Comparative Study Between Software Product Line and
Waterfall Process

Waraporn Jirapanthong

Faculty of Information Technology, Dhurakij Pundit University, 110/1-4 Prachachuen Road, Laksi,
Bangkok 10210, Thailand, waraporn@it.dpu.ac.th ,+66(0)9547300 ext. 385

ABSTRACT - Software product line has been recognised as an important paradigm for software
systems engineering. In the last years, a large number of methodologies and approaches have been
proposed to support the development of software systems based on product line development.
However, its context leads difficulties to software product line engineering in practical. It has been
quested whether software product line-based approach is more productive and flexible than traditional
software development model i.e. waterfall model. This research thus examines the qualitative and
quantitative aspects of software development which applies software product line and waterfall. The
paper presents the study on empirical projects based on software product line and waterfall processes.
In particular, we conducted the survey and interview to capture the satisfaction of stakeholders and
measured the effort spent during software development and maintenance.

KEY WORDS - software Product Line, Product Family, Waterfall, and Software Measurement

1. Introduction

Nowadays, many software development projects
focus on customer satisfaction, quick adaptation to
changes, and flexibility. Therefore, software product
line development has become popular because it
responds well to frequent changes in user
requirements. Software product line shares a
common set of features and are developed based on
the reuse of core assets have been recognised as an
important paradigm for software systems
engineering. Recently, a large number of software
systems are being developed and deployed in this
way in order to reduce cost, effort, and time during
system development. Various methodologies and
approaches have been proposed to support the
development of software systems based on software
product line development.

Although software product line development is
criticized as having difficulties, it has been more
popular. Some difficulties are concerned with the (a)
necessity of having a basic understanding of the
variability ~consequences during the different
development phases of software products, (b)
necessity of establishing relationships between
product members and product line artefacts, and
relationships between product members artefacts, (c)
poor support for capturing, designing, and
representing requirements at the level of product line

and the level of specific product members, (d) poor
support for handling complex relations among
product members, and (e) poor support for
maintaining information about the development
process.

This research, thus, examines the qualitative and
quantitative aspects of software development using
software product line architecture, in comparison
with those using a traditional software model,
waterfall model. In particular, the study used both
qualitative aspect that were collected from surveys
and interviews of development and maintenance
team and quantitative aspect that were measured
from effort spent during the development and
maintenance phases.

2. Background

This section presents background material on
software product line, waterfall model, and software
metrics.

2.1 Software Product Line

Software product line systems share a common set of
features and are developed based on the reuse of core
assets. A family of software systems are developed

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010 1

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

and deployed in this way in order to reduce cost,
effort, and time during system development. Various
methodologies and approaches have been proposed
to support the development of software systems
based on product line development. Examples of
these methodologies and approaches are FeatuRSEB
[6], FAST [14], FORM [10], FODA [9], PuLSE [2],
and KobrA [1].

The above methodologies and approaches are also
known as domain engineering approaches and
emphasise a group of related applications in a
domain, instead of single applications. Their main
focus is the identification and analysis of
commonality and variability principles among
applications in a domain in order to engineer reusable
and adaptable components and, therefore, support
product line development.

There are three steps for domain engineering: (a)
domain analysis is the process of identifying,
collecting, organizing and representing the relevant
information in a domain, based upon the study of
existing systems and their developing histories,
knowledge captured from domain experts, underlying
theory, and emerging technology within a domain
[9]. Software artefacts that are produced during the
activity of domain analysis are called reference
requirements, which define the products and their
requirements in a family. The reference requirements
contain commonality and variability of the product
family. The activities occur during the domain
analysis are scoping, defining of commonality and
variability, and planning for product members and
features.

(b) domain design is the process of developing a
design model from the products of domain analysis
and the knowledge gained from the study of software
requirements or design reuse and generic
architectures. Software artefacts that are produced
during the activity of domain design are called
software product line architecture, which forms the
backbone of integrating software systems and
consists of a set of decisions and interfaces which
connect software components together. Software
product line architecture differs from an architecture
of single systems that it must represent the common
design for all product members and variable design
for specific product members [11]. The activities
occur during the domain design are defining and
evaluation of software product line architecture.

