 0.1078 0.51

Total 8 141.8410 100

The adjusted mean square (Adj MS) is the Seq SS divided by the DF, and it represents the
average variation for each factor. The F-ratio (F) is the ratio of Adj MS for each factor to the Adj
MS for residual error, used to determine the statistical significance of each factor's effect. A larger
F value indicates a more significant effect. In this table, temperature has an F-ratio of 161.00, which
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is much higher than the critical value, suggesting that temperature has a highly significant impact
on onion weight loss. Similarly, relative humidity has a significant F-ratio of 30.66. However, light
intensity, with an F-ratio of 1.45, does not have a significant effect, as its p-value (0.408) exceeds
the typical significance threshold of 0.05. The p-values confirm the statistical significance of the
factors. Temperature and relative humidity have p-values of 0.006 and 0.032, respectively, both of
which are below 0.05, indicating they significantly affect the SN ratios. Light intensity, with a p-
value of 0.408, is not statistically significant. The percentage contribution column quantifies how
much each factor contributes to the total variation in the experiment. Temperature has the highest
contribution, accounting for 82.94% of the total variance, making it the most influential factor.
Relative humidity contributes 15.79%, which also plays a significant role, though much less than
temperature. Light intensity contributes only 0.74%, while the residual error accounts for just 0.51%
of the variation, confirming that the experimental model is robust and well-suited for explaining
most of the variance in weight loss. Overall, the results from the ANOVA clearly show that
temperature and relative humidity are the key factors influencing onion weight loss, while light
intensity has a negligible effect.

Table 5. Response Table for Signal to Noise Ratios (Smaller is better) of weight loss (g)

Level Temperature Relative humidity Light intensity

1 -15.10 -17.43 -17.62

2 -17.52 -16.50 -17.66

3 -19.91 -18.60 -17.25
Delta 4.81 2.09 0.42
Rank 1 2 3

Table 5 presents the response table for the Signal-to-Noise (SN) ratios, indicating the effects
of temperature, relative humidity, and light intensity on onion weight loss, where a smaller value is
considered better. The table breaks down the SN ratios at three levels for each factor. For
temperature, the SN ratio increases (less negative) as the temperature decreases, with the lowest SN
ratio (-19.91) occurring at Level 3 (30°C) and the highest (-15.10) at Level 1 (20°C). This shows
that weight loss is minimized at lower temperatures. The Delta value (the difference between the
maximum and minimum SN ratios) for temperature is 4.81, making it the most influential factor
with Rank 1. Relative humidity follows with a Delta of 2.09, where the highest SN ratio (-16.50) is
at Level 2 (65%) and the lowest (-18.60) at Level 3 (70%). This suggests that a relative humidity of
65% minimizes weight loss. Light intensity has the smallest Delta value of 0.42, indicating it has
the least impact on weight loss (Rank 3). The SN ratios for light intensity are quite similar across all
levels, showing minimal variance between the different light intensities tested. In summary,
temperature has the greatest effect on reducing weight loss, followed by relative humidity, while
light intensity has a negligible impact.
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Main Effects Plot for SN ratios

Data Means
Temperature Relative humidity light intensity
-15 *
\
\
\

-16 ‘-._\.

$ \
\

- \
& \ (/ \ e
s b\ \\_ — o
c !

-18 \ \
g \

\ »
\
-19 \
A
\
-20 .
20 25 30 60 65 70 4 6 8

Signal-to-noise: Smaller is better

Figure 2. Main Effects Plot of SN ratios of weight loss (g)

Figure 2 shows the Main Effects Plot for SN ratios, illustrating the influence of temperature,
relative humidity, and light intensity on onion weight loss. The y-axis represents the mean SN ratio,
and since "smaller is better," more negative SN ratios indicate better performance in minimizing
weight loss. The plot for temperature shows a clear downward trend as the temperature increases,
indicating that higher temperatures lead to more weight loss. The SN ratio decreases significantly
from -15.10 at 20°C to -19.91 at 30°C, making temperature the most impactful factor. For relative
humidity, the plot shows a slight rise at 65%, with the mean SN ratio improving to -16.50. However,
at 70%, the SN ratio drops again to -18.60, indicating that 65% relative humidity is the optimal level
for minimizing weight loss. The plot for light intensity shows relatively flat results, with only minor
variations between levels. The SN ratios stay around -17.5 to -17.25, confirming that light intensity
has the least effect on weight loss compared to the other two factors. Overall, temperature has the
most significant impact on the SN ratio, followed by relative humidity, while light intensity shows
minimal effect in this experiment.

