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ABSTRACT – There is an emerging paradigm in the field of computing towards parallelism at 
increasing levels. Among these, multi-core processors are fast becoming the norm in the world of 
modern computers. The potential enhancement in performance would allow certain fundamental 
procedures in molecular biology, such as biological sequence alignments of DNA and protein 
sequences, to be done faster, paving the way for more efficient multiple genome comparison. 
However, in order to harness the full power of multi-core processors, effective parallel algorithms are 
needed. This work aimed to develop a suitable parallel longest common subsequence (LCS) algorithm 
for pairwise sequence alignment. The proposed parallel LCS (PLCS) performed approximately 23-
30% better than the traditional serial LCS, when using the median run-time as the measure. 
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1. Introduction 
 
The recent trend in parallelism has been moving 
towards ubiquitous and everyday computing devices. 
Implementations range from single-instruction 
multiple-data (SIMD) techniques at bit-level by 
vector processing units, to thread-level shared 
memory in multi-core processors, to distributed 
memory parallel systems in clusters and 
supercomputers, to massively parallel systems in 
clouds and server farms that may span globally. 
These emerging multi-core devices have been used 
increasingly for various scientific computing 
purposes [1]. For example, biological sequence 
analysis has been studied extensively by numerous 
researchers in the field of biology and bioinformatics. 
In order to determine the degree of similarity or 
homology among different organisms, sequence 
alignment is routinely performed using DNA and 
protein sequences [2]. Similarities in two or more 
different genomes may indicate conserved biological 
functions and structures [3]. That is, conserved 
patterns found in different biological sequences could 
reveal the ecological niche as well as the evolution 
process of these organisms [4].  
 

To align biological sequences, it is necessary to have 
a scoring measure of the closeness of the sequences. 
The simplest measure for alignment is to use the 
maximum number of consecutive identities among 
the sequences. This is termed the longest common 
subsequence (LCS). There are different algorithms 
for solving the LCS problem. For two sequences 
(2LCS), this can be solved in O(mn) by using the 
dynamic programming technique where m and n are 
the lengths of the two input sequences [5]. Common 
algorithms for solving LCS problems include 
dynamic programming [6] and Hidden Markov 
Model [7]. The former is more accurate and would 
provide the optimal solution; however, it requires 
longer run-time as well as more computational 
resources. Whereas the latter runs faster and uses less 
resource and can produce acceptable results. In this 
work, we focus on the dynamic programming 
algorithm for LCS and aim to take advantage of the 
current multi-cored architectures to reduce the run-
time of dynamic programming LCS. 
 
Current computers face physical limitations such as 
power consumption and heat dissipation [8]. Thus, it 
is necessary for manufacturers to turn to building 
chips with multiple processor cores to increase the 
computational power. However, single processor 
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usage in a multi-core processor may not perform as 
fast as the latest designed single-core models. 
Nonetheless, they can improve overall performance 
by processing more work in parallel [9]. It has been 

found that a dual-core chip running multiple 
applications is typically about one and a half times 
faster than a comparable single core chip [9]. 
 

Figure 1. Flowchart and pseudo code of score filling in traditional LCS. 

 

Moreover, there seems to be a slight lag on the 
development on parallelizing compilers. This could 
be due to the increased complications in designing 
a parallel algorithm. Also, parallelism works only 
for a restricted class of problems [8]. Consequently, 
many applications are not designed or have not 
been rewritten to run in parallel architectures. 
Therefore, even though we are in the multi-core era, 
the true advantage of the multiple execution units 
from the presence of multiple processors has not 
yet been fully realized. 
 
Despite its importance in the biological arena, there 
have been limited studies for the parallel sequence 
alignment problem until recently. Biological 
sequence alignment with LCS dynamic algorithm 
could take longer time when the sequences become 
longer. This study aims to experiment on parallel 
pairwise alignment with LCS dynamic 
programming algorithm to find out if the problem 
of biological sequence alignment could be rewritten 
with parallelism and still yield optimal results. 
PLCS in this paper refers to parallel LCS. 
 