(c) domain implementation is the process of
identifying reusable components based on the
domain model and generic architecture [4]. Software
artefacts that are produced during the activity of
domain implementation are called reusable software

components. The activity is focused on the creation
of reusable software components e.g. source codes
and linking libraries that are later assembled for
product members At the end of the domain
engineering process, an organization is ready for
developing product members.

Additionally, application engineering is a systematic
process for the creation of a product member from
the core assets created during the domain
engineering. Domain engineering assures that the
activities of analysis, design and implementation of a
product family are thoroughly performed for all
product members, while application engineering
assures the reuse of the core assets of the product
family for the creation of product members. There
are activities such as: (i) requirements engineering,
which is a process that consists of requirements
elicitation, analysis, specification, verification, and
management; (ii) design analysis, which is a process
that is concerned with how the system functionality
is to be provided by the different components of the
system; and (iii) integration and testing, which is a
process of taking reusable components then putting
them together to build a complete system, and of
testing if the system is working appropriately.

However, although the support for identifying and
analysing common and variable aspects among
applications and the engineering of reusable and
adaptable components are important for software
product line development, they are not easy tasks.
This is mainly due to the large number and
heterogeneity of documents generated during the
development of product line systems.

2.2 Waterfall Model

The Waterfall model is originally invented by
Winston W. Royce in 1970. This model assumes that
requirements remain static throughout a project and
emphasizes having documents to support each
development step. Waterfall development has distinct
goals for each phase. The process has five steps: (a)
requirement definition, (b) software and system
design, (c) implementation, (d) integration and
testing, and (e) operation and maintenance. Software
industry in Thailand is generally based on waterfall
model which emphasis on documentation such as
user requirement specification, testing document and
design diagram. The developers spend time to create
and update documents in order to cover entire of a
software project. Therefore, many documents are
created during software development process. In
addition, changing of requirement is not flexible.
However, the documents are expected to be used by
developers and stakeholders. Those also support new
stakeholders who later join the software project.

2 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

2.3 Software Metrics

Measurement is the process by which numbers or
symbols are assigned to attributes of entities in the
real world in such a way as to describe them
according to clearly defined unambiguous rules [13].
Entities are such as software design, software design
specification, software code, and software
development team. Attributes are such as defects
discovered in design review, number of pages,
number of line of code, number of operations, and
team size, average team experience.

Types of metric are several. The common type of
metric is product metric. The generally accepted
measures for the software product are size and
quality. In particular the size measure of software
product involves two ratios: (a) line of code (LOC)
and (b) function point (FP) [13]. The quality measure
of software product involves maintainability
measurement such as coding effort, design effort,
percentage of modules changes, classes changes,
classes added. In addition, [5] presents the
maintainability metrics in external view such as mean
or median time to repair, ratio of total change
implement time to total number of changes
implemented, number of unsolved problems, time
spent on unsolved problems ,percentage of changes
that introduce new faults and number of modules
modified to implement a change.

3. Research Method

The goal of this research is to compare the qualitative
and quantitative aspects between software product
line -based and waterfall-based development and
maintenance. To achieve the goal, this research
conducted an experiment involving three software
development projects that have similar requirements
and some different requirements. A team of
developers was required to achieve the software
development projects two times: (i) to follow the
software product line process, and (ii) to follow the
waterfall process.

3.1 Empirical Project Development based
on Software Product Line Process

This project started with developers training in
software product line processes and techniques.
These developers were then tested for their
understanding of software product line practices by
using questionnaires. Those who passed the test were
assumed to be ready to implement projects using
software product line. The developers then started
developing a set of three projects by following the
software product line practices. They studied and

analyzed all projects together and produced the
following software artefacts:

reference requirements
software product line architecture
software components

Details of three
projects

Domain Engineering

Domain Domain Domain
Analysis Design Implementation

Domain Artefacts

[—=—=——--
2 .
33|
g:
30
S 3
12
= W0
8]
o [
o 2™
Sa
g3
Q
Q.
S c
d 5
8
ER
g 2|
=] -
D 9D
3 O
=2
172]

-—— - -

Applicatigri:Engineering

Requirements Design Analysis Integration and
Engineering Testing

—

Single
software
product

Figure 1: Software Produce Line Process

The artefacts were checked before submitting to the
domain repository to be ready for application
engineering process. Next, three software products
were created based on the domain artefacts (i.e.
reference requirements, software product line
architecture, and software components). Before the
software was accepted by customers, we ran test
cases on the software. When the software passed all
test cases, the projects are completed. The whole
software product line process is shown in Figure 1.

