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ABSTRACT – This paper presents four algorithms to optimize a tool path of a five-axis milling 
machine. Algorithm 1 is based on the inverse kinematics of the machine and performing continuous 
rotation of the rotary table. Algorithm 2 further extends the inverse kinematics and performs optimal 
sequencing with regard to a set of feasible rotations by using the shortest path algorithm. Algorithm 3 
employs uniform angular grid to insert addition points in a machine coordinate. Algorithm 4 combines 
and iterates algorithm 2 and 3 by injecting the points into large loops by equi distributing them with 
regard to the rotation angle having the largest variation. These algorithms are most efficient in the case 
of the rough cut characterized by large angle variations which produce considerable errors. The 
efficiency of the algorithm has been verified by a virtual machining as well as by real cutting on five-
axis machine MAHO600E at the CIM Lab of Asian Institute of Technology of Thailand. 
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1. Introduction 
 
The errors introduced during five-axis machining are 
common. Several physical phenomena, such as 
machine kinematics, thermal effects, static and 
dynamic loading and common-cause failures are 
errors that often affect the quality of the surfaces 
produced by five-axis machining. There are a number 
of error components such as thermal errors, dynamic 
errors, spindle errors, reference point errors, tool path 
generation errors, and inverse kinematics errors 
[1,2,3]. However, the particular effect of machine 
kinematics and geometric errors seems to be the most 
significant [4]. These errors, however, may be 
detected and minimized in advance before the real 
workpiece is being machined.  
 
The ultimate goal of five-axis tool path optimization 
is simple: minimize the difference between the 
desired and the actual surface while producing the 
actual surface for a minimum time. However, 
mathematical formulations presented in the literature 
vary in terms of the error criteria and the set of 
optimized variables. The tool path is optimized with 
regard to the machining time, accuracy, the length of 
the tool path, the width of the machining strip,   the 
volume of the removed material, the size of the 
remaining scallops, etc. [5,6].  Furthermore, the error 
analysis and optimization in the areas of large 
variations of the rotation angles have not been 

provided by commercial CAD/CAM systems such as 
Unigraphics, EdgeCam, Vericut, etc. Besides, only a 
few research papers deal with the subject. In [7] the 
authors analyze the sequence of rotations to minimize 
the number of the phase reverse steps at 
discontinuities of the first derivative of the surface 
(corners etc). However, kinematics errors in the case 
of the stationary points have not been analyzed. A 
method of avoiding singularities has been presented 
in [8]. However, it is not hard to give a counter-
example of a surface on which such avoidance 
cannot be performed.   
 
This paper presents four algorithms to optimize a tool 
path of a five-axis milling machine. The algorithms 
compute and estimate the inverse kinematics errors 
as well as construct a G-Code from a given tool path 
and simulate the milling operations of a five-axis 
milling machine. The G-Code is constructed based 
on the inverse kinematics of the machine. In 
particular, the system allows for an efficient 
simulation of inverse kinematics of multi–axis-
milling machines. Moreover, it makes it possible to 
build a virtual milling environment that enables the 
user to interactively evaluate the kinematics of the 
mechanism and estimate the kinematics errors. The 
first algorithm reduces the errors by re-arrange the 
rotations to produce the continuous variation of the 
angles. The remaining errors can be further 
optimized by the second algorithm to reduce the 
errors near the stationary points. It is based on global 
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optimization with regard to feasible solutions of the 
inverse kinematics. The algorithm is based on the 
iterative shortest path scheme. The shortest path 
procedure can be applied to either the entire set of 
trajectories or to only the most inappropriate 
trajectories (the so-called loops) inside the work 
piece. The third algorithm is based on the equi 
distribution with regard to the rotation angles. The 
kinematics error near the stationary points depends 
on the variation of the rotation angles. The method 
allows inserting additional tool positions by finding 
numerically a grid of points equi distributed in the 
angular space. The proposed method requires 10-15 
times less additional points than conventional 
schemes performed near the stationary points. 
Finally, the fourth algorithm combines and iterates 
the second and the third algorithms by re-injecting 
the points into large loops by equi distributing them 
with regard to the rotation angle having the largest 
variation. The efficiency of the algorithms has been 
verified by a five-axis machine MAHO600E at the 
CIM Lab of Asian Institute of Technology of 
Thailand.  