The organization of the rest of the paper is as 
follows. Section 2 illustrates the problem 
formulation for both the traditional LCS problem 
and the parallelized version. Section 3 briefly 

describes the methodology used in this work. This 
is followed by a presentation of the results as well 
as relevant discussions in Section 4. Then 
conclusions and future works are provided in the 
last section of this paper. 

2. Problem Formulation 
 
Many common methods for dealing with the LCS 
problem can be expressed in form of standard 
algorithms for pattern matching, text, and string 
searching, as well as those for sequence comparison 
in molecular biology [10]. 
 
2.1 Traditional LCS Problem 
 
In the traditional LCS alignment of a pair of 
biological sequences, the symbols which represent 
either amino acids or bases may be shifted in either 
direction to align as many identical letters as 
possible. Gaps, or blank symbols that are often 
denoted with the symbol ‘-’, often need to be 
inserted into the sequences to obtain improved 
alignment [2]. A suitable scoring function is used to 
measure the degree of matching between each pair 
of symbols. An optimal alignment is one with the 
highest cumulative score.  Note that it is possible 
for multiple alignments to have the same optimal 
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score, but this becomes increasingly unlikely for 
longer and longer sequences. For biological 
sequences, it is possible to have lengths of over 200 
million. 
 
The flowchart and pseudo code in Figure 1 show 
how traditional LCS fills similarity scores in the 
edit table during the dynamic programming 
process. Note that vertical and horizontal cells are 
filled simultaneously in a sequential manner. 
 
 

 

 

Figure 2. Parallel LCS flowchart and pseudo code. 

 
2.2 PLCS Algorithm 
 
Important factors when creating a serial algorithm 
are the accuracy of the program results and the 
resources (time and memory) required for the 
program to run [11]. In the case of parallel 
computing, the accuracy of the alignment results 
has to be taken even more into consideration due to 
the data dependency between multi-concurrent 
threads [8]. For example, it may be possible that 

one processor would retrieve the values for further 
calculation before the result is actually ready, or 
before the job of the other processor is completed. 
Furthermore, deadlocks could occur when the first 
thread waits for the second thread while the second 
thread also waits for the first one, thus causing the 
program to run in an infinite loop. 
 
Another challenge in parallel programming is to 
balance the work load between CPUs in order to 
gain the optimal CPU allocation and an improved 
run-time. That is, ideally, the CPU would not need 
to wait for the results from other processes before 
carrying out the next operation. 
 
Taking the above into consideration, a parallel LCS 
algorithm was developed. This is described and 
shown in Figure 2 in form of a flowchart and the 
corresponding pseudo code. 
 
Referring to Figure 2, sequences A and B have 
length lA and lB, respectively. The starting points to 
fill the edit table are startX and startY, both with an 
initial value of zero. The variable start is for 
confirmation of the readiness of startX and startY. 
The status ‘lock’ means the thread is in critical 
session. The initial status of start is ‘unlock’. 
Memory on RAM is allocated for WeightTable (for 
assigning the scores in each cell) and DirTable (for 
determining the direction of table filling). The 
vertical and horizontal threads are created using 
different filling patterns. When the processes in 
both threads are completed, every cell in the table is 
filled. A trace back operation is then performed to 
obtain the optimal path for LCS. 
 

 

Figure 3. Flowchart of the score filling procedure 
in parallel LCS. 
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The flowchart in Figure 3 and the pseudo code in 
Figure 4 show how the table is filled by threads in 
the horizontal and vertical directions. Thread 
Vertical fills the similarity scores for the cells along 
the vertical direction; whereas Thread Horizontal 
fills in the cells along the horizontal direction. Both 
threads would operate until the start point is outside 
the table reference position. Then they begin filling 
by changing the variable start from the unlock state 
to lock state. Next, the values startX and startY are 
used as reference variables for filling the table, 
followed by a shift in the working position. In 
particular, Thread Vertical shifts to X+1 position 
while Y remains unchanged. Also, Thread 
Horizontal shifts to Y+1 while X remains 
unchanged. Finally, variable start changes to 
unlock, and both threads would start filling the 
scores in their own directions, until the stopping 
criteria have been reached.  
 

