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ABSTRACT - This paper presents four algorithms to optimize a tool path of a five-axis milling
machine. Algorithm 1 is based on the inverse kinematics of the machine and performing continuous
rotation of the rotary table. Algorithm 2 further extends the inverse kinematics and performs optimal
sequencing with regard to a set of feasible rotations by using the shortest path algorithm. Algorithm 3
employs uniform angular grid to insert addition points in a machine coordinate. Algorithm 4 combines
and iterates algorithm 2 and 3 by injecting the points into large loops by equi distributing them with
regard to the rotation angle having the largest variation. These algorithms are most efficient in the case
of the rough cut characterized by large angle variations which produce considerable errors. The
efficiency of the algorithm has been verified by a virtual machining as well as by real cutting on five-
axis machine MAHOG600E at the CIM Lab of Asian Institute of Technology of Thailand.
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1. Introduction

The errors introduced during five-axis machining are
common. Several physical phenomena, such as
machine kinematics, thermal effects, static and
dynamic loading and common-cause failures are
errors that often affect the quality of the surfaces
produced by five-axis machining. There are a number
of error components such as thermal errors, dynamic
errors, spindle errors, reference point errors, tool path
generation errors, and inverse kinematics errors
[1,2,3]. However, the particular effect of machine
kinematics and geometric errors seems to be the most
significant [4]. These errors, however, may be
detected and minimized in advance before the real
workpiece is being machined.

The ultimate goal of five-axis tool path optimization
is simple: minimize the difference between the
desired and the actual surface while producing the
actual surface for a minimum time. However,
mathematical formulations presented in the literature
vary in terms of the error criteria and the set of
optimized variables. The tool path is optimized with
regard to the machining time, accuracy, the length of
the tool path, the width of the machining strip, the
volume of the removed material, the size of the
remaining scallops, etc. [5,6]. Furthermore, the error
analysis and optimization in the areas of large
variations of the rotation angles have not been

provided by commercial CAD/CAM systems such as
Unigraphics, EdgeCam, Vericut, etc. Besides, only a
few research papers deal with the subject. In [7] the
authors analyze the sequence of rotations to minimize
the number of the phase reverse steps at
discontinuities of the first derivative of the surface
(corners etc). However, kinematics errors in the case
of the stationary points have not been analyzed. A
method of avoiding singularities has been presented
in [8]. However, it is not hard to give a counter-
example of a surface on which such avoidance
cannot be performed.

This paper presents four algorithms to optimize a tool
path of a five-axis milling machine. The algorithms
compute and estimate the inverse kinematics errors
as well as construct a G-Code from a given tool path
and simulate the milling operations of a five-axis
milling machine. The G-Code is constructed based
on the inverse kinematics of the machine. In
particular, the system allows for an efficient
simulation of inverse kinematics of multi—axis-
milling machines. Moreover, it makes it possible to
build a virtual milling environment that enables the
user to interactively evaluate the kinematics of the
mechanism and estimate the kinematics errors. The
first algorithm reduces the errors by re-arrange the
rotations to produce the continuous variation of the
angles. The remaining errors can be further
optimized by the second algorithm to reduce the
errors near the stationary points. It is based on global
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optimization with regard to feasible solutions of the
inverse kinematics. The algorithm is based on the
iterative shortest path scheme. The shortest path
procedure can be applied to either the entire set of
trajectories or to only the most inappropriate
trajectories (the so-called loops) inside the work
piece. The third algorithm is based on the equi
distribution with regard to the rotation angles. The
kinematics error near the stationary points depends
on the variation of the rotation angles. The method
allows inserting additional tool positions by finding
numerically a grid of points equi distributed in the
angular space. The proposed method requires 10-15
times less additional points than conventional
schemes performed near the stationary points.
Finally, the fourth algorithm combines and iterates
the second and the third algorithms by re-injecting
the points into large loops by equi distributing them
with regard to the rotation angle having the largest
variation. The efficiency of the algorithms has been
verified by a five-axis machine MAHOG00E at the
CIM Lab of Asian Institute of Technology of
Thailand.