4.2 Grey Relational Analysis (GRA)

Table 6 presents the results of Grey Relational Analysis (GRA) for the weight loss of onions
under different conditions of temperature, relative humidity, and light intensity. The table includes
several key columns that show the transformation of the raw data (weight loss) through
normalization and the subsequent calculation of Grey Relational Coefficients (GRC) and the Grey
Relational Grade (GRG). In the first few columns, the experiment's conditions temperature (°C),
relative humidity (%), and light intensity (KJ/m?) are listed for each of the nine experimental runs.
The next column provides the observed weight loss (g) for each run, which serves as the basis for
the subsequent calculations. The "Normalized" column represents the normalized weight loss data,
which standardizes the results between 0 and 1. This step is essential in GRA to bring all factors to
a comparable scale. A higher value in the "Normalized" column indicates better performance (lower
weight loss). For example, the second run (temperature 20°C, relative humidity 65%, and light
intensity 6 KJ/m?) has the highest normalized value of 1.000, representing the best performance
(lowest weight loss), while the ninth run has a normalized value of 0.000, indicating the worst
performance (highest weight loss). The "Deviation Sequence" column calculates the difference
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between the normalized values and the ideal (best) value of 1. Smaller deviations indicate better
performance. For example, Run 2 has a deviation sequence of 0.000, meaning it has the best possible
outcome, while Run 9 has the largest deviation sequence of 1.000, indicating the worst performance.
The "GRC" (Grey Relational Coefficient) column uses the deviation sequence to compute the GRC,
which ranges from 0 to 1. A higher GRC value indicates a closer relationship to the ideal
performance. Run 2, with a GRC of 1.000, has the best performance, while Run 9, with a GRC of
0.333, has the worst. Finally, the "GRG" (Grey Relational Grade) is the overall score for each run,
derived by averaging the GRC values. The GRG provides a single value to rank the experimental
conditions. Higher GRG values indicate better overall performance. In this case, Run 2 has the
highest GRG of 1.000, showing the best combination of conditions for minimizing onion weight
loss, while Run 9 has the lowest GRG of 0.333, indicating the least favorable conditions. This
analysis helps identify the optimal experimental conditions for minimizing weight loss based on the
grey relational analysis methodology.

Table 6. Grey Relational Analysis - GRA

Temperature Relative | Light “Le(;f: t Deviation
Run o Humidity |Intensity Normalized GRC | GRG

O (%) (KJ/m?) Mean + Sequence

SD (g)

1 20 60 4 5.8 0.906 0.093 0.842 | 0.842
2 20 65 6 5.2 1.000 0.000 1.000 | 1.000
3 20 70 8 6.1 0.859 0.140 | 0.780 | 0.780
4 25 60 6 7.4 0.656 0.343 0.592 | 0.592
5 25 65 8 6.6 0.781 0.218 0.696 | 0.696
6 25 70 4 8.7 0.453 0.546 0.477 | 0477
7 30 60 8 9.6 0.312 0.687 0.421 | 0.421
8 30 65 4 8.7 0.453 0.546 0.477 | 0477
9 30 70 6 11.6 0.000 1.000 | 0.333 ] 0.333

Table 7 provides the ANOVA analysis for the SN ratios of the Grey Relational Grades
(GRG). The analysis examines the impact of temperature, relative humidity, and light intensity on
onion weight loss by determining their contribution to the overall variance. The sequential sum of
squares (Seq SS) shows that temperature has the highest contribution at 83.59%, making it the most
influential factor. Relative humidity contributes 15.57%, while light intensity accounts for only
0.57%, indicating a negligible effect on the outcome. The residual error is very small, at 0.25%,
confirming the model's robustness in explaining the majority of the variance. The F-value column
shows that temperature (326.38) and relative humidity (60.79) are statistically significant factors,
with p-values of 0.003 and 0.016, respectively, both below the typical significance threshold of 0.05.
Light intensity, however, is not significant, as its p-value is 0.308. The model has a very high R-
squared value of 99.74%, and the adjusted R-squared of 98.98% further confirms that the model fits
the data well and explains nearly all of the variability in the GRG values.

