
JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010 1

Comparative Study Between Software Product Line and

Waterfall Process

Waraporn Jirapanthong

Faculty of Information Technology, Dhurakij Pundit University, 110/1-4 Prachachuen Road, Laksi,

Bangkok 10210, Thailand, waraporn@it.dpu.ac.th ,+66(0)9547300 ext. 385

ABSTRACT – Software product line has been recognised as an important paradigm for software

systems engineering. In the last years, a large number of methodologies and approaches have been

proposed to support the development of software systems based on product line development.

However, its context leads difficulties to software product line engineering in practical. It has been

quested whether software product line-based approach is more productive and flexible than traditional

software development model i.e. waterfall model. This research thus examines the qualitative and

quantitative aspects of software development which applies software product line and waterfall. The

paper presents the study on empirical projects based on software product line and waterfall processes.

In particular, we conducted the survey and interview to capture the satisfaction of stakeholders and

measured the effort spent during software development and maintenance.

KEY WORDS – Software Product Line, Product Family, Waterfall, and Software Measurement

1. Introduction

Nowadays, many software development projects

focus on customer satisfaction, quick adaptation to

changes, and flexibility. Therefore, software product

line development has become popular because it

responds well to frequent changes in user

requirements. Software product line shares a

common set of features and are developed based on

the reuse of core assets have been recognised as an

important paradigm for software systems

engineering. Recently, a large number of software

systems are being developed and deployed in this

way in order to reduce cost, effort, and time during

system development. Various methodologies and

approaches have been proposed to support the

development of software systems based on software

product line development.

Although software product line development is

criticized as having difficulties, it has been more

popular. Some difficulties are concerned with the (a)

necessity of having a basic understanding of the

variability consequences during the different

development phases of software products, (b)

necessity of establishing relationships between

product members and product line artefacts, and

relationships between product members artefacts, (c)

poor support for capturing, designing, and

representing requirements at the level of product line

and the level of specific product members, (d) poor

support for handling complex relations among

product members, and (e) poor support for

maintaining information about the development

process.

This research, thus, examines the qualitative and

quantitative aspects of software development using

software product line architecture, in comparison

with those using a traditional software model,

waterfall model. In particular, the study used both

qualitative aspect that were collected from surveys

and interviews of development and maintenance

team and quantitative aspect that were measured

from effort spent during the development and

maintenance phases.

2. Background

This section presents background material on

software product line, waterfall model, and software

metrics.

2.1 Software Product Line

Software product line systems share a common set of

features and are developed based on the reuse of core

assets. A family of software systems are developed

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

2 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010

and deployed in this way in order to reduce cost,

effort, and time during system development. Various

methodologies and approaches have been proposed

to support the development of software systems

based on product line development. Examples of

these methodologies and approaches are FeatuRSEB

[6], FAST [14], FORM [10], FODA [9], PuLSE [2],

and KobrA [1].

The above methodologies and approaches are also

known as domain engineering approaches and

emphasise a group of related applications in a

domain, instead of single applications. Their main

focus is the identification and analysis of

commonality and variability principles among

applications in a domain in order to engineer reusable

and adaptable components and, therefore, support

product line development.

There are three steps for domain engineering: (a)

domain analysis is the process of identifying,

collecting, organizing and representing the relevant

information in a domain, based upon the study of

existing systems and their developing histories,

knowledge captured from domain experts, underlying

theory, and emerging technology within a domain

[9]. Software artefacts that are produced during the

activity of domain analysis are called reference

requirements, which define the products and their

requirements in a family. The reference requirements

contain commonality and variability of the product

family. The activities occur during the domain

analysis are scoping, defining of commonality and

variability, and planning for product members and

features.

(b) domain design is the process of developing a

design model from the products of domain analysis

and the knowledge gained from the study of software

requirements or design reuse and generic

architectures. Software artefacts that are produced

during the activity of domain design are called

software product line architecture, which forms the

backbone of integrating software systems and

consists of a set of decisions and interfaces which

connect software components together. Software

product line architecture differs from an architecture

of single systems that it must represent the common

design for all product members and variable design

for specific product members [11]. The activities

occur during the domain design are defining and

evaluation of software product line architecture.