2. Inverse Kinematics

Consider a typical configuration of the five-axis
milling machine with the rotary axis on the table
(Fig.1). The machine is guided by axial commands
carrying the 3 spatial coordinates (X, Y, Z) of the
tool-tip in the machine coordinate system M and the
two rotation angles (A, B). The supporting CAM
software generates a successive set of coordinates (X,
Y, Z, |, J, K, called the cutter location points or CL-
points) in the workpiece coordinate system W.
Typically, the CAM software distributes the CL-
points along a set of curves which constitutes the so-
called zigzag or spiral pattern. An appropriate
transformation into the M-system generates a set of
the machine axial commands which provides the
reference inputs for the servo-controllers of the
milling robot. However the current CAD/CAM
commercial software is not capable of optimizing the
removal of the material. The tool path between two
consecutive points on a five-axis machine is not a
straight line. The real cutter contact (CC) point path
is a space curve which needs to be compared with the
reference surface. Only this operation produces a real
geometric error.

Furthermore, the reference surface must be presented
in the IGES format compatible with professional
CAD/CAM systems. The tool geometry is a cylinder
(flat end mill). Since we employ a parametric model
of the surface, the corresponding equations produce
the point coordinates and the normal vector. The CL
point is positioned at the centerline of the tool along
the surface normal. Such a representation must be

changed to a CC point positioned in the tool tip plane
and on the circle produced by intersection of the tool
cylinder and the tool tip plane. This is shown in Fig.
2. However the input to the five-axis CNC machine
is the sequence of CL-points transformed to the
machine coordinate system by means of the inverse
kinematics. The algorithm to compute this location
must be integrated with tool path optimization
software and with a solid model of the material
removal.

Wotkpiece,
Wocoorditnates

Cutter,
JM-coordinates

Rotary Tahle

Fig.1: Five-axis milling machine MAHOG600E
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Fig.2: Tool Workpiece Contact Zone

Consider how the axial command translates the
centers of rotation and simultaneously rotates the W-
coordinates  (Fig.3). Let Wy =(X,,yp,Zy) and
Woii=(Xp+1,Ypr1,Zpr1)  be  two  successive  spatial
positions of the tool path and (ay,bp), (8p:1,bp+1) the
corresponding  rotation  angles given by
ag=arctan(jy/ip), by= - acrsin(ky), where (ip,jp.Kp)
denotes the normal to the required surface at W,. In
order to calculate the tool trajectory between W, and
W11, we first, invoke the inverse kinematics [7] to
transform the part-surface coordinates into the
machine coordinates Mp=(Xp,Y p,Zp) and
Mp+1=(Xp+1,Yp+1.Zp+1). Second, the rotation angles
a(t),b(t) and the machine coordinates M = M(t) =
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(X(0),Y(1),Z(t)) are assumed to change linearly
between the prescribed points, namely,

M (D) =tM o+ (=M p,

a(t)y=ta . +(1-tap.
b(t) =ty jt+(1-tbyp.
1)

where t is the fictitious time coordinate (0 <t < 1).
Finally, invoking the transformation from M back to
W yields W(t)=(x(1),y(t),z(1)).

The kinematics are represented by the functions
A=A(a(t)),B=B(b(t))
around the primary (the rotary table) and the
secondary (tilt table) axes respectively. They are
specified by the structure of the machine. For the 5-
axis machine in Fig 1, the kinematics involving two
rotations and three translations are given by

associated with the rotations

M(®)=Bt)(At)(W(t)+R)+T)+C, (2)

where R, T, and C are respectively the coordinates of
the origin of the workpiece in the rotary table
coordinates, coordinates of the origin of the rotary
table coordinates in the tilt table coordinates and the
origin of the tilt table coordinates in the cutter center
coordinates. The general inverse kinematics are given

by

w=(A'(B' (M-C)-T))-R. (3)
The rotation angles are

A=tan " (j/i), 0 <A< 2m; (4)

=-sin ' (k), 0< B <7/2. (5)