 

 

Figure 4. Pseudo code to fill the vertical and 
horizontal threads in the proposed parallel LCS. 

 

Figures 5 and 6 illustrate the topology of the order 
of data filling for a sample pairwise DNA sequence 
alignment using LCS and PLCS, respectively.  In 
both figures, the arrows show the possible direction 
of table filling. The vertical and horizontal threads 
for PLCS are represented by the vertical and 
horizontal rectangles in Figure 6. In this case, the 
arrows denote the order of simultaneous data filling 
of the edit table from the top left to the bottom right 
by the two parallel threads. 

 

Figure 5. Topology of the data filling procedure for 
the traditional LCS method. 

 
 

 

Figure 6. Topology of the data filling procedure for 
the parallel LCS method. 

 
 

3. Methodology 
 
To evaluate the performance of the developed 
parallel LCS algorithm in comparison to traditional 
LCS algorithm, it is necessary to be able to control 
the factors which could affect the running time of 
the processes. Both algorithms were implemented 
in C and were compiled using GNU Complier 
Collection (GCC). For the parallel version, the 
pthread library was needed. The source codes for 
these algorithms are provided in the Appendix. 
 
The random sequences of A, T, C, and G 
nucleotides were generated for testing inputs of 
each program. Each program was then executed on 
the same computer, equipped with 2 Itanium CPUs 
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which have a clock rate of 1.33GHz each.  The run-
time of each algorithm was measured for 100 times. 
 

4. Experimental Results and 
Discussion 
 
The means, standard deviations, minimal values 
and maximal values of the calculation time for LCS 
and PLCS are shown in Table 1. The percentages of 
improvement are calculated from the median 
values, which are also shown in Table 1. The 
reduced running time is clearly shown in Figures 7 
and 8 for 1,000 bases sequence alignment and 
10,000 bases sequence alignment, respectively. The 
boxplot shown on the left of the figures represent 
the running time for the serial LCS while the right 
boxplot represents that of the parallel LCS.  The 
boxes are very thin so they appear like grey 
horizontal lines.  The whiskers represent standard 
deviations and the black dots are outliers. 
 
Table 1. Comparison of the running time of 
traditional and parallel LCS algorithms 

 1,000 bases 
length  

10,000 bases 
length  

Serial  Parallel  Serial  Parallel 

mean 0.0871 0.0691 7.505 5.208 

SD 0.00743 0.01275 0.04139 0.09739 
min 0.084 0.064 7.434 5.007 

max 0.138 0.161 7.717 5.51 

Q1 0.085 0.065 7.480 5.137 

median 0.085 0.065 7.499 5.199 

Q3 0.086 0.066 7.524 5.262 
 
 
It was found that the accuracy of parallel LCS and 
traditional LCS is the same. That is, the alignments 
from both algorithms are the same. However, the 
calculation time was improved by about 23% and 
30% when tested with randomly generated 1,000-
bases sequence alignment and 10,000-bases 
sequence alignment, respectively. 
 
The standard deviations varied because of the 
random workload of the cluster computer used for 
running the programs. As the cluster is a public 
cluster and can be accessed by other remote users 
simultaneously, the system could be running other 
jobs while performing the LCS and PLCS tasks, 
resulting in CPU sharing and different run-time 
results. The standard deviations of LCS 
performance were higher, as well as the spread of 
the outlier range. This was expected since in the 
case of parallel computing, all CPUs were used. 

CPU sharing, thus, affected the performance of 
PLCS more significantly. However, it could be seen 
that PLCS still performed faster regardless of the 
random incremental workloads by other users of the 
cluster. 
 
 

Figure 7. Boxplot comparing run time of serial 
LCS and parallel LCS for 1,000-bases sequence 
alignment.  
 
 

Figure 8. Boxplot comparing run time of serial 
LCS and parallel LCS for 10,000-bases sequence 
alignment. 