 
2. Inverse Kinematics  
 
Consider a typical configuration of the five-axis 
milling machine with the rotary axis on the table 
(Fig.1). The machine is guided by axial commands 
carrying the 3 spatial coordinates (X, Y, Z) of the 
tool-tip in the machine coordinate system M and the 
two rotation angles (A, B). The supporting CAM 
software generates a successive set of coordinates (X, 
Y, Z, I, J, K, called the cutter location points or CL-
points) in the workpiece coordinate system W. 
Typically, the CAM software distributes the CL-
points along a set of curves which constitutes the so-
called zigzag or spiral pattern. An appropriate 
transformation into the M-system generates a set of 
the machine axial commands which provides the 
reference inputs for the servo-controllers of the 
milling robot. However the current CAD/CAM 
commercial software is not capable of optimizing the 
removal of the material. The tool path between two 
consecutive points on a five-axis machine is not a 
straight line. The real cutter contact (CC) point path 
is a space curve which needs to be compared with the 
reference surface. Only this operation produces a real 
geometric error.  
 
Furthermore, the reference surface must be presented 
in the IGES format compatible with professional 
CAD/CAM systems. The tool geometry is a cylinder 
(flat end mill).  Since we employ a parametric model 
of the surface, the corresponding equations produce 
the point coordinates and the normal vector. The CL 
point is positioned at the centerline of the tool along 
the surface normal. Such a representation must be 

changed to a CC point positioned in the tool tip plane 
and on the circle produced by intersection of the tool 
cylinder and the tool tip plane. This is shown in Fig. 
2. However the input to the five-axis CNC machine 
is the sequence of CL-points transformed to the 
machine coordinate system by means of the inverse 
kinematics. The algorithm to compute this location 
must be integrated with tool path optimization 
software and with a solid model of the material 
removal. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1: Five-axis milling machine MAHO600E 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: Tool Workpiece Contact Zone 
 
Consider how the axial command translates the 
centers of rotation and simultaneously rotates the W-
coordinates (Fig.3). Let Wp(xp,yp,zp) and 
Wp+1(xp+1,yp+1,zp+1) be two successive spatial 
positions of the tool path and (ap,bp), (ap+1,bp+1) the 
corresponding rotation angles given by 
ap=arctan(jp/ip), bp= - acrsin(kp), where (ip,jp,kp) 
denotes the normal to the required surface at Wp. In 
order to calculate the tool trajectory between Wp and 
Wp+1 , we first, invoke the inverse kinematics [7] to 
transform the part-surface coordinates into the 
machine coordinates Mp(Xp,Yp,Zp) and 
Mp+1(Xp+1,Yp+1,Zp+1). Second, the rotation angles 
a(t),b(t) and the machine coordinates M  M(t)  
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(X(t),Y(t),Z(t)) are assumed to change linearly 
between the prescribed points, namely, 

,)1(1)(

,)1(1)(

,)1(1)(

pbttptbtb

patptata

pMtptMtM
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(1) 

where t is the fictitious time coordinate (0  t   1). 
Finally, invoking the transformation from M back to 

W yields W(t)(x(t),y(t),z(t)). 

The kinematics are represented by the functions 

AA(a(t)),BB(b(t))  associated with the rotations 
around the primary (the rotary table) and  the 
secondary (tilt table) axes respectively. They are 
specified by the structure of the machine. For the 5-
axis machine in Fig 1, the kinematics involving two 
rotations and three translations are given by  

M(t)=B(t)(A(t)(W(t)+R)+T)+C,                        (2) 

where R, T, and C are respectively the coordinates of 
the origin of the workpiece in the rotary table 
coordinates, coordinates of the origin of the rotary 
table coordinates in the tilt table coordinates and  the 
origin of the tilt table coordinates in the cutter center 
coordinates. The general inverse kinematics are given 
by  

W= (A-1(B-1 (M-C) -T ) ) –R.                        (3) 

The rotation angles are  

A = tan -1 (j/i), 0  A  2              (4) 