Fig.3: Non-linearity of the tool path in the workpiece
coordinates

3. Surface Stationary Points

The kinematics of the machine depend on matrix-
functions A(a), B(b) associated with the rotations a
and b around the primary (the rotary table) and the
secondary (the tilt table) axes shown in Fig.l. A
simple analysis of the inverse kinematics reveals that
a linear trajectory of the tool tip in the machine
coordinates may produce a non-linear trajectory in
the work piece coordinates (Fig.3). This effect is
amplified when approaching a stationary point of the
part surface since it involves sharp variations of the
rotation angles. Note that a fine cut of a smooth
surface employing small spatial and angular steps
may not demonstrate the detrimental effects near the
singularity points. However, a rough cut
characterized by large gradients could produce
considerable errors. The sharp angular jumps
produce loop-like trajectories of the tool. Moving
along such trajectories may destroy the work piece
and even lead to a collision with the machine parts.
For simplicity, assume that the tool is aligned along
the surface normal. Then the rotation angles are
given by (see also Fig.4):

arctan| —

ifl, >0 and I, >0,

Apase = 7 arctan A I, <0,

| 6
5 (6)
Iy
arctan T + 27 otherwise,
X
Byase = —arcsin |,
L j >0,
i<0,j>0 ) >0,j>0
\ \Tool vector
tan"(j/i)
/
mHtan™ (/i) /\ !
2mtan(j/i)
i<0,j<0 50,j<0

Fig.4: Computation of a,,,, in each quadrant
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where | =(I,,1,,1,) is the tool orientation

vector. It is not hard to demonstrate that the inverse
kinematics admits four solutions

a...b

base

given by:

base »
a..—2r,

A _ base bbase (7)
Apase — 77> _bbase -7

Qpase T 77, _bbase -7

Solutions similar to (7) can be established for other
types of the machine kinematics such as, "one axis on
the tool and one on the table" and "both axis on the
tool". The shortest path from the feasible sequences
must be identified in such a way that the kinematics
error is minimized. In other words, the following
problem must be solved

minimize (g), (8)
where
N-1
E=) €, 04 is the total kinematics error and where
p=1
1
_ D 2 41172
Eppa = [IONp,p+1 _Wp,p+1) dt] ©)
0

is the kinematics error between cutter location points

p and p+1 and Wpl?p+1 (t),W_ ., (t) the desired

p.p+
and the actual tool trajectory. Note that in many
cases problem (8) can be replaced by minimization

of the total error variation as follows

minimize (W), (10)
A
where
1 & 2 2
W:_Z (ap _ap+1) + (bp _bp+l) ’
N _1 p;]

and N is the total number of the cutter location
points.

4. Tool Path Optimization
Algorithms

The CAD software generates the CL points in the
workpiece coordinate system whereas the CAM
software generates the tool path or G-Code in the
machine coordinate system from the prescribed CL

points. The G-Code guides the cutting tool of the 5-
axis machine to travel along a nonlinear trajectory to
reach the required CL point. The nonlinear
trajectories constitute a trajectory surface, which is
slightly different from the actual surface. The error
surface is estimated by computing the difference
between the actual and trajectory surfaces.

Let four points W1(i,j), W2(i+1,j), W3(i+1,j+1) and
WA4(i,j+1) in Fig4 be the grid {(u,v)i;} which
represents the actual surface S(u,v). First, we apply
the inverse kinematics (see section 2) to transform
each point into the corresponding machine coordinate
M1, M2, M3, and M4 respectively. Then, we perform
the linear interpolation procedure on the machine
coordinate M and invoke the inverse transformation
from M back to W (for every t) yields the tool path
W()=(x(t),y(t),z(t)). Next, the calculated tool path is
mapped on the grid {(u,v)i;}. Finally, using the
bilinear interpolation procedure on the grid {(u,v)i;}
yields an approximation of the machined surface
T(u,v). The error surface is then calculated by

@, (U,v) =] S(U,Vv)-T(u,v) |, (11)

where S(u,v) = (x(u,v),y(u,v),z(u,v)) is the actual
surface and T(u,v) = (Xr(u,v),y(u,v),zr (u,v)), is the
trajectory surface as shown in Fig.5. These errors are
estimated and visualized graphically by the virtual
machine. We propose four algorithms, namely 1)
angle adjustment, 2) angle switching, 3) angle
insertion and 4) iterative angle switching to optimize
the tool path by minimizing such errors.