 
 
 
The performance of PLCS was not much improved 
in 1,000-bases sequence alignment than in 10,000-
bases alignment. The reason being that the time 
taken for the sequences in both alignment jobs to be 
uploaded into the cluster was not different, 
providing a constant initial running time for both 
LCS and PLCS. As can be seen from the results, 
PLCS showed greater improved performance when 
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the running time was sufficiently long.  That is, 
pairwise alignment of longer sequences showed 
improved performance when comparing PLCS to 
traditional LCS. 
 

5. Conclusions and Future Work 
 
This work has supported the findings that parallel 
LCS could perform faster than LCS while yielding 
the same optimal solutions. There have been 
increasing studies on comparative genomics [12] 
which require longer running time for alignment 
due to the use of whole genome sequences. Such 
analyses, which require multiple genome 
comparison, have a wider range of applications [4]. 
Thus, there should be further development on 
parallel multiple biological sequence alignments to 
realize the increased power of multi-core 
computing.  Moreover, in order to further test the 
proposed algorithm, comparison runs will be made 
using sequences from each chromosome of the 
human genome with length varying from 47 to 247 
Mbps. The new HPC OCEAN cluster at NECTEC 
will be used for this future work. 
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Appendix 
 
The following are the source codes for the two 
algorithms demonstrated in this work:   
 
lcs.c 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
void strre(char *str) 
{ 
 char *s; 
 char ch; 
 s=str; 
 while(*s!=0)s++; 
 s--; 
 while(s>str) 
 { 
  ch = *s; 
  *s = *str; 
  *str = ch; 
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  str++; 
  s--; 
 } 
} 
 
long lcs(char *str1,char *str2) 
{ 
 long n1,n2; 
 long **weight; 
 int **dir; 
//direction(s1)    0=match/mismatch 1=delete(i) 
2=insert(j) 
 long i,j,w1,w2,w3; 
 char *s1,*s2,*out1,*out2; 
 n1 = strlen(str1); 
 n2 = strlen(str2); 
 s1 = (char*)malloc(sizeof(char)*(n1+2)); 
 s2 = (char*)malloc(sizeof(char)*(n2+2)); 
 out1 = 
(char*)malloc(sizeof(char)*(n1+n2+2)); 
 out2 = 
(char*)malloc(sizeof(char)*(n1+n2+2)); 
 sprintf(s1," %s",str1); 
 sprintf(s2," %s",str2); 
 n1++; 
 n2++; 
 weight = 
(long**)malloc(sizeof(long*)*n1); 
 dir = (int**)malloc(sizeof(int*)*n1); 
 for(i=0;i<n1;i++) 
 { 
  weight[i] = 
(long*)malloc(sizeof(long)*n2); 
  dir[i] = 
(int*)malloc(sizeof(int)*n2); 
 } 
//Start lcs 
 for(i=0;i<n1;i++) {weight[i][0] = 0-i; 
dir[i][0]=1;} 
 for(i=1;i<n2;i++) {weight[0][i] = 0-i; 
dir[0][i]=2;} 
 
 for(i=1;i<n1;i++) 
 { 
  for(j=1;j<n2;j++) 
  { 
   if(s1[i]==s2[j]) 
   { 
    w1 = weight[i-
1][j-1] + 1; 
   } 
   else 
   { 
    w1 = weight[i-
1][j-1] - 1; 
   } 
   w2 = weight[i-1][j]-1; 
   w3 = weight[i][j-1]-1; 

   if(w1>=w2 && 
w1>=w3) {weight[i][j] = w1; dir[i][j]=0;} 
   else if(w2>=w1 && 
w2>=w3) {weight[i][j] =w2; dir[i][j]=1;} 
   else {weight[i][j] = w3; 
dir[i][j]=2;} 
  } 
 } 
// for(i=0;i<n1;i++) 
// { 
//  for(j=0;j<n2;j++) 
//   printf(" %2d 
",weight[i][j]); 
//  printf("\n"); 
// } 
 i=n1-1; 
 j=n2-1; 
 w1=0; 
 w2=0; 
 while(i>0||j>0) 
 { 
  if(dir[i][j]==0) 
  { 
   out1[w1++]=s1[i--]; 
   out2[w2++]=s2[j--]; 
  } 
  else if(dir[i][j]==1) 
  { 
   out1[w1++]=s1[i--]; 
   out2[w2++]='-'; 
  } 
  else 
  { 
   out1[w1++]='-'; 
   out2[w2++]=s2[j--]; 
  } 
 } 
 out1[w1]=0; 
 out2[w2]=0; 
// printf("%s\n%s\n",out1,out2); 
 strre(out1); 
 strre(out2); 
 printf(">%s\n>%s\n",out1,out2); 
 return weight[n1-1][n2-1]; 
} 
 
