Parallel Pairwise Sequence Alignment Algorithm
Based on Longest Common Subsequence

Pich Tantichukaitikul*, Sattara Hattirat® and Jonathan H. Chan*>%"

!Bioinformatics and Systems Biology Program,
?Data and Knowledge Engineering Laboratory (D-Lab),
3School of Information Technology,
King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
*Corresponding Email: jonathan@sit.kmutt.ac.th

ABSTRACT — There is an emerging paradigm in the field of computing towards parallelism at
increasing levels. Among these, multi-core processors are fast becoming the norm in the world of
modern computers. The potential enhancement in performance would allow certain fundamental
procedures in molecular biology, such as biological sequence alignments of DNA and protein
sequences, to be done faster, paving the way for more efficient multiple genome comparison.
However, in order to harness the full power of multi-core processors, effective parallel algorithms are
needed. This work aimed to develop a suitable parallel longest common subsequence (LCS) algorithm
for pairwise sequence alignment. The proposed parallel LCS (PLCS) performed approximately 23-

30% better than the traditional serial LCS, when using the median run-time as the measure.

KEYWORDS - Parallel algorithm; longest common subsequence; biological sequence
alignment; computational biology; multi-core processing

1. Introduction

The recent trend in parallelism has been moving
towards ubiquitous and everyday computing devices.
Implementations range from single-instruction
multiple-data (SIMD) techniques at bit-level by
vector processing units, to thread-level shared
memory in multi-core processors, to distributed
memory parallel systems in clusters and
supercomputers, to massively parallel systems in
clouds and server farms that may span globally.
These emerging multi-core devices have been used
increasingly for various scientific computing
purposes [1]. For example, biological sequence
analysis has been studied extensively by numerous
researchers in the field of biology and bioinformatics.
In order to determine the degree of similarity or
homology among different organisms, sequence
alignment is routinely performed using DNA and
protein sequences [2]. Similarities in two or more
different genomes may indicate conserved biological
functions and structures [3]. That is, conserved
patterns found in different biological sequences could
reveal the ecological niche as well as the evolution
process of these organisms [4].

To align biological sequences, it is necessary to have
a scoring measure of the closeness of the sequences.
The simplest measure for alignment is to use the
maximum number of consecutive identities among
the sequences. This is termed the longest common
subsequence (LCS). There are different algorithms
for solving the LCS problem. For two sequences
(2LCS), this can be solved in O(mn) by using the
dynamic programming technique where m and n are
the lengths of the two input sequences [5]. Common
algorithms for solving LCS problems include
dynamic programming [6] and Hidden Markov
Model [7]. The former is more accurate and would
provide the optimal solution; however, it requires
longer run-time as well as more computational
resources. Whereas the latter runs faster and uses less
resource and can produce acceptable results. In this
work, we focus on the dynamic programming
algorithm for LCS and aim to take advantage of the
current multi-cored architectures to reduce the run-
time of dynamic programming LCS.

Current computers face physical limitations such as
power consumption and heat dissipation [8]. Thus, it
is necessary for manufacturers to turn to building
chips with multiple processor cores to increase the
computational power. However, single processor

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010 1

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

usage in a multi-core processor may not perform as
fast as the latest designed single-core models.
Nonetheless, they can improve overall performance
by processing more work in parallel [9]. It has been

Sart

Y

Starting
S oo - Weght=0 |
i—s;&:
< Frst ow > Tios N \-\‘mﬂM&,:\:_mnlgeln cell) -1 |
Fage
First T | Weight = Waightiupper o) - 1|
ion = up

- pthn?