Table 7. Analysis of Variance for SN ratios of GRG

Source DF | Seq SS | Adj SS | Adj MS | F-value | P-value | % Contribution
Temperature 2 | 65.6948 | 65.6948 | 32.8474 | 326.38 | 0.003 83.59
Relative Humidity | 2 | 12.2358 | 12.2358 | 6.1179 | 60.79 | 0.016 15.57
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Source DF | Seq SS | Adj SS | Adj MS | F-value | P-value | % Contribution
Light Intensity 2 10.45120 | 0.45120 | 0.2256 2.24 0.308 0.57
Residual Error 2 10.20130 | 0.20130 | 0.1006 0.25
Total 8 |78.5831 100

S=0.3172, R-Sq = 99.74%, R-Sq(adj) = 98.98%

Table 8 presents the response table for the Signal-to-Noise Ratios (SNR) of the Grey
Relational Grades (GRG), where "larger is better." This table helps in identifying the optimal levels
for each factor (temperature, relative humidity, and light intensity) in the onion weight loss
experiment. For temperature, the SNR decreases as the temperature increases. At Level 1 (20°C),
the SNR is -1.217, which is the highest (best), while at Level 3 (30°C), it drops to -7.832, indicating
worse performance. The Delta value of 6.614 shows that temperature has the largest impact on the
response, making it the most influential factor (Rank 1). For relative humidity, the highest SNR
occurs at Level 2 (65%) with a value of -3.192, while the lowest SNR is at Level 3 (70%) with
-6.046. The Delta value of 2.854 places relative humidity as the second most influential factor (Rank
2). For light intensity, the SNR values are relatively similar across the levels, with a slight
improvement at Level 3 (8 KJ/m?) at -4.273 compared to Level 1 (4 KJ/m?) at -4.784. The small
Delta value of 0.511 indicates that light intensity has the least effect on the response, and it is ranked
third in terms of influence. In summary, temperature has the greatest impact on the SNR of GRG,
followed by relative humidity, while light intensity has minimal influence on the outcome.

Table 8. Response Table for Signal to Noise Ratios of GRG (Larger is better)

Level Temperature Relative Humidity Light Intensity

1 -1.217 -4.521 -4.784

2 -4.710 -3.192 -4.702

3 -7.832 -6.046 -4.273
Delta 6.614 2.854 0.511
Rank 1 2 3

Figure 3 presents the Main Effects Plot for SN ratios of the Grey Relational Grades (GRG),
where "larger is better." The plot illustrates how temperature, relative humidity, and light intensity
influence the mean SN ratios. The plot for temperature shows a sharp decline as temperature
increases from 20°C to 30°C. At 20°C, the mean SN ratio is the highest, around -1, indicating the
best performance. The ratio worsens significantly as the temperature rises, reaching about -8 at 30°C.
This suggests that lower temperatures are more effective in minimizing weight loss, with
temperature having the most substantial impact on the response. For relative humidity, the plot
indicates a peak in performance at 65%, where the mean SN ratio is around -3. As humidity increases
to 70%, the performance declines sharply, with the SN ratio falling to -6, showing that 65% humidity
is the optimal condition for minimizing weight loss. The plot for light intensity shows minimal
changes in the SN ratio across the tested levels. The values remain relatively flat, indicating that
light intensity has a negligible effect on the response compared to temperature and humidity.
Overall, the main effects plot confirms that temperature has the most significant influence on the
outcome, followed by relative humidity, while light intensity plays a minor role.
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Main Effects Plot for SN ratios
Data Means
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Signal-to-noise: Larger is beiter
Figure 3. Main Effects Plot for SN ratios of GRG

5. DISCUSSION

The superior performance of the loT-integrated Grey-Taguchi method in optimizing
environmental control for spring onion bulb storage can be attributed to its systematic identification
and maintenance of favorable conditions that minimize weight loss. This method surpasses
traditional storage techniques due to its real-time monitoring and control of key environmental
factors, particularly temperature and relative humidity, which significantly affect the preservation
of spring onions. Through the Grey-Taguchi method, the study optimally adjusted temperature and
humidity, minimizing their detrimental effects on onion weight loss. Lower temperature levels, such
as 20°C, were shown to drastically reduce weight loss, as higher temperatures exacerbate
physiological processes leading to degradation [3]. Relative humidity, optimized at around 65%,
helped retain moisture without causing excess condensation, which could otherwise promote fungal
growth or decay [4]. These optimized conditions, facilitated by the IoT system, sustained onion
quality while reducing post-harvest losses an advantage especially crucial for small-scale farmers in
Nakhon Phanom, where traditional methods often lack precision.