B = - sin –1 (k), 0 B            (5) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.3: Non-linearity of the tool path in the workpiece 
coordinates 

3. Surface Stationary Points 
 
The kinematics of the machine depend on matrix-
functions A(a), B(b) associated with the rotations a 
and  b around the primary (the rotary table) and  the 
secondary (the tilt table) axes shown in Fig.1. A 
simple analysis of the inverse kinematics reveals that 
a linear trajectory of the tool tip in the machine 
coordinates may produce a non-linear trajectory in 
the work piece coordinates (Fig.3). This effect is 
amplified when approaching a stationary point of the 
part surface since it involves sharp variations of the 
rotation angles. Note that a fine cut of a smooth 
surface employing small spatial and angular steps 
may not demonstrate the detrimental effects near the 
singularity points. However, a rough cut 
characterized by large gradients could produce 
considerable errors. The sharp angular jumps 
produce loop-like trajectories of the tool. Moving 
along such trajectories may destroy the work piece 
and even lead to a collision with the machine parts.  
For simplicity, assume that the tool is aligned along 
the surface normal. Then the rotation angles are 
given by (see also Fig.4): 

arctan if 0 and 0,

arctan if 0,

arctan 2 otherwise,

arcsin ,
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Fig.4: Computation of basea  in each quadrant 
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where ( , , )x y zI I I I  is the tool orientation 

vector.  It is not hard to demonstrate that the inverse 
kinematics admits four solutions given by:     

,

2 ,
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                      (7)                            

Solutions similar to (7) can be established for other 
types of the machine kinematics such as, "one axis on 
the tool and one on the table" and "both axis on the 
tool". The shortest path from the feasible sequences 
must be identified in such a way that the kinematics 
error is minimized. In other words, the following 
problem must be solved   

minimize (ε)


,                                                      (8) 

where 
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is the kinematics error between cutter location points 

p and p+1 and , 1 , 1( ), ( )D
p p p pW t W t   the desired 

and the actual tool trajectory. Note that in many 
cases problem (8) can be replaced by minimization 
of the total error variation as follows 
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and N is the total number of the cutter location 
points. 

4. Tool Path Optimization 
Algorithms 
 
The CAD software generates the CL points in the 
workpiece coordinate system whereas the CAM 
software generates the tool path or G-Code in the 
machine coordinate system from the prescribed CL 

points. The G-Code guides the cutting tool of the 5-
axis machine to travel along a nonlinear trajectory to 
reach the required CL point. The nonlinear 
trajectories constitute a trajectory surface, which is 
slightly different from the actual surface. The error 
surface is estimated by computing the difference 
between the actual and trajectory surfaces.  
 
Let four points W1(i,j), W2(i+1,j), W3(i+1,j+1) and 
W4(i,j+1) in Fig.4 be the grid {(u,v)i,j} which 
represents the actual surface S(u,v). First, we apply 
the inverse kinematics (see section 2) to transform 
each point into the corresponding machine coordinate 
M1, M2, M3, and M4 respectively. Then, we perform 
the linear interpolation procedure on the machine 
coordinate M and invoke the inverse transformation 
from M back to W (for every t) yields the tool path 
W(t)(x(t),y(t),z(t)). Next, the calculated tool path is 
mapped on the grid {(u,v)i,j}. Finally, using the 
bilinear interpolation procedure on the grid {(u,v)i,j} 
yields an approximation of the machined surface 
T(u,v). The error surface is then calculated by  

 (u,v) = | S(u,v)-T(u,v) |,          (11) 

where S(u,v) = (x(u,v),y(u,v),z(u,v)) is the actual 
surface and T(u,v) = (xT(u,v),yT(u,v),zT (u,v)), is the 
trajectory surface as shown in Fig.5. These errors are 
estimated and visualized graphically by the virtual 
machine. We propose four algorithms, namely 1) 
angle adjustment, 2) angle switching, 3) angle 
insertion and 4) iterative angle switching to optimize 

the tool path by minimizing such errors. 