False
¥
Waightisp = Wasghtlupeee call) - 1
WaightLaft = Wisight{l cal) - 1

Afx|==Blyli > Troe | WeightMatch = Wesghtiuppes loh cell) + 1
v !
False
¥ " ¥
Wesght = Wenghtimax{WeighlUp Wesght Le)} Wenght = Wegh [WemghtUp Winghl Lett Wesg
Direction = Direction To cell with max weight Diractsee = Diracticn To call wath mao: waight

found that a dual-core chip running multiple
applications is typically about one and a half times
faster than a comparable single core chip [9].

| filltable(X,Y)
if(X == 98 and ¥ == 8)
WeightTable[X][Y] <-
else if(X == @)
WeightTable[X][Y] <- WeightTable[X][Y-1] - 1
DirTable[X][Y] <- UP
else if(Y == @)
WeightTable[X][Y] <- WeightTable[X-1][Y] - 1
DirTable[X][Y] ¢- left
else
weightUP = WeightTable[X][Y-1] - 1
weightLEFT = <- WeightTable[X-1][¥] - 1
i (A[X]==B[Y])
weightM = WeightTable[X-1][Y-1] + 1
if(weightUP > weightLEFT and weightUP > weightM)
WeightTable[X][Y] = weightuP
DirTable[X][Y] = UP
else if(weightLEFT > weightUP and weightLEFT »
weightM)
WeightTable[X][Y] = weightLEFT
DirTable[X][Y] = LEFT
else if(weightM » weightLEFT and weightM > weightUP)
WeightTable[X][Y] = weightM
DirTable[X][Y] = M

0

end

Figure 1. Flowchart and pseudo code of score filling in traditional LCS.

Moreover, there seems to be a slight lag on the
development on parallelizing compilers. This could
be due to the increased complications in designing
a parallel algorithm. Also, parallelism works only
for a restricted class of problems [8]. Consequently,
many applications are not designed or have not
been rewritten to run in parallel architectures.
Therefore, even though we are in the multi-core era,
the true advantage of the multiple execution units
from the presence of multiple processors has not
yet been fully realized.

Despite its importance in the biological arena, there
have been limited studies for the parallel sequence
alignment problem until recently. Biological
sequence alignment with LCS dynamic algorithm
could take longer time when the sequences become
longer. This study aims to experiment on parallel
pairwise alignment with LCS dynamic
programming algorithm to find out if the problem
of biological sequence alignment could be rewritten
with parallelism and still yield optimal results.
PLCS in this paper refers to parallel LCS.

The organization of the rest of the paper is as
follows. Section 2 illustrates the problem
formulation for both the traditional LCS problem
and the parallelized version. Section 3 briefly

describes the methodology used in this work. This
is followed by a presentation of the results as well
as relevant discussions in Section 4. Then
conclusions and future works are provided in the
last section of this paper.

2. Problem Formulation

Many common methods for dealing with the LCS
problem can be expressed in form of standard
algorithms for pattern matching, text, and string
searching, as well as those for sequence comparison
in molecular biology [10].

2.1 Traditional LCS Problem

In the traditional LCS alignment of a pair of
biological sequences, the symbols which represent
either amino acids or bases may be shifted in either
direction to align as many identical letters as
possible. Gaps, or blank symbols that are often
denoted with the symbol ‘-’, often need to be
inserted into the sequences to obtain improved
alignment [2]. A suitable scoring function is used to
measure the degree of matching between each pair
of symbols. An optimal alignment is one with the
highest cumulative score. Note that it is possible
for multiple alignments to have the same optimal

2 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

score, but this becomes increasingly unlikely for
longer and longer sequences. For biological
sequences, it is possible to have lengths of over 200
million.

The flowchart and pseudo code in Figure 1 show
how traditional LCS fills similarity scores in the
edit table during the dynamic programming
process. Note that vertical and horizontal cells are
filled simultaneously in a sequential manner.

P ——
y AandB

|
b 4

LA = length of A
IB = length of B

Allocate memony for WeightTable[0._LA][0. 18]
and DirTable[0 LA][0 18]

PR e o
- p—

Wertical Horizaontal
Thread Thread

-

Thread join

Traceback for LCS path in DirTable
End)
" A

I PLCS(string A, string B)

1A = length(A)

1B = length(B)

startX = @

istarty = @

start = unlock

alocate memory for WeightTable[@..lA][@..1B]
alocate memory for DirTable[@..1A][@..1B]
start thread(Vertical)

: start thread(Horizontal)

waiting for thread Vertical and Horizontal done
make traceback for LCS path in DirTable

end

Figure 2. Parallel LCS flowchart and pseudo code.

