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Abstract

This study aims to analyze and compare hydrometer test results with fundamental soil
properties while applying Machine Learning (ML), a branch of Artificial Intelligence (Al), to
enhance the speed and accuracy of clay content prediction. The study utilized soil samples from
Nakhon Phanom and Sakon Nakhon provinces, Thailand. The experimental process included
specific gravity and hydrometer analysis. For ML model development, linear regression (LR) and
random forest regressor (RFR) were compared to analyzing factors influencing clay content. The
data evaluation was based on feature importance analysis and statistical correlation (Correlation
Matrix). The application of 10-fold cross-validation ensured that the models did not suffer from
overfitting and confirmed the stability of predictions when using hydrometer data from longer test
durations. The results indicate that hydrometer readings at longer durations exhibit a strong
correlation with clay content and significantly improve the prediction accuracy of LR and RFR. The
highest R? values obtained were 0.93 for LR and 0.87 for RFR, demonstrating that longer hydrometer
test durations lead to more accurate clay content predictions. ML method combined with the
hydrometer readings at 180 minutes, the R’ exceeds 0.75. Specifically, LR outperformed RFR at
minute 240, suggesting that the linear model better explains data variance at this duration. This
research concludes that incorporating ML with hydrometer test data significantly improves the
accuracy of clay content predictions. The findings highlight the potential of ML applications in soil
property analysis and geotechnical engineering design, leading to more efficient and reliable
engineering solutions.
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1. INTRODUCTION

The presence of high clay content in soils significantly affects the stability and integrity of
engineering structures. Due to its high-water absorption and expansion properties, clayey soils
undergo volumetric changes upon moisture variation, which can cause subsidence or swelling,
leading to structural failures (Ural, 2018). Such soil behavior increases maintenance costs and
necessitates corrective measures for infrastructure projects (Terzaghi et al., 1996).

Various methods exist for determining clay content, each with its own advantages and
limitations. Sieve analysis is widely used for coarse-grained soils like sand and gravel, where particle
size is determined using a series of sieves with different mesh sizes. However, sieve analysis is
ineffective for particles smaller than 0.063 mm (Gee & Or, 2002), making it unsuitable for clay and
silt.

Laser Diffraction Analysis is another advanced technique that measures particle size using
light scattering principles. It provides rapid results with high accuracy and can analyze a broad range
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of particle sizes, from microns to millimeters (Eshel et al., 2004 ). However, this method requires
specialized equipment and may not be cost-effective for routine laboratory testing.

The hydrometer method, established in 1927, is a sedimentation-based technique widely
used to determine the particle size distribution of fine-grained soils, particularly silts and clays. This
method operates on the principle of sedimentation, where soil particles suspended in a liquid settle
at velocities proportional to their size, density, and the fluid’s viscosity, as described by Stokes’ Law
(Das & Sobhan, 2018). The hydrometer measures the relative density of the suspension over time,
allowing for the calculation of particle size distribution. The hydrometer method is particularly
effective for analyzing fine-grained soils where traditional sieve analysis is impractical. It provides
a continuous particle size distribution curve, offering detailed insights into soil composition.
Additionally, it is cost-effective and standardized, making it accessible for routine soil analysis.
Despite its widespread use, the hydrometer method has inherent limitations. It assumes that soil
particles are spherical and of uniform density, which is often not the case in natural soils. Clay
particles, for instance, are typically plate-shaped, leading to deviations from theoretical settling
velocities predicted by Stokes” Law. Moreover, the method requires precise temperature control, as
fluid viscosity changes can significantly affect the settling rates. The presence of dispersing agents,
such as sodium hexamethaphosphate, is necessary to prevent flocculation, however, achieving
complete dispersion can be challenging.

Despite advancements in soil analysis techniques, the hydrometer method remains widely
used in geotechnical engineering due to its low cost, simplicity, and standardized procedures. The
integration of hydrometer method and ML enhances data analysis efficiency, providing accurate
predictions while reducing testing time (Vargas-Zapata et al., 2025; Zhu et al., 2018).