(c) domain implementation is the process of

identifying reusable components based on the

domain model and generic architecture [4]. Software

artefacts that are produced during the activity of

domain implementation are called reusable software

components. The activity is focused on the creation

of reusable software components e.g. source codes

and linking libraries that are later assembled for

product members At the end of the domain

engineering process, an organization is ready for

developing product members.

Additionally, application engineering is a systematic

process for the creation of a product member from

the core assets created during the domain

engineering. Domain engineering assures that the

activities of analysis, design and implementation of a

product family are thoroughly performed for all

product members, while application engineering

assures the reuse of the core assets of the product

family for the creation of product members. There

are activities such as: (i) requirements engineering,

which is a process that consists of requirements

elicitation, analysis, specification, verification, and

management; (ii) design analysis, which is a process

that is concerned with how the system functionality

is to be provided by the different components of the

system; and (iii) integration and testing, which is a

process of taking reusable components then putting

them together to build a complete system, and of

testing if the system is working appropriately.

However, although the support for identifying and

analysing common and variable aspects among

applications and the engineering of reusable and

adaptable components are important for software

product line development, they are not easy tasks.

This is mainly due to the large number and

heterogeneity of documents generated during the

development of product line systems.

2.2 Waterfall Model

The Waterfall model is originally invented by

Winston W. Royce in 1970. This model assumes that

requirements remain static throughout a project and

emphasizes having documents to support each

development step. Waterfall development has distinct

goals for each phase. The process has five steps: (a)

requirement definition, (b) software and system

design, (c) implementation, (d) integration and

testing, and (e) operation and maintenance. Software

industry in Thailand is generally based on waterfall

model which emphasis on documentation such as

user requirement specification, testing document and

design diagram. The developers spend time to create

and update documents in order to cover entire of a

software project. Therefore, many documents are

created during software development process. In

addition, changing of requirement is not flexible.

However, the documents are expected to be used by

developers and stakeholders. Those also support new

stakeholders who later join the software project.

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010 3

2.3 Software Metrics

Measurement is the process by which numbers or

symbols are assigned to attributes of entities in the

real world in such a way as to describe them

according to clearly defined unambiguous rules [13].

Entities are such as software design, software design

specification, software code, and software

development team. Attributes are such as defects

discovered in design review, number of pages,

number of line of code, number of operations, and

team size, average team experience.

Types of metric are several. The common type of

metric is product metric. The generally accepted

measures for the software product are size and

quality. In particular the size measure of software

product involves two ratios: (a) line of code (LOC)

and (b) function point (FP) [13]. The quality measure

of software product involves maintainability

measurement such as coding effort, design effort,

percentage of modules changes, classes changes,

classes added. In addition, [5] presents the

maintainability metrics in external view such as mean

or median time to repair, ratio of total change

implement time to total number of changes

implemented, number of unsolved problems, time

spent on unsolved problems ,percentage of changes

that introduce new faults and number of modules

modified to implement a change.

3. Research Method

The goal of this research is to compare the qualitative

and quantitative aspects between software product

line -based and waterfall-based development and

maintenance. To achieve the goal, this research

conducted an experiment involving three software

development projects that have similar requirements

and some different requirements. A team of

developers was required to achieve the software

development projects two times: (i) to follow the

software product line process, and (ii) to follow the

waterfall process.

3.1 Empirical Project Development based

on Software Product Line Process

This project started with developers training in

software product line processes and techniques.

These developers were then tested for their

understanding of software product line practices by

using questionnaires. Those who passed the test were

assumed to be ready to implement projects using

software product line. The developers then started

developing a set of three projects by following the

software product line practices. They studied and

analyzed all projects together and produced the

following software artefacts:

- reference requirements

- software product line architecture

- software components

Figure 1: Software Produce Line Process

The artefacts were checked before submitting to the

domain repository to be ready for application

engineering process. Next, three software products

were created based on the domain artefacts (i.e.

reference requirements, software product line

architecture, and software components). Before the

software was accepted by customers, we ran test

cases on the software. When the software passed all

test cases, the projects are completed. The whole

software product line process is shown in Figure 1.