2.2 PLCS Algorithm

Important factors when creating a serial algorithm
are the accuracy of the program results and the
resources (time and memory) required for the
program to run [11]. In the case of parallel
computing, the accuracy of the alignment results
has to be taken even more into consideration due to
the data dependency between multi-concurrent
threads [8]. For example, it may be possible that

one processor would retrieve the values for further
calculation before the result is actually ready, or
before the job of the other processor is completed.
Furthermore, deadlocks could occur when the first
thread waits for the second thread while the second
thread also waits for the first one, thus causing the
program to run in an infinite loop.

Another challenge in parallel programming is to
balance the work load between CPUs in order to
gain the optimal CPU allocation and an improved
run-time. That is, ideally, the CPU would not need
to wait for the results from other processes before
carrying out the next operation.

Taking the above into consideration, a parallel LCS
algorithm was developed. This is described and
shown in Figure 2 in form of a flowchart and the
corresponding pseudo code.

Referring to Figure 2, sequences A and B have
length IA and IB, respectively. The starting points to
fill the edit table are startX and startY, both with an
initial value of zero. The variable start is for
confirmation of the readiness of startX and startY.
The status ‘lock’ means the thread is in critical
session. The initial status of start is ‘unlock’.
Memory on RAM is allocated for WeightTable (for
assigning the scores in each cell) and DirTable (for
determining the direction of table filling). The
vertical and horizontal threads are created using
different filling patterns. When the processes in
both threads are completed, every cell in the table is
filled. A trace back operation is then performed to
obtain the optimal path for LCS.

' Y Ve —
‘/ Start) ‘.’ Start)
\Vertical thread / | Horizontal thread /

Lock start Lock start

_Starti <=length(&) and " _StartX <=length() and "

T statY <= length(B) False T_stanty <= length(B) False
\\\)/’/ \\\ ,’//
-~) — .

Trie True
X = startX X = startX
Y = startY Y = startY
filltable(X,) filltable(X.Y)

unlack start

filtable(X.Y_length(B))

filtabla(¥ length(A).Y)

Figure 3. Flowchart of the score filling procedure
in parallel LCS.

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010 3

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

The flowchart in Figure 3 and the pseudo code in
Figure 4 show how the table is filled by threads in
the horizontal and vertical directions. Thread
Vertical fills the similarity scores for the cells along
the vertical direction; whereas Thread Horizontal
fills in the cells along the horizontal direction. Both
threads would operate until the start point is outside
the table reference position. Then they begin filling
by changing the variable start from the unlock state
to lock state. Next, the values startX and startY are
used as reference variables for filling the table,
followed by a shift in the working position. In
particular, Thread Vertical shifts to X+1 position
while 'Y remains unchanged. Also, Thread
Horizontal shifts to Y+1 while X remains
unchanged. Finally, variable start changes to
unlock, and both threads would start filling the
scores in their own directions, until the stopping
criteria have been reached.

: thread Vertical
i while X <= length(A) and ¥ <= length(B)

lock start
X = startX
Y = startY

filltable(X,Y)
increase X
unlock start
while(Y<=1length(B))
filltable(X,Y)
increase Y
end
end
end

|thread Horizontal
! while X <= length(A) and Y <= length(B)

lock start
X = startX

| ¥ = starty
filltable(X,Y)

i increase Y

: unlock start

. while(X<=length{A))

| filltable(X,Y)

i increase X

i end

. end
end

Figure 4. Pseudo code to fill the vertical and
horizontal threads in the proposed parallel LCS.

Figures 5 and 6 illustrate the topology of the order
of data filling for a sample pairwise DNA sequence
alignment using LCS and PLCS, respectively. In
both figures, the arrows show the possible direction
of table filling. The vertical and horizontal threads
for PLCS are represented by the vertical and
horizontal rectangles in Figure 6. In this case, the
arrows denote the order of simultaneous data filling
of the edit table from the top left to the bottom right
by the two parallel threads.

A T C T G A T C
P O
T: e
G: 5
A *
. N
As £ -
Cr

Figure 5. Topology of the data filling procedure for
the traditional LCS method.

i A T [T G A T [

[} 1 Z =5 q B B 7 3
ig &

I
T4 R e
GZ! ¥] K K
C3 _i
A4 I 3
T A=l
=

™ =
Ag l, r

- &

C?_____ — —

Figure 6. Topology of the data filling procedure for
the parallel LCS method.