Tool-trajectory Ti+05+1

Sa) e

L-points

1]

t Tool-trajectory Ti+03;
X

Fig.5: Error surface computation

4.1 Angle Adjustment

If the a-angle jumps unexpectedly from minimum to
maximum e.g. from 5 degree to 355 degree or vice
versa, this will produce a large angle variation and
large error and may cause an expected collision
among each machine’s axis. Therefore, the angle
adjustment algorithm is introduced to produce the
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continuous variation of the angles. The sequence
{ap} should be adjusted in order to minimize the
difference between the successive angles. For
instance if a-angle changes from 355 to 5 the
algorithm must replace 5 by 365, etc. The following
C++ program illustrates the angle adjustment
algorithm.

for (i=0;i<N;i++)
{

/I get vertex

al =a(i); a2 = a(i+1); ak = az;
[/l compare a(i) and a(i+1)
if(@2-al >Pl)

/I adjust the angle
for(k=i+1; k<N; k++)
ak = ak - 2*PlI;

}
else if (a2 - al < -Pl)

/I adjust the angle
for (k=i+1; k<N; k++)
ak = ak + 2*PI;

}
}endi

4.2 Angle Switching

According to our initial setup of the 5-axis machine,
the a-angle is given by a = tan ™' (j/i), 0 < a < 2.
However, the normal vector i and j can be in any of

the four quadrants as illustrate in equation (6).
Furthermore, there are four sets of a-angle and b-
angles within the range [0,27] that can rotate the

tool vector into the required orientation. The set of
the a-angles is defined by

{abase > Qpase — 27[’ Qpase ~ 75 Apgge T+ 7[} . Note

that, after the rotation by a,,, or @, —27 the

tool is positioned in the same quadrant with the
original orientation whereas the rotation by

&, — 7,8y, T 7 corresponds to the tool being

in opposite direction. The set of the feasible b-angle
(Pbasess-77Dpase) is required to transform the tool
vector into the require orientation. It is not hard to

demonstrate that @,,,, or @, — 27 requires the

rotation D =D, =—sin”'(K) whereas  the

base

rotation @,,., — 77, 8,,, + 7 corresponds to another

solution b=—-7-b Therefore, we have four

base *

paths represented by four pairs of feasible (a, b) to
transform the tool vector p; into the required location
Pi+1. That is,

Xi+1> yi+1’zi+laai+l’bi+l
Xit1s Yiets Zist> 841 — 27,054
i1 Yiss Zis1>8i41 — T bjy =7

Xit1> Yielo Zisl> Qi1 + iy — 7

Pi+1 =

(12)

We can determine the path by examining the
minimum errors at each point along the tool path.
According to our experiment, every line on the tool
path near or cross a stationary point such as
minimum or maximum or saddle generates the loop
trajectories. These loops represent the larger errors
than any other points due to the longer distance the
tool has to travel to cross the stationary point.
Therefore, we may perform the optimization with
regards to this set. We will minimize the distance
traveled by the tool in the space (a, b) with the
Euclidean distance:

2 2
ap, —apy) + by -b
distance(p + 1, p) = (@p+1 —8p)" + (Bp41 —bp)

(13)

The total distance traveled by the tool within the
vicinity of the large errors is given by

Zn: (ap+1_ap)2+(bp+1_bp)2
p=1 (Xp41— Xp)2 +(Ypr — yp)2 +(Zpy — Zp)2

(14)

Note that, we consider only the distant between (a,b)
because the position (X,y,z) of p; and pi+; does not
change. However, we have four set of feasible (a,b)
between p; and pi+; and only one set of (a,b) with the
smallest distant is selected to optimize the errors. The
actual errors, however, are computed using equation
(11) which takes into account both (X,y,z) and (a,b).