We then calculated and analyzed the qualitative and

quantitative aspects of domain engineering process

and application engineering process for each project.

Then we checked the developers conform to software

product line practices.

3.2 Empirical Project Development based

on Waterfall Process

Domain

Analysis

Domain

Design

Domain

Implementation

Domain Engineering

Details of three

projects

Reference

requirements

Software product

line architecture

Software

components

Domain Artefacts

Requirements

Engineering

Design Analysis Integration and

Testing

Application Engineering

Single

software

product

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

4 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010

Figure 2: Waterfall Process

For each project, developers divided their work based

on their roles. Firstly, the developers summarized all

requirements from customers and produced a user

requirement specification. Next, they designed the

system architecture, components and data models.

They applied use case descriptions and diagrams to

explain the requirements of each single software

product. In addition, they also created class diagrams,

sequence diagrams and activity diagrams of the entire

project in this stage. They implemented the software

by following the documents and used unit tests

regularly. When completing all the components, the

developers integrated all the pieces together and

began an integration test. Finally, the developers

delivered the customers the complete software when

all of these stages finished. Figure 2 shows the flow

of these projects. The artefacts that are checked and

submitted to the repository are:

- use case descriptions

- use case diagrams

- class diagrams

- sequence diagrams

- activity diagrams

- source code

- testing documents

- coding standard and technical documents

The project that used waterfall-based model

produced more artefacts than that of software product

line process does. However, the development time of

the waterfall-based project is greater than that of

software product line. All the end of this step, we

calculated and analyzed the qualitative and

quantitative aspects in each project.

3.3 New Requirements Management on

Software Products

In this phase, the team of developers was given new

requirements on the systems. Many factors lead into

this scenario, for example, customers require new

functionality to be done in a design part of a software

product.

Figure 3: Empirical Project Maintenance

For the software product line-based systems, it is

supposed the situation in which the organisation has

established a software product line for their software

systems with software product members. Those are

created from the development phase. And the new

requirements are done to a product member.

Therefore, it is necessary to evaluate how these new

requirements will affect the other artefacts of the

product member and if these new requirements also

affect other product members in the software product

line that may be related to the new requirements. The

artefacts are inspected and determined if they are

related to the new requirements as shown in Figure 3.

For the waterfall-based systems, it is supposed the

situation in which the organisation has individually

developed a set of software systems. Those are

created from the development phase. And the new

requirements are done to a software product.

Therefore, it is necessary to evaluate how these new

requirements will affect any artefacts of the software

product.

Details of

Changes on PM1

Reference

requirements

Software product

line architecture

Software

component

s

Domain Artefacts

PM3

PM1

PM2

Requirements

Definition

System & Software

Design

Implementation

User

Requirements

Specifications

Design

Models

Source

Code

Operation &

Maintenance

Integration and

Testing

Single

software

product

Testing

Documents

Details of a

single project

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010 5

4. Experiments

According to the experiments, we captured the time

spent during development of three software products

by following those software process models. Those

software products are having similar requirements

and some differences. The developer team was

required to develop a set of three software products

two times. Each time each different software process

model was followed.

4.1 Project Characteristics

The developers were requested to develop three

software products, namely PM1, PM2, and PM3. The

list of functionalities and specifications of each

software product is shown in Table 1. We describe

below the details of each product.

PM1

The product member PM1 is expected to be a

software system which supports an accounting

department and is used by young people. As shown

in Table 1, the product member PM1 has some basic

functionalities: (a) processing accounting data, (b)

generating a report, (c) managing log files, and (d)

displaying time and date. Additionally, it has some

advanced functionalities: (a) access Internet which

allows a user to browse and download data through

the Internet, and (b) email system which supports the

email.