3. Methodology

To evaluate the performance of the developed
parallel LCS algorithm in comparison to traditional
LCS algorithm, it is necessary to be able to control
the factors which could affect the running time of
the processes. Both algorithms were implemented
in C and were compiled using GNU Complier
Collection (GCC). For the parallel version, the
pthread library was needed. The source codes for
these algorithms are provided in the Appendix.

The random sequences of A, T, C, and G
nucleotides were generated for testing inputs of
each program. Each program was then executed on
the same computer, equipped with 2 Itanium CPUs

4 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

which have a clock rate of 1.33GHz each. The run-
time of each algorithm was measured for 100 times.

4. Experimental Results and
Discussion

The means, standard deviations, minimal values
and maximal values of the calculation time for LCS
and PLCS are shown in Table 1. The percentages of
improvement are calculated from the median
values, which are also shown in Table 1. The
reduced running time is clearly shown in Figures 7
and 8 for 1,000 bases sequence alignment and
10,000 bases sequence alignment, respectively. The
boxplot shown on the left of the figures represent
the running time for the serial LCS while the right
boxplot represents that of the parallel LCS. The
boxes are very thin so they appear like grey
horizontal lines. The whiskers represent standard
deviations and the black dots are outliers.

Table 1. Comparison of the running time of
traditional and parallel LCS algorithms

Serial Parallel Serial Parallel

mean 0.0871 0.0691 7.505 5.208
SD 0.00743 0.01275 0.04139 0.09739
min 0.084 0.064 7.434 5.007
max 0.138 0.161 7.717 5.51
Q1 0.085 0.065 7.480 5.137

median 0.085 0.065 7.499 5.199
Q3 0.086 0.066 7.524 5.262

It was found that the accuracy of parallel LCS and
traditional LCS is the same. That is, the alignments
from both algorithms are the same. However, the
calculation time was improved by about 23% and
30% when tested with randomly generated 1,000-
bases sequence alignment and 10,000-bases
sequence alignment, respectively.

The standard deviations varied because of the
random workload of the cluster computer used for
running the programs. As the cluster is a public
cluster and can be accessed by other remote users
simultaneously, the system could be running other
jobs while performing the LCS and PLCS tasks,
resulting in CPU sharing and different run-time
results. The standard deviations of LCS
performance were higher, as well as the spread of
the outlier range. This was expected since in the
case of parallel computing, all CPUs were used.

CPU sharing, thus, affected the performance of
PLCS more significantly. However, it could be seen
that PLCS still performed faster regardless of the
random incremental workloads by other users of the
cluster.

16 A .
'3‘ 14 .
C
8
@ 12 .
1] .
E . H
o 104 . s
[
= []
[.——‘l=. L]
7 08 .
06

2
L3 FLCS

Figure 7. Boxplot comparing run time of serial
LCS and parallel LCS for 1,000-bases sequence
alignment.

8.0

el

7.0

6.5

6.0+
55 %
51004

45

Running time { seconds)

T T
1 2
LCS FLCS

Figure 8. Boxplot comparing run time of serial
LCS and parallel LCS for 10,000-bases sequence
alignment.

The performance of PLCS was not much improved
in 1,000-bases sequence alignment than in 10,000-
bases alignment. The reason being that the time
taken for the sequences in both alignment jobs to be
uploaded into the cluster was not different,
providing a constant initial running time for both
LCS and PLCS. As can be seen from the results,
PLCS showed greater improved performance when

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010 5

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

the running time was sufficiently long. That is,
pairwise alignment of longer sequences showed
improved performance when comparing PLCS to
traditional LCS.

5. Conclusions and Future Work

This work has supported the findings that parallel
LCS could perform faster than LCS while yielding
the same optimal solutions. There have been
increasing studies on comparative genomics [12]
which require longer running time for alignment
due to the use of whole genome sequences. Such
analyses, which require multiple genome
comparison, have a wider range of applications [4].
Thus, there should be further development on
parallel multiple biological sequence alignments to
realize the increased power of multi-core
computing. Moreover, in order to further test the
proposed algorithm, comparison runs will be made
using sequences from each chromosome of the
human genome with length varying from 47 to 247
Mbps. The new HPC OCEAN cluster at NECTEC
will be used for this future work.