We then calculated and analyzed the qualitative and
guantitative aspects of domain engineering process
and application engineering process for each project.
Then we checked the developers conform to software
product line practices.

3.2 Empirical Project Development based
on Waterfall Process

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010 3

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

Details of a
single project

\/

Requirements

_Definition :\
System & Software
User Design
Requirements
Specifications

Implementation
3

Design x
Models
Integration and
Source . Testing
Code

Testing Operatlon &
Maintenance
Documents \

Single
software
product

Figure 2: Waterfall Process

For each project, developers divided their work based
on their roles. Firstly, the developers summarized all
requirements from customers and produced a user
requirement specification. Next, they designed the
system architecture, components and data models.
They applied use case descriptions and diagrams to
explain the requirements of each single software
product. In addition, they also created class diagrams,
sequence diagrams and activity diagrams of the entire
project in this stage. They implemented the software
by following the documents and used unit tests
regularly. When completing all the components, the
developers integrated all the pieces together and
began an integration test. Finally, the developers
delivered the customers the complete software when
all of these stages finished. Figure 2 shows the flow
of these projects. The artefacts that are checked and
submitted to the repository are:

use case descriptions

use case diagrams

class diagrams

sequence diagrams

activity diagrams

source code

testing documents

coding standard and technical documents

The project that used waterfall-based model
produced more artefacts than that of software product
line process does. However, the development time of
the waterfall-based project is greater than that of
software product line. All the end of this step, we
calculated and analyzed the qualitative and
quantitative aspects in each project.

3.3 New Requirements Management on
Software Products

In this phase, the team of developers was given new
requirements on the systems. Many factors lead into
this scenario, for example, customers require new
functionality to be done in a design part of a software
product.

PM2 PM3

Zefacts ,o¢™e
o .

.
0
. .
o teen
o+ o

G

. N .
ey i FORR A 1 ey U
1=

- k
I'Domain Adefacts e, "Erreal, | e,

Reference
requirements

Software product
line architecture

N (=]

o w
NER
oﬁg

o N

ER

5 @

2

‘e,
0
‘e
.
.
.
.

Details of
Changes on PM1

Figure 3: Empirical Project Maintenance

For the software product line-based systems, it is
supposed the situation in which the organisation has
established a software product line for their software
systems with software product members. Those are
created from the development phase. And the new
requirements are done to a product member.
Therefore, it is necessary to evaluate how these new
requirements will affect the other artefacts of the
product member and if these new requirements also
affect other product members in the software product
line that may be related to the new requirements. The
artefacts are inspected and determined if they are
related to the new requirements as shown in Figure 3.

For the waterfall-based systems, it is supposed the
situation in which the organisation has individually
developed a set of software systems. Those are
created from the development phase. And the new
requirements are done to a software product.
Therefore, it is necessary to evaluate how these new
requirements will affect any artefacts of the software
product.

4 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

4. Experiments

According to the experiments, we captured the time
spent during development of three software products
by following those software process models. Those
software products are having similar requirements
and some differences. The developer team was
required to develop a set of three software products
two times. Each time each different software process
model was followed.

4.1 Project Characteristics

The developers were requested to develop three
software products, namely PM1, PM2, and PM3. The
list of functionalities and specifications of each
software product is shown in Table 1. We describe
below the details of each product.

PM1

The product member PM1 is expected to be a
software system which supports an accounting
department and is used by young people. As shown
in Table 1, the product member PM1 has some basic
functionalities: (a) processing accounting data, (b)
generating a report, (c) managing log files, and (d)
displaying time and date. Additionally, it has some
advanced functionalities: (a) access Internet which
allows a user to browse and download data through
the Internet, and (b) email system which supports the
email.