PM2

The product member PM2 supports work related to

accounting and offers a simple design and is targeted

for users who are not familiar using a computer. The

product member PM2 has only basic functionalities:

(a) processing accounting data, (b) generating a

report, (c) managing log files, and (d) displaying

time and date.

PM3

The target customers of the product member PM3 are

users who work via the Internet. The system supports

web-based environment. As shown in Table 1, the

product member PM3 has some basic functionalities:

(a) processing accounting data, (b) generating a

report, (c) managing log files, and (d) displaying

time and date. In addition, PM3 offers advanced

functionalities: (a) access Internet which allows a

user to browse and download data, (b) email system

which supports the email, (c) send and receive text

messages, and (d) send and receive multimedia

messages.

Table 1 shows the functionalities of each software

product

Functionality PM1 PM2 PM3

F1 X X X

F2 X X X

F3 X X X

F4 X X X

F5 X X

F6 X X

F7 X X

F8 X

F1: Processing accounting data

F2: Generating a report

F3: Managing log files

F4: Displaying time and date

F5: Enabling access the Internet

F6: Enabling emailing

F7: Sending and receiving text messages

F8: Sending and receiving multimedia message

4.2 Software Product Line -based

Projects

A. Development Phase

The projects have been developed based on study,

analysis, and discussions of business domain.

Software systems are created based on demands

which require a variety of software products. In this

way, a number of documents are created by

developers. The team of developers analysed and

designed a family of software systems with three

members. Each member has shared and specialized

functionalities with the family. The product members

are aimed to satisfy different targets of customers.

In addition, reference requirements is produced and

documented in term of a feature model as software

product line architecture is produced and documented

in terms of subsystem, feature, and process models

[7]. The following artefacts are created:

(a) a feature model is created and composed of

common features representing mandatory

features, alternative and optional, representing

different features between product members.

For example, all product members must

provide features of processing accounting

data, generating a report, managing log files,

and displaying time and date.

(b) a subsystem models is created and provides

facilities for performing basic tasks in the

systems. But there exist various instances of

the process and module models, as well as

there exist many instances of use cases, class,

statechart, and sequence diagrams.

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

6 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010

(c) seven process models are created and each is

refined for a subsystem in the subsystem

model.

(d) eleven module models are created and each is

refined for a process in the process models.

Moreover, the artefacts of each product member are

created. For example, a use case is used to elaborate

the satisfaction of the functionalities for each product

member. As below, the list of artefacts created for

each product member is shown.

PM1

(a) four use case descriptions

(b) a class diagram

(c) a statechart diagram

(d) four sequence diagram

(e) source code

PM2

(a) four use case descriptions

(b) a class diagram

(c) a statechart diagram

(d) four sequence diagram

(e) source code

PM3

(a) four use case descriptions

(b) a class diagram

(c) a statechart diagram

(d) six sequence diagram

(e) source code

B. Maintenance Phase

According to software product line-based systems,

new requirements management can be facilitated by

the identification and analysis of commonality and

variability principles among software product line

and product members. In particular, the software

artefacts are reusable and adaptable. A number of

relations between artefacts are detected in order to

determine the association between the new

requirements and existing software artefacts in

product member PM1 and software product line.

Different types of traceability relations are created to

identify the role of those relations [8]. For example,

the relations between the new requirements and

software product line; between the new requirements

and product member PM1, and between software

product line and product member PM1. For instance,

there are (a) four use case documents for PM1 and

three processes in a process model of software

product line that are related in terms of three different

types of traceability relations (i.e. satisfies,

implements, and refines); (b) one class diagram and

four sequence diagrams of software product line that

are related in terms of containment. Those relations

are then used in new requirements management

process.

4.3 Waterfall-based Projects

A. Development Phase

Similarly, the projects have been developed based on

study, analysis, and discussions of business domain.

The developers are required to reproduce the

software systems based on the same set of

requirements. Otherwise, this time they followed the

waterfall software process model. According to the

waterfall model, a number of artefacts for each single

software product are created during software

development process. As below, the artefacts of each

single software product are checked and submitted to

the repository.