Acknowledgments

The authors would like to thank Itanium cluster,
Large Scale Simulation Research Laboratory,
NECTEC for the use of their cluster for this work.
Thanks are also due to the CBS Cluster, Center for
Biological ~ Sequence Analysis, Technical
University of Denmark (DTU), for their support in
part of this work.

References

[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R.
Johns, T. R. Maeurer, and D. Shippy,
“Introduction to the cell multiprocessor,” IBM
J. Res. & Dev., vol. 49, no. 4/5, pp. 589-604,
2005.

[2] A. Driga, P. Lu, J. Schaeffer, D. Szafron, K.
Charter and 1. Parsons, “FastLSA: A Fast,
Linear-Space, Parallel and Sequential
Algorithm for Sequence Alignment,”
Algorithmica, vol. 45, pp. 337-335, 2006.

[3] K.-M. Chao and L. X. Zhang, Sequence
Comparison: Theory and Method. Springer-
Verlag, 2009.

[4] C. M. Fraser, J. Eisen, R. D. Fleischmann, K. A.
Ketchum, and S. Peterson, “Comparative
genomics and understanding of microbial
biology,” Emerging Infectious Diseases, vol. 6,
no. 5, pp. 505-512, 2000.

[5] S. J. Shyu and C. Y. Tsai, “Finding the longest
common subsequence for multiple biological

sequences by ant colony optimization,”
Computers and Operations Research, vol. 36,
pp. 73-91, 2009.

[6] S. B. Needleman and C. D. Wunsch, “A general
method applicable to the search for similarities
in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3,
pp. 443-453, 1970.

[7]1 S. R. .Eddy, “What is a hidden Markov model?”
Nat Biotech, vol. 22, no. 10, pp. 1315-1316,
2004.

[8] A. Buttari, J. Langou, J. Kurzak and J.
Dongarra, “A class of parallel tiled linear
algebra algorithms for multicore architectures,”
Parallel Computing, vol. 35. pp. 38-53,
January 20009.

[9] D. Geer, “Chip makers turn to multicore
processors,” Computer, vol. 38, no. 5, pp. 11-
13, 2005.

[10] L. Bergroth, H. Hakonen, and T. Raita, “A
survey of longest common subsequence
algorithms,” Proc. 7" International Symposium
on String Processing Information Retrieval
(SPIRE’00), Spain, 2000, pp. 39-48.

[11] M. A. WEeiss, Data Structures and algorithm
analysis in C, 2nd Ed. Addison-Wesley, 1997.

[12] T. T. Binnewies, Y. Motro, P. F. Hallin, O.
Lund, D. Dunn, T. La, D. J. Hampson, M.
Bellgard, T. M. Wassenaar and D. W. Ussery,
“Ten years of bacterial genome sequencing:
comparative-genomics based discoveries,”
Functional and Integrative Genomics, vol. 6,
pp. 165-185, 2006.

Appendix

The following are the source codes for the two
algorithms demonstrated in this work:

Ics.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void strre(char *str)

{

char *s;

char ch;

s=str;

while(*s!=0)s++;

s--;

while(s>str)

{
ch =*s;
*s = *str;
*str = ch;

6 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

Str++;
S
}
}
long Ics(char *strl,char *str2)
long n1,n2;
long **weight;
int **dir;
/[direction(s1) O=match/mismatch 1=delete(i)

2=insert(j)

long i,j,wl,w2,w3;

char *s1,*s2,*outl,*out2;

nl = strlen(strl);

n2 = strlen(str2);

s1 = (char*)malloc(sizeof(char)*(n1+2));

s2 = (char*)malloc(sizeof(char)*(n2+2));

outl =
(char*)malloc(sizeof(char)*(n1+n2+2));

out2 =
(char*)malloc(sizeof(char)*(n1+n2+2));

sprintf(sl1," %s",strl);

sprintf(s2,” %s",str2);

nl++;

n2++;

weight =
(long**)malloc(sizeof(long*)*nl);

dir = (int**)malloc(sizeof(int*)*n1);

for(i=0;i<nl;i++)