This research explores ML applications in soil analysis to predict clay content by
investigating its relationship with specific gravity and hydrometer readings, developing and
comparing Linear Regression and Random Forest Regressor models, and evaluating their
performance with R2 to enhance accuracy and efficiency over traditional methods.

2. OBJECTIVES

1. To investigate the relationship between clay content and specific gravity combined with
hydrometer readings at various time intervals.

2. To develop and compare ML models for clay content prediction using Linear Regression
and Random Forest Regressor, evaluating their performance using the R* coefficient.

3. RESEARCH METHODOLOGY

3.1 Basic Soil Property Testing

The hydrometer analysis method, based on Stokes' Law, determines particle size distribution
by measuring sedimentation rates in a fluid medium (ASTM D7928-17, 2017). This test involves
dispersing soil particles in a liquid and measuring fluid density at different depths over time using a
hydrometer. Larger particles settle faster than smaller ones, allowing for particle size determination
based on sedimentation rates. Stokes' Law (Das & Sobhan, 2018) defines the velocity of particle

settling as:
d = 18,tu (1)
(G.-G,)sgt
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where d is particle diameter (mm), u1is viscosity of water (Pa-s), Hy is the effective depth (m) of
hydrometer , G, is specific gravity of soil particles, G, is specific gravity of water, g is
gravitational acceleration and 7 is the time elapsed (minute)
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Figure 1 Hydrometer Reading

Soil samples (31 in total) were collected from Nakhon Phanom and Sakon Nakhon provinces,
Thailand. Samples were sieved using a No. 40 sieve for specific gravity testing and a No. 200 sieve
for hydrometer analysis, consist of both silt and clay. The hydrometer used, type 152, weighs 78
grams. Hydrometer readings (R) were recorded from 15 seconds (Hyl5s) to 1440 minutes
(Hy1440m) as shown in Figure 1. The effective depth (Hy) can be calculated as follows:

Hy=R+C,+C —C, )

where R is the hydrometer reading, C» is meniscus correction, C; is temperature correction, Cq is
dispersing agent correction.

3.2 Machine Learning (ML)

ML techniques were used to optimize soil property analysis. The study compared: Linear
Regression (LR): A simple predictive model assuming linear relationships. Random Forest
Regressor (RFR): An ensemble learning model that enhances prediction accuracy by averaging
multiple decision trees.

3.3 Model Training and Validation

The dataset was divided using 10-Fold Cross-Validation (Scikit-learn, 2025) to ensure
stability and prevent overfitting. The data distribution for Cross-Validation is shown in Figure 2.
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3.4 Data Analysis and Interpretation

Table 1 summarizes the statistical properties of the clay content, specific gravity, and
hydrometer readings at different time intervals, providing an overview of the variation in the soil
samples used for analysis.
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Figure 2 Cross-Validation

The mean clay content is 23.55% with a standard deviation of 14.04, indicating a moderately
high variation in soil properties across samples. The minimum (9.09%) and maximum (61.95%)
values suggest a significant disparity in clay content among samples, which could be attributed to
variations in sampling locations. The high standard deviation implies that the dataset includes a
mixture of different soil classifications, ranging from sandy silt to highly clayey soils.

The specific gravity values show a narrow range (Min = 2.55, Max = 2.75) with a low
standard deviation (0.06). These values are within the expected range for typical clay and silt soils
(2.6 -2.8) (Holtz et al., 2011), confirming the dataset's reliability. Since G, remains relatively stable,
it may not be a dominant predictor variable in ML models but serves as a secondary feature to
improve predictions.

As expected, the hydrometer readings decrease over time, demonstrating sedimentation of
fine particles. Initial readings (Hyl5s = 52.05% mean) are the highest due to suspended fine
particles, whereas Hyl440m = 10.67% mean indicates the final settling phase. High standard
deviations at earlier times (e.g., HySm = 6.20, Hyl10m = 6.97) suggest substantial variation in soil
suspension behavior among samples. At Hy420m and Hy180m, variability decreases, indicating that
these time points may be more stable for modeling clay content.