Compared to existing agricultural storage research, the IoT-based Grey Taguchi approach
stands out for its efficiency in environmental control. While conventional systems address storage
needs to varying extents, this method integrates advanced monitoring and control technologies to
ensure consistent, optimal conditions. Previous studies, such as [1] work on crop storage systems in
Southern Xinjiang, have highlighted the benefits of real-time IoT monitoring in preventing spoilage.
The inclusion of the Grey-Taguchi algorithm, however, enhances the system's ability to address
multi-factor challenges in storage management, proving highly effective in reducing post-harvest
losses. In practical terms, this IoT-enhanced method offers small-scale farmers an accessible,
automated solution for extending the shelf life of stored onions, thereby mitigating the economic
losses associated with weight loss and quality degradation during storage. Traditional methods lack
the same level of precision and are more vulnerable to environmental fluctuations, demonstrating
the clear advantages of this innovative approach.
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6. CONCLUSION

This research addresses a critical issue faced by spring onion farmers in Nakhon Phanom:
the challenge of post-harvest storage under fluctuating environmental conditions, which often results
in reduced product quality, shelf life, and market value. Traditional storage methods are inadequate
in maintaining the optimal environmental conditions needed for preserving spring onion bulbs,
leading to substantial post-harvest losses. To address this problem, we integrated IoT technology
and employed the Grey-Taguchi L9 optimization method to monitor and control key environmental
factors such as temperature, relative humidity, and light intensity in real-time. The goal was to
develop an effective, scalable solution that would significantly reduce storage-related losses for
small-scale farmers. The methodology combined the Internet of Things (IoT) with an intelligent
monitoring system, enabling real-time adjustments to environmental parameters. This system was
evaluated using a Taguchi L9 orthogonal array and Grey Relational Analysis (GRA) to determine
the most impactful storage conditions. Nine experimental sets were designed, varying temperature,
relative humidity, and light intensity, with weight loss of the spring onions as the primary response
metric. Our approach provided a data-driven solution to optimize storage conditions, thus improving
product longevity.

The computational results highlighted that temperature and relative humidity had the most
significant influence on reducing weight loss. Specifically, a storage temperature of 20°C and a
relative humidity of 65% were identified as the optimal settings, minimizing weight loss to an
average of 5.2 grams. The Grey Relational Grade (GRG) analysis supported these findings,
indicating that the combination of lower temperatures and moderate humidity resulted in the best
overall storage performance. Light intensity, however, was found to have a negligible effect on the
weight loss of spring onions. The high R-squared value (99.74%) from the ANOVA analysis further
demonstrated the robustness of the model and its ability to explain the variability in the experimental
data. The key findings of this research indicate that incorporating IoT technology with optimized
environmental controls can significantly enhance the post-harvest storage of spring onion bulbs.
This not only benefits small-scale farmers by reducing losses but also contributes to the larger goal
of sustainable agriculture. The use of IoT for real-time monitoring and adjustment of storage
conditions offers an innovative and scalable solution that can be adapted to other crops and regions
with similar challenges.

For future research, several areas could be explored. First, expanding the application of [oT-
based environmental controls to other agricultural products could provide further validation of the
methodology. Additionally, exploring more advanced loT technologies, such as predictive analytics
and machine learning, could improve the system’s capability to preemptively address suboptimal
storage conditions. Further research could also focus on developing cost-effective IoT systems to
ensure broader adoption, particularly in rural areas with limited resources. This research presents a
novel approach to agricultural storage optimization, combining loT technology and the Grey-
Taguchi method to enhance the preservation of spring onion bulbs. The findings hold significant
implications for improving storage practices in agriculture, contributing to both economic and
environmental sustainability.
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