{
weight[i] =
(long*)malloc(sizeof(long)*n2);
dirfi] =
(int*)malloc(sizeof(int)*n2);
//Start Ics
for(i=0;i<nl;i++) {weight[i][0] = O-i;
dir[i][0]=1;}
for(i=1;i<n2;i++) {weight[0][i] = O-i;
dir[0][i]=2;}
for(i=1;i<nl;i++)
for(j=1;j<n2;j++)
if(s1[i]==s2[j])
{
wl = weight[i-
1[j-1] + 1;
}
else
{
wl = weight[i-
10-11- 5

}
w2 = weight[i-1][j]-1;
w3 = weight[i][j-1]-1;

if(wl>=w2 &&
wi1>=w3) {weight[i][j] = w1; dir[i][j1=0;}

else if(w2>=wl &&
w2>=w3) {weight[i][j] =w2; dir[i][j]=1;}

else {weight[i][j] = w3;

dirfi][j]=2;}
/I for(i=0;i<nl;i++)
I
1 for(j=0;j<n2;j++)
1 printf(" %2d
", weight[i][j]);
1 printf(*\n");
1 }
i=nl-1;
j=n2-1;
wl=0;
w2=0;

while(i>0]|j>0)

{
if(dir[i][j]==0)
{

out1[wl++]=s1[i--];
out2[w2++]=s2[j--];

}
else if(dir[i][j]==1)
{

outl[wl++]=s1[i--];

out2[w2++]="-";
}
else
{
outl[wl++]="-";
out2[w2++]=s2[j--];
}
}
outl[w1]=0;
out2[w2]=0;
1 printf("%s\n%s\n",outl,out2);
strre(outl);
strre(out2);

printf(*>%s\n>%s\n",out1,0ut2);
return weight[n1-1][n2-1];

}
int main()
char s1[1000000],s2[1000000];
scanf("%s %s",s1,52);
I printf(">%s\n>%s\n",s1,s2);
printf("weight = %Ild\n",lcs(s1,52));
1 printf("weight =
%Id\n",Ics(""abc", "cabd™));
return O;
}
plcs.c

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010 7

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>

pthread_mutex_t loc;
long n1,n2;

long **weight;

int **dir;

long si,sj;

char *s1,*s2;

/[direction(s1) O=match/mismatch 1=delete(i)

2=insert(j)
void strre(char *str)
{

char *s;

char ch;

S=str;

while(*s!=0)s++;

s--;

while(s>str)

{
ch="s;

*s = *str;
*str = ch;
str++;
S
}

}

void *f1(void * x)

{

printf("start f1\n");

long i,j,wl,w2,w3;

while(1)

{
pthread_mutex_lock(&loc);
if(si==nl||sj==n2)
{

pthread_mutex_unlock(&loc);

break;
I
i=si;
J=si;
if(s1[i]==s2[j])
{
wl = weight[i-1][j-1] +
1;
}
else
{

w1l = weight[i-1][j-1] - 1;

}
w2 = weight[i-1][j]-1;

w3 = weight[i][j-1]-1;

if(wl>=w2 && wi>=w3) {weight[i][j] =
w1, dir[i][j]=0;}

else if(w2>=wl && w2>=w3)
{weight[i][j] =w2; dir[i][j]=1;}

else {weight[i][j] = w3; dir[i][j1=2;}

Si++;
pthread_mutex_unlock(&loc);
i+
while(j<n2)
if(s1[i]==s2[j])
wl = weight[i-
10-1] + 1;
}
else
{
wl = weight[i-1][j-1] -
1

}

w2 = weight[i-1][j]-1;

w3 = weight[i][j-1]-1;

if(wl>=w2 &&
{weight[i][j] = w1; dir[i][j]=0;}

else if(w2>=wl && w2>=w3)
{weight[i][j] =w2; dir[i][j]=1;}

else {weight[il[j]l = w3;

dir[i][i]=2:}

wil>=w3)

j+H+;