PM2

The product member PM2 supports work related to
accounting and offers a simple design and is targeted
for users who are not familiar using a computer. The
product member PM2 has only basic functionalities:
(a) processing accounting data, (b) generating a
report, (c) managing log files, and (d) displaying
time and date.

PM3

The target customers of the product member PM3 are
users who work via the Internet. The system supports
web-based environment. As shown in Table 1, the
product member PM3 has some basic functionalities:
(a) processing accounting data, (b) generating a
report, (c) managing log files, and (d) displaying
time and date. In addition, PM3 offers advanced
functionalities: (a) access Internet which allows a
user to browse and download data, (b) email system
which supports the email, (c) send and receive text
messages, and (d) send and receive multimedia
messages.

Table 1 shows the functionalities of each software

product

Functionality| PM1 PM2 | PM3
F1
F2
F3
F4
F5
F6
F7
F8

XX | XX

XX XXX X | X

XXX XXX | X | >

F1: Processing accounting data

F2: Generating a report

F3: Managing log files

F4: Displaying time and date

F5: Enabling access the Internet

F6: Enabling emailing

F7: Sending and receiving text messages

F8: Sending and receiving multimedia message

4.2 Software Product Line -based

Projects

A. Development Phase

The projects have been developed based on study,
analysis, and discussions of business domain.
Software systems are created based on demands
which require a variety of software products. In this
way, a number of documents are created by
developers. The team of developers analysed and
designed a family of software systems with three
members. Each member has shared and specialized
functionalities with the family. The product members
are aimed to satisfy different targets of customers.

In addition, reference requirements is produced and
documented in term of a feature model as software
product line architecture is produced and documented
in terms of subsystem, feature, and process models
[7]. The following artefacts are created:

(a) a feature model is created and composed of
common features representing mandatory
features, alternative and optional, representing
different features between product members.
For example, all product members must
provide features of processing accounting
data, generating a report, managing log files,
and displaying time and date.

(b) a subsystem models is created and provides
facilities for performing basic tasks in the
systems. But there exist various instances of
the process and module models, as well as
there exist many instances of use cases, class,
statechart, and sequence diagrams.

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010 5

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

(c) seven process models are created and each is
refined for a subsystem in the subsystem
model.

(d) eleven module models are created and each is
refined for a process in the process models.

Moreover, the artefacts of each product member are
created. For example, a use case is used to elaborate
the satisfaction of the functionalities for each product
member. As below, the list of artefacts created for
each product member is shown.

PM1
(a) four use case descriptions
(b) a class diagram
(c) astatechart diagram
(d) four sequence diagram
(e) source code

PM2
(a) four use case descriptions
(b) a class diagram
(c) astatechart diagram
(d) four sequence diagram
(e) source code

PM3
(a) four use case descriptions
(b) a class diagram
(c) astatechart diagram
(d) six sequence diagram
(e) source code

B. Maintenance Phase

According to software product line-based systems,
new requirements management can be facilitated by
the identification and analysis of commonality and
variability principles among software product line
and product members. In particular, the software
artefacts are reusable and adaptable. A number of
relations between artefacts are detected in order to
determine the association between the new
requirements and existing software artefacts in
product member PM1 and software product line.
Different types of traceability relations are created to
identify the role of those relations [8]. For example,
the relations between the new requirements and
software product line; between the new requirements
and product member PM1, and between software
product line and product member PM1. For instance,
there are (a) four use case documents for PM1 and
three processes in a process model of software
product line that are related in terms of three different
types of traceability relations (i.e. satisfies,
implements, and refines); (b) one class diagram and
four sequence diagrams of software product line that
are related in terms of containment. Those relations

are then used in new requirements management
process.

4.3 Waterfall-based Projects
A. Development Phase

Similarly, the projects have been developed based on
study, analysis, and discussions of business domain.
The developers are required to reproduce the
software systems based on the same set of
requirements. Otherwise, this time they followed the
waterfall software process model. According to the
waterfall model, a number of artefacts for each single
software product are created during software
development process. As below, the artefacts of each
single software product are checked and submitted to
the repository.