When the tool enters the zone of large milling errors,
we apply the angle-switching algorithm to select the
shortest distance for the tool to travel from the
current point to the next. Note that a procedure to
compute the rotation angles may become ill-
conditioned in the regions |i + jl< ¢ (&is a small
number). For instance for “flat” surfaces or near the
points of maximum or minimum. As a matter of fact,
small variations of the normal vector in the above
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mentioned regions produce sharp variations of the
rotation angles and numerical instabilities. However,
the algorithm from section 4.1 only eliminates
unwanted variations of more than 180 degree. We
still face the problem of large variation of the angle
between 0 to 180 degree producing the loops due to
the non-linearity of the inverse kinematics of the
machine. This phenomenon may cause an
unexpected motion of the machine and even
collisions with the tilt table. We, therefore, introduce
an “Angle Switching” algorithm to select the
shortest path from the feasible sequences {a;;} in
such a way that X|ay:i- ap|+2|bp: - bp| is minimized
using possible equivalent angles. For instance, a
position {apb,} could be followed by either
{&i+1,0i:1}, calculated by means of the equation (12).

The loop detection and elimination method is based
on the following two ideas. 1) Since the loops
usually occur near a minimum or a maximum of the
concave or convex surface (stationary points), the
angle switching algorithm must be applied only in
the vicinity of a stationary points. 2) In order to
obtain the optimal path, the graph-based shortest
path algorithm must be employed. The angle
switching algorithm for optimizing the tool path by
computing the smallest distance within the vicinity
of the stationary points is described by the following
steps:

1. Locate the vicinity of the large milling errors
to determine the source (S) and the destination (t)
vertices. In this work, we demonstrate the tool path
optimization based on the distant optimization using
the saddle surface that contains both convex
(maximum) and concave (minimum) areas. We use
our virtual five-axis simulator [9] to graphically
visualize the errors near the maximum and minimum
of the saddle surface and determine the source and
the destination vertices as well as the area of vicinity
for optimization.

2. Construct the graph to represent four feasible
paths from s to t using the adjacency list. The graph
nodes represent the vertices and the arcs represent the
distance between two adjacent nodes of all four paths
as illustrated in Fig.6. We do not create the error
graph because error computation is much more
expensive than the distance computation. However,
the average error from S to t is proportional to the
average distance from S to t, such that distant
optimization gives the result proportional to error
optimization.

3. Apply the Dijkstra's shortest path algorithm
[10] to compute the smallest distant from S to t, from
the graph in Fig.6.

4. Update all vertices from S to t using the
output shortest path from the previous step.

&y.za 20, b

x,y.Z,a- T, -b-T0

x,y.z,at T, -b-T0

Fig.6: The graph represents four paths from s to t

4.3 Angle Insertion

The angle switching algorithm still leaves errors
which can be further eliminated only by inserting
additional CC points. In particular, when the tool
path crosses the stationary point in the direction
parallel (or nearly so) to the secondary rotary axis.
The work piece often must be rotated by an angle
close to z  Therefore, further optimization is
required to reduce such angular jumps. If the
trajectory lies far from singularities a conventional
approach to insert spatially uniform grid of the CC
points between the two given positions solves the
problem. However, such interpolation does not
remove the jumps near the singularities. In order to
solve this problem, a special interpolation called the
“Angle Insertion” is proposed to partition the large
angular interval into a grid having equal angular
increments. Unfortunately, we can not merely split
the angular interval in the machine coordinates. The
resulting angles do not correspond to the actual CC
points and orientations. In other words the trajectory
does not follow the surface. The correct set of the CC
points and the tool orientations can only be
calculated from the surface equation. Therefore, we
propose the following angle insertion procedure.

1. Construct a uniform grid a =a'+iAa (where

Aa is the angular step) near the singularity.
2. For each a find the CC point and the

orientation that produce a by the bisection method

as follows:
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2.1 Compute a midpoint(x_, Y, )-

2.2 Invert the parametric equations
S, (U,V)=X,» S,(uv)=Y, to find the corresponding

u,,v, and consequently z_.