 

 

 

 

 

Fig.5: Error surface computation 

 

4.1 Angle Adjustment 

If the a-angle jumps unexpectedly from minimum to 
maximum e.g. from 5 degree to 355 degree or vice 
versa, this will produce a large angle variation and 
large error and may cause an expected collision 
among each machine’s axis. Therefore, the angle 
adjustment algorithm is introduced to produce the 
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continuous variation of the angles. The sequence 
{ap} should be adjusted in order to minimize the 
difference between the successive angles. For 
instance if a-angle changes from 355 to 5 the 
algorithm must replace 5 by 365, etc. The following 
C++ program illustrates the angle adjustment 

algorithm. 

for (i=0;i<N;i++)  
{    
     // get vertex 
     a1 = a(i); a2 = a(i+1); ak = a2; 
  // compare a(i) and a(i+1) 
 if (a2 - a1  > PI )  
     { 
             // adjust the angle 
              for(k=i+1; k<N; k++)   
                   ak = ak - 2*PI; 
 } 
 else if (a2 - a1 < -PI)  
         {    
               // adjust the angle 
  for (k=i+1; k<N; k++)  
       ak = ak + 2*PI; 
    } 
} // end i 
 
4.2 Angle Switching 

According to our initial setup of the 5-axis machine, 

the a-angle is given by a = tan -1 (j/i), 0  a  2 
 However, the normal vector i and j can be in any of 

the four quadrants as illustrate in equation (6). 
Furthermore, there are four sets of a-angle and b-
angles within the range  [0,2 ]   that can rotate the 

tool vector into the required orientation. The set of 
the a-angles is defined by 

},,2,{   basebasebasebase aaaa .  Note 

that, after the rotation by basea  or 2basea  the 

tool is positioned in the same quadrant with the 
original orientation whereas the rotation by 

  basebase aa , corresponds to the tool being 

in opposite direction. The set of the feasible b-angle 

(bbase,,--bbase) is required to transform the tool 
vector into the require orientation. It is not hard to 

demonstrate that basea  or 2basea  requires the 

rotation )(sin 1 kbb base
 whereas the 

rotation   basebase aa ,  corresponds to another 

solution basebb   . Therefore, we have four 

paths represented by four pairs of feasible (a, b) to 
transform the tool vector pi into the required location 
pi+1. That is, 

                 (12) 

We can determine the path by examining the 
minimum errors at each point along the tool path.  
According to our experiment, every line on the tool 
path near or cross a stationary point such as 
minimum or maximum or saddle generates the loop 
trajectories. These loops represent the larger errors 
than any other points due to the longer distance the 
tool has to travel to cross the stationary point. 
Therefore, we may perform the optimization with 
regards to this set. We will minimize the distance 
traveled by the tool in the space (a, b) with the 
Euclidean distance:  
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The total distance traveled by the tool within the 
vicinity of the large errors is given by  
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Note that, we consider only the distant between (a,b) 
because the position (x,y,z) of pi and pi+1 does not 
change. However, we have four set of feasible (a,b) 
between pi and pi+1 and only one set of (a,b) with the 
smallest distant is selected to optimize the errors. The 
actual errors, however, are computed using equation 
(11) which takes into account both (x,y,z) and (a,b). 

When the tool enters the zone of large milling errors, 
we apply the angle-switching algorithm to select the 
shortest distance for the tool to travel from the 
current point to the next. Note that a procedure to 
compute the rotation angles may become ill-
conditioned in the regions |i + j|<   ( is a small 
number). For instance for “flat” surfaces or near the 
points of maximum or minimum. As a matter of fact, 
small variations of the normal vector in the above 
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mentioned regions produce sharp variations of the 
rotation angles and numerical instabilities. However, 
the algorithm from section 4.1 only eliminates 
unwanted variations of more than 180 degree. We 
still face the problem of large variation of the angle 
between 0 to 180 degree producing the loops due to 
the non-linearity of the inverse kinematics of the 
machine. This phenomenon may cause an 
unexpected motion of the machine and even 
collisions with the tilt table. We, therefore, introduce 
an “Angle Switching” algorithm to select the 
shortest path from the feasible sequences {ai+1} in 
such a way that |ap+1- ap|+|bp+1- bp| is minimized 
using possible equivalent angles. For instance, a 
position {ap,bp} could be followed by either 
{ai+1,bi+1}, calculated by means of the equation (12). 
 