PM1

(a) a usecase diagram

(b) four use case descriptions

(c) a class diagram

(d) a statechart diagram

(e) four sequence diagram

(f) source code

PM2

(a) a usecase diagram

(b) four use case descriptions

(c) a class diagram

(d) a statechart diagram

(e) four sequence diagram

(f) source code

PM3

(a) a usecase diagram

(b) four use case descriptions

(c) a class diagram

(d) a statechart diagram

(e) four sequence diagram

(f) source code

B. Maintenance Phase

For new requirements management on waterfall-

based systems, developers divided their work based

on their roles. Firstly, the developers summarized all

new requirements from customers and reproduced

new user requirement specification. Next, they

redesigned the system architecture, components and

data models. They applied use case descriptions and

use case diagrams to explain the new requirements of

the software product. They updated class diagrams,

sequence diagrams and activity diagrams of the entire

project in this stage. They re-implemented the

software by following the documents and used unit

tests regularly. When completing all the components,

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010 7

the developers integrated all the pieces together again

and began an integration test. Finally, the developer

delivered the customers the complete software when

all of these stages finished.

5. Results and Discussion

In this section, we analyse and evaluate the

experiments by focusing on two aspects of

measurement: (a) qualitative and (b) quantitative

measurement.

A. Qualitative Measurement

In general, qualitative methods and tools for system

analysis can address the problem of how to

empirically determine the context of software

process. In this research, we focused on comparison

between two software process methodologies how

they are practiced. As mentioned, we have conducted

the survey and interview. It has been observed that

the customers are satisfied with the software product

line resulting projects and teamwork. Moreover, the

software product line developers satisfied the process

that emphasis the software more than the

documentation. However, it has been also noticed

that it is easier to train waterfall-based practices to

inexperience developers but some experience

developers tend to resist some software product line

practices because (a) they have to change their style

in working, and (b) it costs them for establishing the

software product line artefacts.

Figure 4: Qualitative measurement

According to the survey, it is found that 33% of

developers tend to resist software product line

practices with the above reasons, whereas 70% of

developers are positive to using software product line

practices. Particularly, 82% of developers are

satisfied when performed the maintenance phase with

software product line. Some of software product line

artefacts are used during the maintenance phase. And

it is satisfied by the developers. However, application

engineering process depends on developer’ skill.

Moreover, the waterfall-based developers are

unsatisfied to frequently update the documentation.

B. Quantitative Measurement

Basically quantitative metrics are fundamentally

limited to the measurement of the size of system,

time and effort spent during software development

process. In this research, we measured the total of

work hour spent during development and

maintenance phases. The results show that the effort

metric of software product line-based projects is less

than waterfall-based projects. Software product line-

based projects enhance the productivity by using

existing software artefacts. The methodology

supports software reuse at the largest level of

granularity.

Table2 shows the effort spent during software

development for each project

 Work hour

Domain Engineering 620

SPL-based project1 315

SPL-based project2 240

SPL-based project3 215

Waterfall-based project1 465

Waterfall-based project2 548

Waterfall-based project3 384

However, developers spent time and effort to

establish domain artefacts. Also, some defects are

discovered during the integration process for a

product member. It took some effort to fix them. On

the other hand, in the waterfall-based team,

customers are involved at the inception of project

determined requirements and contractual agreement.

Developers wrote all documents before coding. Then

customers changed some requirements, maybe after

they acquired finally product, developers needed to

significantly redesign and edit their documents. This

took a lot of effort to achieve the task.

For maintenance phase, we measured the total of

time to achieve the new requirements. The result

show that the spending time of software product line

-based projects is less than of waterfall-based

projects. Developers who performed the maintenance

phase found that well documentation can be useful

and reduce the cost to complete the task. In

particular, the artefacts of a waterfall-based project

are more documentation than a software product line-

based project. Otherwise, entire documentation of

waterfall process is inaccessible to maintainers

whereas documentation of software product line

process is restored as repository to support in

maintenance and reuse process.