int main() 
{ 
 char s1[1000000],s2[1000000]; 
 scanf("%s %s",s1,s2); 
// printf(">%s\n>%s\n",s1,s2); 
 printf("weight = %ld\n",lcs(s1,s2)); 
// printf("weight = 
%ld\n",lcs("abc","cabd")); 
 return 0; 
} 
 
plcs.c 
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#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <pthread.h> 
 
pthread_mutex_t loc; 
long n1,n2; 
long **weight; 
int **dir; 
long si,sj; 
char *s1,*s2; 
 
//direction(s1)    0=match/mismatch 1=delete(i) 
2=insert(j) 
 
void strre(char *str) 
{ 
 char *s; 
 char ch; 
 s=str; 
 while(*s!=0)s++; 
 s--; 
 while(s>str) 
 { 
  ch = *s; 
  *s = *str; 
  *str = ch; 
  str++; 
  s--; 
 } 
} 
 
void *f1(void * x) 
{ 
 printf("start f1\n"); 
 long i,j,w1,w2,w3; 
 while(1) 
 { 
  pthread_mutex_lock(&loc); 
  if(si==n1||sj==n2) 
  { 
  
 pthread_mutex_unlock(&loc); 
   break; 
  } 
  i=si; 
  j=sj; 
  if(s1[i]==s2[j]) 
                { 
   w1 = weight[i-1][j-1] + 
1; 
  } 
                else 
                { 
                        w1 = weight[i-1][j-1] - 1; 
                } 
                w2 = weight[i-1][j]-1; 

                w3 = weight[i][j-1]-1; 
                if(w1>=w2 && w1>=w3) {weight[i][j] = 
w1; dir[i][j]=0;} 
                else if(w2>=w1 && w2>=w3) 
{weight[i][j] =w2; dir[i][j]=1;} 
                else {weight[i][j] = w3; dir[i][j]=2;} 
  si++; 
  pthread_mutex_unlock(&loc); 
  j++; 
  while(j<n2) 
  { 
   if(s1[i]==s2[j]) 
                 { 
    w1 = weight[i-
1][j-1] + 1; 
   } 
                 else 
                 { 
                         w1 = weight[i-1][j-1] - 
1; 
                 } 
                 w2 = weight[i-1][j]-1; 
                 w3 = weight[i][j-1]-1; 
                 if(w1>=w2 && w1>=w3) 
{weight[i][j] = w1; dir[i][j]=0;} 
                 else if(w2>=w1 && w2>=w3) 
{weight[i][j] =w2; dir[i][j]=1;} 
                 else {weight[i][j] = w3; 
dir[i][j]=2;} 
   j++; 
  } 
 } 
 pthread_exit(NULL); 
} 
void *f2(void *x) 
{ 
 printf("start f2\n"); 
 long i,j,w1,w2,w3; 
 while(1) 
 { 
  pthread_mutex_lock(&loc); 
  if(si==n1||sj==n2) 
  { 
  