2.3 Calculate the orientation vector and
obtain the correspondinga, .

2.4 Compare g, with the target a,

The bisection procedure above runs until it converges
within the prescribed accuracy.

4.4 Iterative Angle Switching

When it is necessary to insert additional points, there
are many methods for such insertions. However, from
the viewpoint of the kinematics error one of the most
efficient methods near stationary points is angular
insertion proposed in section 4.3. The method “injects”
the points into large loops by equi distributing them
with regard to the rotation angle having the largest
variation. This complies with the idea of functional
that the angle variation affects the kinematics error the
most.

Consider the rotation angles (degree) before applying
the angle switching algorithm, suppose a; = 319, b; =
-79, ay; = 224, by = -80. The shortest path
optimization produces a; = 319, b; = -79, aj;1 new = air1
+ 180 = 404, bis| new = -bis; — 180 = -100. Inserting a
point in the middle yields a,q = 267, by = -82.
Taking into that we have to perform the same
modification as with a; b;, we have the new pair of
angles given by ayg = amiq + 180 =447, byyig = - buia -
180 = -98, which is not actually in the middle
between a; = 319 and a;i} new = 404. In other word,
amid  [a;,a;+1] anymore. This would produce a larger
error. Therefore, a single additional point may
destroy the integrity of a particular shortest path. The
iterative angle switching algorithm is proposed to
iteratively switch the angles when the additional
points are inserted as follow:

1. Run the angle switching (AS) algorithm.

2. If the kinematics error is within the prescribed
tolerance, quit, otherwise, find the trajectory
with the kinematics error exceeding the
tolerance.

3. Mark this trajectory.

4. Return to the original tool path (ORG) and
using the angle insertion (Al) algorithm to
insert a point inside the selected trajectory

even though in the original path they do not
produce large kinematics error.
5. Repeat step 1.

It is clear that the algorithm converges because in the
worst case the additional points are inserted into every
interval. However, in this case switching of the angles
is no longer accomplishable. Therefore, we are
interested in solutions when benefits of the angle
switching are combined with error reduction produced
by inserting some relatively small number of points. In
other words, the question whether it is practical that a
few points have been inserted to reduce the error and
some switching is still present in the path. We also are
interested whether the above mentioned angle insertion
techniques still provides some benefits as the basic
insertion method in this algorithm.

5. Experimental Results

The objective of the cutting experiments is the
calibration of the parameters involved in the inverse
kinematics. The inverse kinematics transforms the
tool reference vector (X, Y, z, i, j, k) fixed to the
workpiece into the machine coordinates X, Y, Z, A, B
fixed to the machine frame. A parametric saddle
surface which contains both convex (maximum) and
concave (minimum) regions is used as a case study to
demonstrate the tool path optimization algorithms.
The experiment constitutes the basic test of how our
graphic simulation software would detect such
kinematics errors, locate the problem areas, as well
as minimize the errors. The parametric saddle surface
is given below and illustrate in Fig.7.

100u — 50

100v —50
—80V(v —1)(3.55u—14.8u% + 21.15u° —=9.9u*) - 28
(15)

S(u,v) =

Fig.7: The original trajectories of the saddle surface
(undercuts are bold)
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5.1 Angle Adjustment

The a-angle and b-angle are computed using
machine inverse kinematics described in section 2. A
and B axis are rotating simultaneously ranging from
0 to 360 and from 0 to -90 respectively. Fig.7 shows
the required saddle surface. Fig.8 shows the
corresponding graphs of the a-angles and the angle
adjustment. Note that the angle adjustment is
required to eliminate sharp variations of the rotation
angles near minimum or the maximum of the surface.
Note that although the general case requires an
adjustment of B as well, the case of the saddle
surface implies that B €[-90, 0]. Therefore the
adjustment is not required.