Jirapanthong W: Comparative Study Between Software Product Line and Waterfall Process

8 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1 | ISSUE 1 | JAN-JUN 2010

Table 3 shows the effort spend during the change

process

 Work

hour

Software product line -based

project1

305

Waterfall-based project1 380

6. Conclusions and Future Work

To conclude, we evaluated comparative study

between software product line-based process and

waterfall-based process. The productivity during

development using software product line is higher

than that using waterfall-based model. Also, a

software product line-based project is more

maintainable than waterfall-based one. However,

software product line is unsuitable for all projects. It

serves the reuse practice in an organization having a

large number of products, which have similar

requirements and some differences. Developers must

consider the characteristics of the project to ensure

software product line is appropriate. In the other

hand, waterfall process is suitable to serve a software

project which is small and has solid requirements.

In the future work, we plan to gather more data from

the projects in order to develop statistic evaluation of

comparison between two software process models.

Additionally, we plan to develop the tools which

support the software process. The techniques and

approaches for software product line development

should be further extended to allow establishing

software product line for small- and medium- sized

companies. Moreover, an approach to evolve

software product line should be investigated in order

to enforce a standardized approach for evolution.

References

[1] Atkinson, C., J. Bayer, and D. Muthig. 2000.

Component-based product line development:

The KobrA approach. Pages 289-310. the 1st

Software Product Line Conference, SPLC.

Kluwer, Denver, Colorado, USA.

[2] Bayer, J., O. Flege, P. Knauber, R. Laqua, D.

Muthig, K. Schmid, T. Widen, and J.-M.

DeBaud. 1999. PuLSE: A methodology to

develop software product lines. Pages 122-131.

the Fifth ACM SIGSOFT Symposium on

Software Reusability (SSR'99), Los Angeles,

CA, USA.

[3] Boehm, B. 1991. Software Risk Management:

Principles and Practices. IEEE Software, no.pp.

32-41, January.

[4] Clements, P., and L. Northrop. 2004. A

Framework for Software Product Lines Practice.

http://www.sei.cmu.edu/productlines/framework.

html

[5] Fenton, Norman E.. 1991. Software Metrics: A

Rigorous Approach. Chapman & Hall, Ltd.,

London, UK.

[6] Griss, M. L., J. Favaro, and M. d. Alessandro.

1998. Integrating feature modeling with the

RSEB. Pages 76-85 in P. Devanbu and J. Poulin,

eds. the 5th International Conference on

Software Reuse. IEEE Computer Society Press.

[7] Jirapanthong, W. 2008. An Approach to

Software Artefact Specification for Supporting

Product Line Systems. the 2008 International

Conference on Software Engineering Research

and Practice (SERP’08), Las Vegas, Nevada,

USA, 2008.

[8] Jirapanthong, W., and A. Zisman. 2009.

XTraQue: traceability for product line systems.

Software and System Modeling 8(1): 117-144

(2009).

[9] Kang, K., S. Cohen, J. Hess, W. Novak, and A.

Peterson. 1990. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Software

Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA.

[10] Kang, K. C., S. Kim, J. Lee, K. Kim, E.

Shin, and M. Huh. 1998. FORM: a feature-

oriented reuse method with domain-specific

architectures. Annals of Software Engineering 5:

143-168.

[11] Linden, F. v. d., J. Bosch, E. Kamsties, K.

K¨ans¨al¨a, and H. Obbink. 2004. Software

Product Family Evaluation. Pages 110-129. the

Third International Software Product Line

Conference, SPLC 2004. Springer Boston, MA,

USA.

[12] Mills, Everald E. 1998. Software Metrics. SEI

Curriculum Module SEI-CM-12-1.1, December.

[13] Sharpe, J.L., and J. W. Cangussu. 2005. A

productivity metric based on statistical pattern

recognition. Computer Software and

Applications Conference, 29th Annual

International, 26-28 July.

[14] Weiss, D. 1995. Software Synthesis: The FAST

Process. the International Conference on

Computing in High Energy Physics (CHEP), Rio

de Janeiro, Brazil.

 Copyright © 2010 by the Journal of Information Science and Technology.