 pthread_mutex_unlock(&loc); 
   break; 
  } 
  i=si; 
  j=sj; 
  if(s1[i]==s2[j]) 
                { 
   w1 = weight[i-1][j-1] + 
1; 
  } 
                else 
                { 
                        w1 = weight[i-1][j-1] - 1; 
                } 
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                w2 = weight[i-1][j]-1; 
                w3 = weight[i][j-1]-1; 
                if(w1>=w2 && w1>=w3) {weight[i][j] = 
w1; dir[i][j]=0;} 
                else if(w2>=w1 && w2>=w3) 
{weight[i][j] =w2; dir[i][j]=1;} 
                else {weight[i][j] = w3; dir[i][j]=2;} 
  sj++; 
  pthread_mutex_unlock(&loc); 
  i++; 
  while(i<n1) 
  { 
   if(s1[i]==s2[j]) 
                 { 
    w1 = weight[i-
1][j-1] + 1; 
   } 
                 else 
                 { 
                         w1 = weight[i-1][j-1] - 
1; 
                 } 
                 w2 = weight[i-1][j]-1; 
                 w3 = weight[i][j-1]-1; 
                 if(w1>=w2 && w1>=w3) 
{weight[i][j] = w1; dir[i][j]=0;} 
                 else if(w2>=w1 && w2>=w3) 
{weight[i][j] =w2; dir[i][j]=1;} 
                 else {weight[i][j] = w3; 
dir[i][j]=2;} 
   i++; 
  } 
 } 
 pthread_exit(NULL); 
} 
 
long lcs(char *str1,char *str2) 
{ 
 pthread_t threads[2]; 
 pthread_attr_t attr; 
 pthread_attr_init(&attr); 
 pthread_attr_setdetachstate(&attr,PTHRE
AD_CREATE_JOINABLE); 
 pthread_mutex_init(&loc,NULL); 
 
 long i,j,w1,w2; 
 char *out1,*out2; 
 n1 = strlen(str1); 
 n2 = strlen(str2); 
 s1 = (char*)malloc(sizeof(char)*(n1+2)); 
 s2 = (char*)malloc(sizeof(char)*(n2+2)); 
 out1 = 
(char*)malloc(sizeof(char)*(n1+n2+2)); 
 out2 = 
(char*)malloc(sizeof(char)*(n1+n2+2)); 
 sprintf(s1," %s",str1); 
 sprintf(s2," %s",str2); 
 n1++; 

 n2++; 
 weight = 
(long**)malloc(sizeof(long*)*n1); 
 dir = (int**)malloc(sizeof(int*)*n1); 
 for(i=0;i<n1;i++) 
 { 
  weight[i] = 
(long*)malloc(sizeof(long)*n2); 
  dir[i] = 
(int*)malloc(sizeof(int)*n2); 
 } 
//Start lcs 
 
 for(i=0;i<n1;i++) {weight[i][0] = 0-i; 
dir[i][0]=1;} 
 for(i=1;i<n2;i++) {weight[0][i] = 0-i; 
dir[0][i]=2;} 
 si=1; 
 sj=1; 
 printf("start thread\n"); 
 pthread_create(&threads[0],NULL,f1,(voi
d*)si); 
 pthread_create(&threads[1],NULL,f2,(voi
d*)si); 
 pthread_join(threads[0],NULL); 
 pthread_join(threads[1],NULL); 
 
// for(i=0;i<n1;i++) 
// { 
//  for(j=0;j<n2;j++) 
//   printf(" %2d 
",weight[i][j]); 
//  printf("\n"); 
// } 
 i=n1-1; 
 j=n2-1; 
 w1=0; 
 w2=0; 
 while(i>0||j>0) 
 { 
  if(dir[i][j]==0) 
  { 
   out1[w1++]=s1[i--]; 
   out2[w2++]=s2[j--]; 
  } 
  else if(dir[i][j]==1) 
  { 
   out1[w1++]=s1[i--]; 
   out2[w2++]='-'; 
  } 
  else 
  { 
   out1[w1++]='-'; 
   out2[w2++]=s2[j--]; 
  } 
 } 
 out1[w1]=0; 
 out2[w2]=0; 
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// printf("%s\n%s\n",out1,out2); 
 strre(out1); 
 strre(out2); 
 printf(">%s\n>%s\n",out1,out2); 
 return weight[n1-1][n2-1]; 
} 
 
int main() 
{ 
 char s1[1000000],s2[1000000]; 
 scanf("%s %s",s1,s2); 
// printf(">%s\n>%s\n",s1,s2); 
 printf("weight = %ld\n",lcs(s1,s2)); 
// printf("weight = 
%ld\n",lcs("abc","cabd")); 
 return 0; 
} 
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