New angle

i
Original angle___

| b il |
] 0o 100 1300 2000

Fig.8: Angle adjustment for the saddle surface

=

i

Jump from max to min
requires angle adjustment

5.2 Angle Switching

The initial setup and configuration of our five-axis
machine in Fig.1 imply that the a-angle and b-angle
are given by equation 6 and 7. The stationary
position such as the minimum or the maximum or the
saddle point may generate trajectories characterized
by large deviations from the surface or so called
“loops”. Usually the loops represent the largest errors
and appear because the large variations of the
rotation angles a and b. Therefore, the optimization
can be performed only in the vicinities of these
points. The angle switching will select the shortest
path from the feasible sequences of the angles in such
a way that X|ay - ap| + Z|bp:; - bp| is minimized. The
algorithm decreases the sharp rotation angle and
turns the large loops (Fig.7) into the smaller ones

(Fig.9).

It should be noted that the optimization may make
sense only for the so-called rough cutting or for cuts
characterized by sharp gradients. For instance, Table
1 presents the case of a rough cut when the number
of the required cutter location points is not very
large. Increasing the number of points along the
cutting direction (see Table 1) shows that small
angular steps make the optimization superfluous (see
the path 20 x 130). When the angular step is small,
switching between the feasible trajectories increases
the step and therefore amplifies the error.

Note that the algorithm may also turn irreparable
“bad loops” or undercut (bold trajectories in fig.7)
which enter the surface into “good loops” or overcut
which go above the surface (Fig.10). The “good
loops” may also lead to considerable errors, however,
such errors are reparable whereas the “bad loops”
may destroy the workpiece.

Fig.10: The repaired surface trajectory with regard
to undercuts.
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Table 1: Kinematics error for the optimized and
non-optimized tool path.

Number of | Non-opt Opt % error
CL points error error, decrease
(mm) (mm)

20 x 20 0.867 0.133 84.66
30x20 0.336 0.055 83.63
40 x 20 0.085 0.033 61.18
50 x 20 0.077 0.035 54.55
60 x 20 0.071 0.038 46.48
70 x 20 0.066 0.042 36.36
100 x 20 0.054 0.052 3.70
130 x 20 0.047 0.047 0.00

Although this algorithm does not entirely eliminates
the need to insert additional CL points it substantially
decreases the error. In particular, such optimization
constitutes an efficient tool in the case of rough
machining in the five-axis mode. The numerical
experiments verified by practical machining
demonstrate the accuracy increase ranging from 4 to
80 % in the case of rough cutting.

5.3 Angle Insertion

The angle insertion is proposed to partition the large
angular interval into a grid having equal angular
increments. The stationary point can be located by
finding the largest loop in which the tool vector
changes the sign of the i or the j component as shown
in Fig.11.

Fig.11: The original trajectory and the repaired
trajectory using 7-points angle insertion

Fig.11 and Table 2 illustrate the procedure. The
angular interval has been partitioned into the almost
equal subintervals. Consequently the loops near the
singularity have been significantly reduced. Note that
usually only one of the two rotation angles changes
sharply near the singularity. Therefore, the bisection
should be applied in only one dimension. However,
theoretically there exists a possibility when both
angles must be bisected. In this case one should use
either a two dimensional version of the above
procedure or to bisect a linear combination of the
angles. The singular point can be located by finding
the largest loop in which the tool vector changes the
sign of the i or the j component.

Table 2 displays the kinematics errors and the
rotation angles before and after applying the
proposed angle insertion. Clearly, the uniform
angular grid allows us to substantially decrease the
error, whereas the conventional point insertion or
spatial grid is not efficient. Clearly, when a certain
number of additional points have been inserted, the
error decrease is approximately the same as for the
space or angular insertion. Therefore, the method is
applicable only for the rough cuts characterized by
sharp variations of the rotation angles

Table 2: Max error versus number of inserted points

Number of Max error (mm) | Max error (mm)
inserted points Conventional Angular Grid

0 19.300 19.300

8 4.241 0.416

16 1.707 0.138

32 0.490 0.092

64 0.158 0.089
128 0.099 0.089

Table 3 illustrates the most impressive results
obtained in the case of a rough cut on 20 by 20 grids.
The error has been reduced in more than 20 times
after the angle switching and in more than 40 times
after the angle insertion. Moreover the angle
insertion works almost 10 times better than a
standard CC point insertion.