The loop detection and elimination method is based 
on the following two ideas. 1) Since the loops 
usually occur near a minimum or a maximum of the 
concave or convex surface (stationary points), the 
angle switching algorithm must be applied only in 
the vicinity of a stationary points. 2) In order to 
obtain the optimal path, the graph–based shortest 
path algorithm must be employed. The angle 
switching algorithm for optimizing the tool path by 
computing the smallest distance within the vicinity 
of the stationary points is described by the following 
steps:  

1. Locate the vicinity of the large milling errors 
to determine the source (s) and the destination (t) 
vertices. In this work, we demonstrate the tool path 
optimization based on the distant optimization using 
the saddle surface that contains both convex 
(maximum) and concave (minimum) areas. We use 
our virtual five-axis simulator [9] to graphically 
visualize the errors near the maximum and minimum 
of the saddle surface and determine the source and 
the destination vertices as well as the area of vicinity 
for optimization.  

2. Construct the graph to represent four feasible 
paths from s to t using the adjacency list. The graph 
nodes represent the vertices and the arcs represent the 
distance between two adjacent nodes of all four paths 
as illustrated in Fig.6. We do not create the error 
graph because error computation is much more 
expensive than the distance computation. However, 
the average error from s to t is proportional to the 
average distance from s to t, such that distant 
optimization gives the result proportional to error 
optimization.  

3. Apply the Dijkstra's shortest path algorithm 
[10] to compute the smallest distant from s to t, from 
the graph in Fig.6.  

4. Update all vertices from s to t using the 
output shortest path from the previous step.  

 

 

 

 

 

 

 

Fig.6:  The graph represents four paths from s to t 
 
4.3 Angle Insertion 
 
The angle switching algorithm still leaves errors 
which can be further eliminated only by inserting 
additional CC points. In particular, when the tool 
path crosses the stationary point in the direction 
parallel (or nearly so) to the secondary rotary axis. 
The work piece often must be rotated by an angle 
close to .  Therefore, further optimization is 
required to reduce such angular jumps. If the 
trajectory lies far from singularities a conventional 
approach to insert spatially uniform grid of the CC 
points between the two given positions solves the 
problem. However, such interpolation does not 
remove the jumps near the singularities. In order to 
solve this problem, a special interpolation called the 
“Angle Insertion” is proposed to partition the large 
angular interval into a grid having equal angular 
increments. Unfortunately, we can not merely split 
the angular interval in the machine coordinates. The 
resulting angles do not correspond to the actual CC 
points and orientations. In other words the trajectory 
does not follow the surface. The correct set of the CC 
points and the tool orientations can only be 
calculated from the surface equation. Therefore, we 
propose the following angle insertion procedure.  

1. Construct a uniform grid 
ia a i a    (where 

a  is the angular step) near the singularity. 
 2. For each 

ia  find the CC point and the 

orientation that produce 
ia  by the bisection method 

as follows:   
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2.1 Compute a midpoint ( , )m mx y .  

2.2 Invert the parametric equations
( , )x mS u v x , ( , )y mS u v y  to find the corresponding 

,m mu v  and consequently
mz . 

2.3 Calculate the orientation vector and 
obtain the corresponding

ma . 

2.4 Compare 
ma  with the target 

ia   

 
The bisection procedure above runs until it converges 
within the prescribed accuracy. 
 
4.4 Iterative Angle Switching 
 
When it is necessary to insert additional points, there 
are many methods for such insertions. However, from 
the viewpoint of the kinematics error one of the most 
efficient methods near stationary points is angular 
insertion proposed in section 4.3. The method “injects” 
the points into large loops by equi distributing them 
with regard to the rotation angle having the largest 
variation.  This complies with the idea of functional 
that the angle variation affects the kinematics error the 
most.   