PM1
(a) ausecase diagram
(b) four use case descriptions
(c) aclass diagram
(d) a statechart diagram
(e) four sequence diagram
(f) source code

PM2
(a) ausecase diagram
(b) four use case descriptions
(c) aclass diagram
(d) a statechart diagram
(e) four sequence diagram
(f) source code

PM3
(a) ausecase diagram
(b) four use case descriptions
(c) aclass diagram
(d) a statechart diagram
(e) four sequence diagram
(f) source code

B. Maintenance Phase

For new requirements management on waterfall-
based systems, developers divided their work based
on their roles. Firstly, the developers summarized all
new requirements from customers and reproduced
new user requirement specification. Next, they
redesigned the system architecture, components and
data models. They applied use case descriptions and
use case diagrams to explain the new requirements of
the software product. They updated class diagrams,
sequence diagrams and activity diagrams of the entire
project in this stage. They re-implemented the
software by following the documents and used unit
tests regularly. When completing all the components,

6 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

the developers integrated all the pieces together again
and began an integration test. Finally, the developer
delivered the customers the complete software when
all of these stages finished.

5. Results and Discussion

In this section, we analyse and evaluate the
experiments by focusing on two aspects of
measurement: (a) qualitative and (b) quantitative
measurement.

A. Qualitative Measurement

In general, qualitative methods and tools for system
analysis can address the problem of how to
empirically determine the context of software
process. In this research, we focused on comparison
between two software process methodologies how
they are practiced. As mentioned, we have conducted
the survey and interview. It has been observed that
the customers are satisfied with the software product
line resulting projects and teamwork. Moreover, the
software product line developers satisfied the process
that emphasis the software more than the
documentation. However, it has been also noticed
that it is easier to train waterfall-based practices to
inexperience developers but some experience
developers tend to resist some software product line
practices because (a) they have to change their style
in working, and (b) it costs them for establishing the
software product line artefacts.

Attitude to applying SPLin
development phase

Tend to applying SPL

o

W positive W neutral negative W resistant ™ meutral

welcomed

Attitude to applying S5PLin
maintenance phase

Artefacts to be reused in
maintenance phase
4

W satisficd W neutral @ dissatisfic W rewse B newly created

Figure 4: Qualitative measurement

According to the survey, it is found that 33% of
developers tend to resist software product line
practices with the above reasons, whereas 70% of
developers are positive to using software product line
practices. Particularly, 82% of developers are
satisfied when performed the maintenance phase with
software product line. Some of software product line
artefacts are used during the maintenance phase. And

it is satisfied by the developers. However, application
engineering process depends on developer’ skill.
Moreover, the waterfall-based developers are
unsatisfied to frequently update the documentation.

B. Quantitative Measurement

Basically quantitative metrics are fundamentally
limited to the measurement of the size of system,
time and effort spent during software development
process. In this research, we measured the total of
work hour spent during development and
maintenance phases. The results show that the effort
metric of software product line-based projects is less
than waterfall-based projects. Software product line-
based projects enhance the productivity by using
existing software artefacts. The methodology
supports software reuse at the largest level of
granularity.

Table2 shows the effort spent during software
development for each project

Work hour
Domain Engineering 620
SPL-based projectl 315
SPL-based project2 240
SPL-based project3 215
Waterfall-based projectl 465
Waterfall-based project2 548
Waterfall-based project3 384

However, developers spent time and effort to
establish domain artefacts. Also, some defects are
discovered during the integration process for a
product member. It took some effort to fix them. On
the other hand, in the waterfall-based team,
customers are involved at the inception of project
determined requirements and contractual agreement.
Developers wrote all documents before coding. Then
customers changed some requirements, maybe after
they acquired finally product, developers needed to
significantly redesign and edit their documents. This
took a lot of effort to achieve the task.

For maintenance phase, we measured the total of
time to achieve the new requirements. The result
show that the spending time of software product line
-based projects is less than of waterfall-based
projects. Developers who performed the maintenance
phase found that well documentation can be useful
and reduce the cost to complete the task. In
particular, the artefacts of a waterfall-based project
are more documentation than a software product line-
based project. Otherwise, entire documentation of
waterfall process is inaccessible to maintainers
whereas documentation of software product line
process is restored as repository to support in
maintenance and reuse process.