Table 3: Performance of the angle insertion

algorithm
Grid 20 by 20 Max Error % Error
(mm) Decrease
Angle Adjustment 6.388 N/A

Angle switching 0.305 95.22

7 CC points insertion 1.209 81.07

7 points Angle insertion | 0.150 97.65
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5.4 Iterative Angle Switching

In many cases, inserting additional points destroy the
integrity of the shortest path sequencing. The
following is an example of such a drawback.
Consider a saddle surface in Fig.9 with a tool path
obtained by the angle switching optimization. The
largest loop is on the right side of the surface.
Inserting a point in the middle of the loop, produces a
larger loop (Fig.12).

The largest loop has grown

Fig.12: The trajectory surface after applying angle
insertion to the surface in Fig.9

Fig.13 shows the saddle surface S(u,v) from equation
(15) subjected to the above mentioned procedures
after the maximum error has been reduced to a
certain prescribed value using iterative angle
switching optimization methods. It has been proven
experimentally that the proposed method requires
473 % less additional points than conventional
schemes performed near the stationary points.

Fig.13: The trajectory surface after applying
iterative angle switching to the surface in Fig.9

Table 4 compares the proposed iterative angle
switching algorithm using conventional spatial grid
(IT/PI) and uniform angular grid (IT/AI) for inserting
additional CL points. PI stands for inserting equi-
spaced points along the tool trajectory in the physical
space (X,y,z), whereas Al stands for points equi
distributed in the angular space (a,b) along the
angular arc. The maximum allowable error is 2 mm.
Clearly the iterative angle switching algorithm
combined with the angular insertion requires the
smallest number of points. This is because the
method presents an appropriate combination of angle
switching and inserting, whereas AS and Al use only
a single technique.

Table 4: Comparison of the inserted points with
several methods on the entire saddle surface

Methods | AS Pl Al AS- AS-
IT/PI | IT/AI

#inserted | 0 74 48 56 39

points

Max 7.45 1.96 1.96 1.96 1.96

error

(mm)

The preliminary results show a 20% improvement
over the pure angular insertion scheme and about
50% improvement with the reference to spatially
equi-distributed points.

6. Conclusion

A tool path thought as a trajectory in the five-
dimensional space is a subject of optimization on the
set of solutions of the inverse kinematics equations
with regard to the required rotations. Minimization of
the total angle variation for rough cuts leads to a
substantial accuracy increase ranging up to 80 %.
The optimization can be formulated in terms of the
total error as well as in terms of the undercut and
overcut error. Optimization of the undercut error
ensures against removal of the excess material during
the rough cut. Further improvement of the accuracy
can be achieved by constructing the uniform grid in
the angular space around the CC points characterized
by large angle variation. The methods are most
efficient in the case of the rough cut characterized by
large angle variations which produce considerable
errors. A fine cut of a smooth surface employing
small spatial and angular steps may not display the
detrimental effects near the stationary points. In this
case the methods do not lead to a substantial
accuracy increase.

Four algorithms to optimize the tool path for five-
axis machining have been presented. 1) Angle
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Adjustment produces the continuous variation of the
angles. The sequence of rotation angles is adjusted in
order to minimize the difference between the
successive values. 2) Angle Switching is capable of
repairing the bad trajectories or minimizing the large
milling error by adjusting the rotation angles in such
a way that the kinematics error is minimized. The
algorithm employs the shortest path scheme to
optimize tool path. 3) Angle Insertion is based on the
equi distribution of the rotation angles near stationary
position. A special interpolation combined with the
bisection methods is employed to insert additional
points equally in angular space to obtain a uniform
minimal kinematics error. 4) Iterative Angle
Switching based on the shortest path algorithm
combined with the equi distribution of the cutter
location points in the angular space to improve the
efficiency of five-axis machining.

The efficiency of the algorithm has been verified by a
practical machining (Fig.14) using five-axis machine
MAHOG600E at the CIM Lab of Asian Institute of
Technology of Thailand. It has been also verified by
the virtual milling machine simulator [9] developed
by the author.

Fig.14: The real cut of the saddle surface using the
proposed algorithms
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