Consider the rotation angles (degree) before applying 
the angle switching algorithm, suppose ai = 319, bi = 
-79, ai+1 = 224, bi+1 = -80. The shortest path 
optimization produces ai = 319, bi = -79, ai+1,new = ai+1 
+ 180 = 404, bi+1,new = -bi+1 – 180 = -100. Inserting a 
point in the middle yields amid = 267, bmid = -82. 
Taking into that we have to perform the same 
modification as with ai, bi, we have the new pair of 
angles given by amid = amid + 180 = 447, bmid = - bmid -
180 = -98, which is not actually in the middle 
between ai = 319 and ai+1,new = 404. In other word, 

amid  [ai,ai+1] anymore.  This would produce a larger 
error. Therefore, a single additional point may 
destroy the integrity of a particular shortest path. The 
iterative angle switching algorithm is proposed to 
iteratively switch the angles when the additional 
points are inserted as follow: 

1. Run the angle switching (AS) algorithm. 
2. If the kinematics error is within the prescribed 

tolerance, quit, otherwise, find the trajectory 
with the kinematics error exceeding the 
tolerance. 

3. Mark this trajectory. 
4. Return to the original tool path (ORG) and 

using the angle insertion (AI) algorithm to 
insert a point inside the selected trajectory 

even though in the original path they do not 
produce large kinematics error.  

5. Repeat step 1.  
 
It is clear that the algorithm converges because in the 
worst case the additional points are inserted into every 
interval. However, in this case switching of the angles 
is no longer accomplishable. Therefore, we are 
interested in solutions when benefits of the angle 
switching are combined with error reduction produced 
by inserting some relatively small number of points. In 
other words, the question whether it is practical that a 
few points have been inserted to reduce the error and 
some switching is still present in the path. We also are 
interested whether the above mentioned angle insertion 
techniques still provides some benefits as the basic 
insertion method in this algorithm.   

 
5. Experimental Results  
 
The objective of the cutting experiments is the 
calibration of the parameters involved in the inverse 
kinematics. The inverse kinematics transforms the 
tool reference vector (x, y, z, i, j, k) fixed to the 
workpiece into the machine coordinates X, Y, Z, A, B 
fixed to the machine frame. A parametric saddle 
surface which contains both convex (maximum) and 
concave (minimum) regions is used as a case study to 
demonstrate the tool path optimization algorithms. 
The experiment constitutes the basic test of how our 
graphic simulation software would detect such 
kinematics errors, locate the problem areas, as well 
as minimize the errors. The parametric saddle surface 
is given below and illustrate in Fig.7.  
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Fig.7: The original trajectories of the saddle surface 
(undercuts are bold) 
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5.1 Angle Adjustment 

The a-angle and b-angle are computed using 
machine inverse kinematics described in section 2. A 
and B axis are rotating simultaneously ranging from 
0 to 360 and from 0 to -90 respectively. Fig.7 shows 
the required saddle surface. Fig.8 shows the 
corresponding graphs of the a-angles and the angle 
adjustment. Note that the angle adjustment is 
required to eliminate sharp variations of the rotation 
angles near minimum or the maximum of the surface. 
Note that although the general case requires an 
adjustment of B as well, the case of the saddle 
surface implies that B [-90, 0]. Therefore the 
adjustment is not required.  

Fig.8: Angle adjustment for the saddle surface 
 
5.2 Angle Switching 
 
The initial setup and configuration of our five-axis 
machine in Fig.1 imply that the a-angle and b-angle 
are given by equation 6 and 7. The stationary 
position such as the minimum or the maximum or the 
saddle point may generate trajectories characterized 
by large deviations from the surface or so called 
“loops”. Usually the loops represent the largest errors 
and appear because the large variations of the 
rotation angles a and b. Therefore, the optimization 
can be performed only in the vicinities of these 
points. The angle switching will select the shortest 
path from the feasible sequences of the angles in such 
a way that |ap+1 - ap| + |bp+1 - bp| is minimized. The 
algorithm decreases the sharp rotation angle and 
turns the large loops (Fig.7) into the smaller ones 
(Fig.9).  
 
It should be noted that the optimization may make 
sense only for the so-called rough cutting or for cuts 
characterized by sharp gradients. For instance, Table 
1 presents the case of a rough cut when the number 
of the required cutter location points is not very 
large.  Increasing the number of points along the 
cutting direction (see Table 1) shows that small 
angular steps make the optimization superfluous (see 
the path 20 x 130). When the angular step is small, 
switching between the feasible trajectories increases 
the step and therefore amplifies the error. 