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010 7

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

Table 3 shows the effort spend during the change
process

Work
hour
Software product line -based | 305
projectl
Waterfall-based projectl 380

6. Conclusions and Future Work

To conclude, we evaluated comparative study
between software product line-based process and
waterfall-based process. The productivity during
development using software product line is higher
than that using waterfall-based model. Also, a
software product line-based project is more
maintainable than waterfall-based one. However,
software product line is unsuitable for all projects. It
serves the reuse practice in an organization having a
large number of products, which have similar
requirements and some differences. Developers must
consider the characteristics of the project to ensure
software product line is appropriate. In the other
hand, waterfall process is suitable to serve a software
project which is small and has solid requirements.

In the future work, we plan to gather more data from
the projects in order to develop statistic evaluation of
comparison between two software process models.
Additionally, we plan to develop the tools which
support the software process. The techniques and
approaches for software product line development
should be further extended to allow establishing
software product line for small- and medium- sized
companies. Moreover, an approach to evolve
software product line should be investigated in order
to enforce a standardized approach for evolution.

References

[1] Atkinson, C., J. Bayer, and D. Muthig. 2000.
Component-based product line development:
The KobrA approach. Pages 289-310. the 1st
Software Product Line Conference, SPLC.
Kluwer, Denver, Colorado, USA.

[2] Bayer, J., O. Flege, P. Knauber, R. Laqua, D.
Muthig, K. Schmid, T. Widen, and J.-M.
DeBaud. 1999. PuLSE: A methodology to
develop software product lines. Pages 122-131.
the Fifth ACM SIGSOFT Symposium on
Software Reusability (SSR'99), Los Angeles,
CA, USA.

[3] Boehm, B. 1991. Software Risk Management:
Principles and Practices. IEEE Software, no.pp.
32-41, January.

[4] Clements, P., and L. Northrop. 2004. A
Framework for Software Product Lines Practice.
http://www.sei.cmu.edu/productlines/framework.
html

[5] Fenton, Norman E.. 1991. Software Metrics: A
Rigorous Approach. Chapman & Hall, Ltd.,
London, UK.

[6] Griss, M. L., J. Favaro, and M. d. Alessandro.
1998. Integrating feature modeling with the
RSEB. Pages 76-85 in P. Devanbu and J. Poulin,
eds. the b5th International Conference on
Software Reuse. IEEE Computer Society Press.

[7] Jirapanthong, W. 2008. An Approach to
Software Artefact Specification for Supporting
Product Line Systems. the 2008 International
Conference on Software Engineering Research
and Practice (SERP’08), Las Vegas, Nevada,
USA, 2008.

[8] Jirapanthong, W., and A. Zisman. 2009.
XTraQue: traceability for product line systems.
Software and System Modeling 8(1): 117-144
(2009).

[9] Kang, K., S. Cohen, J. Hess, W. Novak, and A.
Peterson. 1990. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Software
Engineering Institute, Carnegie = Mellon
University, Pittsburgh, PA.

[10] Kang, K. C., S. Kim, J. Lee, K. Kim, E.
Shin, and M. Huh. 1998. FORM: a feature-
oriented reuse method with domain-specific
architectures. Annals of Software Engineering 5:
143-168.

[11]Linden, F. v. d., J. Bosch, E. Kamsties, K.
K'ans'al"a, and H. Obbink. 2004. Software
Product Family Evaluation. Pages 110-129. the
Third International Software Product Line
Conference, SPLC 2004. Springer Boston, MA,
USA.

[12] Mills, Everald E. 1998. Software Metrics. SEI
Curriculum Module SEI-CM-12-1.1, December.

[13] Sharpe, J.L., and J. W. Cangussu. 2005. A
productivity metric based on statistical pattern
recognition. Computer Software and
Applications Conference, 29th Annual
International, 26-28 July.

[14] Weiss, D. 1995. Software Synthesis: The FAST
Process. the International Conference on
Computing in High Energy Physics (CHEP), Rio
de Janeiro, Brazil.

Copyright © 2010 by the Journal of Information Science and Technology.

8 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 1 | JAN-JUN 2010