Table 1 Statistical data for data analysis

Variables | Count | Mean Std Min 25% 50% 75% Max
Clay 31 23.55 | 14.04 9.09 12.96 18.75 28.25 61.95
G, 31 2.65 0.06 2.55 2.60 2.65 2.69 2.75
Hyl5s 31 52.05 1.88 47.81 51.13 51.88 52.81 57.81
Hy30s 31 49.12 1.94 44 .44 48.00 | 48.81 50.03 53.19
Hylm 31 46.25 2.82 38.44 44.16 | 46.81 48.00 51.19
Hy2m 31 41.31 5.33 21.44 39.00 | 41.88 45.19 48.19
Hy5m 31 35.54 6.20 18.44 32.00 | 35.81 39.34 46.19
Hyl0m 31 29.92 6.97 15.44 23.97 | 30.19 34.81 44.19
Hy20m 31 24 .86 8.41 10.19 17.47 | 25.88 31.81 41.19
Hy40m 31 20.41 8.62 6.81 12.62 | 21.88 25.81 40.19
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Variables | Count | Mean Std Min 25% 50% 75% Max
Hy80m 31 17.40 8.58 6.81 10.50 15.81 21.84 39.19
Hyl180m 31 15.28 8.36 5.81 7.88 12.81 20.31 35.57
Hy240m 31 14.62 7.94 5.81 7.53 12.13 19.81 33.57
Hy420m 31 13.10 | 7.15 4.81 7.38 11.19 15.88 33.57
Hyl440m | 31 10.67 6.00 4.50 7.03 8.81 12.65 32.57

3.5 Performance Measurement

In evaluating the predictive accuracy of ML models, particularly in regression problems, a
key performance measures metric is commonly used. R-Squared (R?) (Gao, 2024) metric quantifies
the proportion of variance in the dependent variable (e.g. clay) that is explained by the independent
variable (e.g. hydrometer readings as different times). It is defined as:

>(n-x)
> (n-»)

R =1- 3)

where y, is actual observed values, y; is predicted values from the model, ;i is mean of actual
observed values

Interpretation of R? values:
R’ =1 Perfect prediction (model explains 100% of the variance)
R’ = 0 Model does not explain any variance beyond the mean prediction
R? < 0 The model performs worse than a simple mean predictor.

4. RESEARCH RESULTS

4.1 Importance and Correlation of Feature

In Figure 3, the RFR model was utilized to evaluate the importance of various features in
predicting clay content. The analysis showed that the most influential variables for predicting clay
content were hydrometer readings taken at longer durations, specifically at Hy420m, Hy1440m,
Hy240m, and Hyl80m. These durations exhibited higher feature importance than the physical
property of specific gravity (Gs), which was found to have a moderate effect. In contrast, the shorter
hydrometer durations such as Hyl5s, Hy30s, and Hylm demonstrated low importance, indicating
that they had a minimal contribution to accurate predictions of clay content.

The correlation matrix further supported these findings. It revealed a strong relationship
between clay content and hydrometer readings at longer durations, especially at Hy/80m with an R?
value close to 0.9, as shown in Figure 4. This suggests that longer hydrometer test durations provide
more reliable predictions for clay content. On the other hand, shorter durations like Hy!135s, Hy30s,
and HylIm showed significantly weaker correlations, reinforcing the idea that selecting longer
durations such as Hyl/80m, Hy80m, and Hy240m for feature inclusion can improve the model's
predictive performance.