Note that the algorithm may also turn irreparable 
“bad loops” or undercut (bold trajectories in fig.7) 
which enter the surface into “good loops” or overcut 
which go above the surface (Fig.10). The “good 
loops” may also lead to considerable errors, however, 
such errors are reparable whereas the “bad loops” 
may destroy the workpiece. 
 

 
Fig.9: The repaired surface trajectory 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.10: The repaired surface trajectory with regard 
to undercuts. 

 

Jump from max to min 
requires angle adjustment

Original angle 

New angle 
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Table 1:  Kinematics error for the optimized and 
non-optimized tool path. 

Number of 
CL points 

Non-opt  
error 
(mm) 

Opt  
error, 
(mm) 

% error 
decrease  

20 x 20 0.867 0.133 84.66 
30 x 20 0.336 0.055 83.63 
40 x 20 0.085 0.033 61.18 
50 x 20 0.077 0.035 54.55 
60 x 20 0.071 0.038 46.48 
70 x 20 0.066 0.042 36.36 
100 x 20 0.054 0.052 3.70 
130 x 20 0.047 0.047 0.00 

 
Although this algorithm does not entirely eliminates 
the need to insert additional CL points it substantially 
decreases the error. In particular, such optimization 
constitutes an efficient tool in the case of rough 
machining in the five-axis mode. The numerical 
experiments verified by practical machining 
demonstrate the accuracy increase ranging from 4 to 
80 % in the case of rough cutting.   
 
5.3 Angle Insertion 
 
The angle insertion is proposed to partition the large 
angular interval into a grid having equal angular 
increments. The stationary point can be located by 
finding the largest loop in which the tool vector 
changes the sign of the i or the j component as shown 
in Fig.11. 

 
 
 

 

 

 

 

 

 

 

 

 

Fig.11: The original trajectory and the repaired 
trajectory using 7-points angle insertion 

Fig.11 and Table 2 illustrate the procedure. The 
angular interval has been partitioned into the almost 
equal subintervals. Consequently the loops near the 
singularity have been significantly reduced. Note that 
usually only one of the two rotation angles changes 
sharply near the singularity. Therefore, the bisection 
should be applied in only one dimension. However, 
theoretically there exists a possibility when both 
angles must be bisected. In this case one should use 
either a two dimensional version of the above 
procedure or to bisect a linear combination of the 
angles. The singular point can be located by finding 
the largest loop in which the tool vector changes the 
sign of the i or the j component. 
 
Table 2 displays the kinematics errors and the 
rotation angles before and after applying the 
proposed angle insertion. Clearly, the uniform 
angular grid allows us to substantially decrease the 
error, whereas the conventional point insertion or 
spatial grid is not efficient. Clearly, when a certain 
number of additional points have been inserted, the 
error decrease is approximately the same as for the 
space or angular insertion. Therefore, the method is 
applicable only for the rough cuts characterized by 
sharp variations of the rotation angles 
 
Table 2: Max error versus number of inserted points 

Number of 
inserted  points 

Max error (mm)  
Conventional  

Max error (mm) 
Angular Grid 

0 19.300  19.300 
8 4.241  0.416 

16 1.707  0.138 
32 0.490  0.092 
64 0.158  0.089 
128 0.099  0.089 

 
Table 3 illustrates the most impressive results 
obtained in the case of a rough cut on 20 by 20 grids. 
The error has been reduced in more than 20 times 
after the angle switching and in more than 40 times 
after the angle insertion. Moreover the angle 
insertion works almost 10 times better than a 
standard CC point insertion.   

Table 3: Performance of the angle insertion 
algorithm 

Grid 20 by 20 Max Error 
(mm) 

% Error 
Decrease 

Angle Adjustment 6.388 N/A 
Angle switching 0.305 95.22 
7 CC points insertion 1.209 81.07 
7 points Angle insertion 0.150 97.65 

 

Repaired trajectory
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5.4 Iterative Angle Switching 

In many cases, inserting additional points destroy the 
integrity of the shortest path sequencing. The 
following is an example of such a drawback. 
Consider a saddle surface in Fig.9 with a tool path 
obtained by the angle switching optimization. The 
largest loop is on the right side of the surface. 
Inserting a point in the middle of the loop, produces a 
larger loop (Fig.12). 

 

 

 

 

 

 

 

 

Fig.12: The trajectory surface after applying angle 
insertion to the surface in Fig.9 

Fig.13 shows the saddle surface S(u,v) from equation 
(15) subjected to the above mentioned procedures 
after the maximum error has been reduced to a 
certain prescribed value using iterative angle 
switching optimization methods. It has been proven 
experimentally that the proposed method requires 
47.3 % less additional points than conventional 
schemes performed near the stationary points.  

 

 

 

 

 

 

 

 

 

Fig.13: The trajectory surface after applying 
iterative angle switching to the surface in Fig.9 

 

Table 4 compares the proposed iterative angle 
switching algorithm using conventional spatial grid 
(IT/PI) and uniform angular grid (IT/AI) for inserting 
additional CL points. PI stands for inserting equi-
spaced points along the tool trajectory in the physical 
space (x,y,z), whereas AI stands for points  equi 
distributed in the angular space (a,b) along the 
angular arc. The maximum allowable error is 2 mm. 
Clearly the iterative angle switching algorithm 
combined with the angular insertion requires the 
smallest number of points. This is because the 
method presents an appropriate combination of angle 
switching and inserting, whereas AS and AI use only 
a single technique.  
 

Table 4: Comparison of the inserted points with 
several methods on the entire saddle surface 

 
Methods AS PI AI AS-

IT/PI 
AS-
IT/AI 

#inserted 
points 

0 74 48 56 39 

Max 
error  
(mm) 

7.45 1.96 1.96 1.96 1.96 

 

The preliminary results show a 20% improvement 
over the pure angular insertion scheme and about 
50% improvement with the reference to spatially 
equi-distributed points. 

 
6. Conclusion  
 
A tool path thought as a trajectory in the five-
dimensional space is a subject of optimization on the 
set of solutions of the inverse kinematics equations 
with regard to the required rotations. Minimization of 
the total angle variation for rough cuts leads to a 
substantial accuracy increase ranging up to 80 %.  
The optimization can be formulated in terms of the 
total error as well as in terms of the undercut and 
overcut error. Optimization of the undercut error 
ensures against removal of the excess material during 
the rough cut. Further improvement of the accuracy 
can be achieved by constructing the uniform grid in 
the angular space around the CC points characterized 
by large angle variation. The methods are most 
efficient in the case of the rough cut characterized by 
large angle variations which produce considerable 
errors. A fine cut of a smooth surface employing 
small spatial and angular steps may not display the 
detrimental effects near the stationary points. In this 
case the methods do not lead to a substantial 
accuracy increase.   
 
Four algorithms to optimize the tool path for five-
axis machining have been presented. 1) Angle 

The largest loop has grown 
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Adjustment produces the continuous variation of the 
angles. The sequence of rotation angles is adjusted in 
order to minimize the difference between the 
successive values. 2) Angle Switching is capable of 
repairing the bad trajectories or minimizing the large 
milling error by adjusting the rotation angles in such 
a way that the kinematics error is minimized. The 
algorithm employs the shortest path scheme to 
optimize tool path.  3) Angle Insertion is based on the 
equi distribution of the rotation angles near stationary 
position. A special interpolation combined with the 
bisection methods is employed to insert additional 
points equally in angular space to obtain a uniform 
minimal kinematics error. 4) Iterative Angle 
Switching based on the shortest path algorithm 
combined with the equi distribution of the cutter 
location points in the angular space to improve the 
efficiency of five-axis machining.  
 
The efficiency of the algorithm has been verified by a 
practical machining (Fig.14) using five-axis machine 
MAHO600E at the CIM Lab of Asian Institute of 
Technology of Thailand. It has been also verified by 
the virtual milling machine simulator [9] developed 
by the author. 

 

Fig.14: The real cut of the saddle surface using the 
proposed algorithms 
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