4.2 Accuracy of the Analysis

As shown in Figure 5, the evaluation of the ML models for predicting clay content was
conducted through R? using 10-Fold Cross-Validation to reduce overfitting. The experimental
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results indicate that the selection of hydrometer test durations directly affects the performance of the
models. The comparison of two datasets is as follows:
o Dataset 1: Uses values from Hyl5s to Hy420m
o Dataset 2: Uses values from Hyl0m to Hy420m
It was found that the highest R? value occurred at Hy!80m, where the RFR gave an R? value
of 0.92 and LR gave an R? value of 0.85. This means that RFR explains the data variance best at
Hy180m, whereas shorter durations, such as Hyl0m, gave lower R? values, with some even being

Feature Importance: GS & Hy Time Intervals (Without Clay)
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Figure 3 Feature Importance

negative, indicating poor prediction accuracy. Longer durations, such as Hy180m, allow for
complete sedimentation of fine particles, leading to a more measurement of clay content. This is
supported by stdud
Using data starting from Hyl0Om onwards gave higher prediction accuracy compared to
datasets with shorter durations like Hy/5s or Hy30s, which showed lower and unstable R? values.
The selection of Hyl80m as the most appropriate duration was based on a combination of three key
factors:
1. Feature Importance (Figure 3)
o Although Hy420m and Hyl440m had the highest feature importance, Hy/80m also had
a high importance value.
o Selecting Hy180m reduced the testing time without sacrificing model accuracy.
2. Correlation Matrix (Figure 4)
o Hyl80m had a high correlation with clay content (0.83), demonstrating that this time still
accurately reflects the soil properties without needing a longer duration.
3. R? Comparison Graph (Figure 5)
o Hyl180m showed the highest R? within the appropriate duration (0.92 for RFR and 0.85
for LR). R? values greater than 0.7 are acceptable in research (Musafar et al., 2023).
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It reduced testing time from Hy420m while maintaining high accuracy.

At 240 minutes, the data followed a more linear trend, which made LR better suited to
explain the variance in clay content, RFR, while poerful for non-linear data did not
perform as well at this duration due to linear nature of the data.
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Figure 4 Correlation Matrix

Model Tuning and Reducing Testing Duration The results showed that using Hyl80m
reduced the testing duration compared to Hy420m while maintaining the highest accuracy. Choosing
the period from Hyl0Om to Hyl80m as input variables (Feature Selection) helped reduce model
complexity and increased testing speed without compromising prediction accuracy. Additionally,
using 10-Fold Cross-Validation ensured that the models were not overfitting and could predict new
data accurately.
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Figure S Performance comparison of LR and RFR models

S. CONCLUSIONS
This study investigates the integration of ML techniques with hydrometer testing to enhance

the prediction of clay content in soils. The research compares two ML models LR and RFR to
determine their effectiveness in predicting clay content using specific gravity (Gs) and hydrometer
readings at various time intervals. Key Findings:

Hydrometer Readings Influence Prediction Accuracy: Longer hydrometer test durations (e.g.,
Hyl180m, Hy240m, Hy420m) showed a stronger correlation with clay content. The highest R?
values were 0.87 for LR and 0.93 for RFR, demonstrating the importance of selecting the optimal
test duration. The ML method combined with Hy180m readings resulted in R? exceeding 0.75,
making it an effective balance between test duration and prediction accuracy.

Model Performance Comparison: RFR outperformed LR in handling complex data and reducing
prediction errors. LR performed best at Hy240m, suggesting it is better suited for cases where a
linear relationship is dominant. Shorter hydrometer durations (e.g., Hyl5s, Hy30s) showed low
feature importance and weak correlation with clay content.

Feature Selection and Model Optimization: Removing low-correlation variables improved
model efficiency while reducing overfitting risks. 10-Fold Cross-Validation ensured stable
predictions.

The study confirms that integrating ML with hydrometer analysis significantly improves clay

content prediction accuracy, reducing testing time while maintaining reliability. The findings
support ML applications in geotechnical engineering for more efficient and precise soil property
analysis.
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6. FUTURE RESEARCH DIRECTIONS

- Expanding ML models to include Deep Learning (e.g., ANN, CNN, RNN) for more complex
soil behavior prediction.

- Develop a software tool or web application that integrates ML models for real-time predictions
of clay content in the field.

- Integration of additional soil properties such as Atterberg limits, compaction characteristics, and
mineral composition to improve predictive models.

- Developing explainable Al techniques to enhance model interpretability for engineering
applications.
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