}
}
pthread_exit(NULL);

void *f2(void *x)

{
printf(“start f2\n");
long i,j,wl,w2,w3;
while(1)
pthread_mutex_lock(&loc);
if(si==n1||sj==n2)
{
pthread_mutex_unlock(&loc);
break;
y
i=si;
J=sj;
if(s1[i]==s2[j])
{
wl = weight[i-1][j-1] +
1;
}
else
{
w1l = weight[i-1][j-1] - 1;
}

8 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

w2 = weight[i-1][j]-1;

w3 = weight[i][j-1]-1;

if(wl>=w2 && wl>=w3) {weight[i][j] =
wl; dir[i][j]=0;}

else if(w2>=wl && w2>=w3)
{weight[i][j] =w2; dir[i][j]=1;}

else {weight[i][j] = w3; dir[i][j]=2;}

Sj++;
pthread_mutex_unlock(&loc);
i++;
while(i<nl)
if(s1[i]==s2[j])
wl = weight[i-
1[-1] + 1;
}
else
{
wl = weight[i-1][j-1] -
1

}

w2 = weight[i-1][j]-1;

w3 = weight[i][j-1]-1;

if(wl>=w2 &&
{weight[i][j] = wi; dir[i][j]=0;}

else if(w2>=wl && w2>=w3)
{weight[i][j] =w2; dir[i][i]=1;}

else {weight[i][[] = w3;

dir[i][j]=2;}

wl>=w3)

i++;

}

}
pthread_exit(NULL);
}

long Ics(char *strl,char *str2)

pthread_t threads[2];

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, P THRE
AD_CREATE_JOINABLE);

pthread_mutex_init(&loc,NULL);

long i,j,wl,w2;

char *outl,*out2;

nl = strlen(strl);

n2 = strlen(str2);

s1 = (char*)malloc(sizeof(char)*(n1+2));

s2 = (char*)malloc(sizeof(char)*(n2+2));

outl =
(char*)malloc(sizeof(char)*(n1+n2+2));

out2 =
(char*)malloc(sizeof(char)*(n1+n2+2));

sprintf(s1,” %s",strl);

sprintf(s2," %s",str2);

nl++;

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010

n2++;

weight =
(long**)malloc(sizeof(long*)*n1);

dir = (int**)malloc(sizeof(int*)*n1);

for(i=0;i<nl;i++)

weight[i] =
(long*)malloc(sizeof(long)*n2);

dir[i] =
(int*)malloc(sizeof(int)*n2);

//Start Ics

for(i=0;i<nl;i++) {weight[i][0]
dir[i][0]=1;}

for(i=1;i<n2;i++) {weight[0][i]
dir[0][i]=2;}

si=1;

sj=1;

printf("start thread\n");

pthread_create(&threads[0], NULL,f1,(voi

1
o
L.

1
o
L.

d*)si);
pthread_create(&threads[1],NULL,f2,(voi
d*)si);
pthread_join(threads[0],NULL);
pthread_join(threads[1],NULL);
I/ for(i=0;i<nl;i++)
1 {
1 for(j=0;j<n2;j++)
1 printf(" %2d
" weight[i][jl);
1 printf(*\n");
1 }
i=nl-1;
j=n2-1;
w1=0;
w2=0;

while(i>0[[j>0)
if(dir[i][j]==0)
{

outl[wl++]=s1[i--];
out2[w2++]=s2[j--];

}
else if(dir[i][j]==1)
{

out1[wl++]=s1[i--];

out2[w2++]="-";
}
else
{
outl[wil++]="-"
out2[w2++]=s2[j--];
}
}
outl[w1]=0;
out2[w2]=0;

Tantichukaitikul P., Hattirat S. and Chan J.H. : Parallel Pairwise Sequence Alignment Algorithm Based
on Longest Common Subsequence

I printf(*%s\n%s\n",outl,out2);
strre(outl);
strre(out2);
printf(*>%s\n>%s\n",out1,out2);
return weight[n1-1][n2-1];

}
int main()
char s1[1000000],s2[1000000];
scanf("%s %s",s1,52);
/! printf(">%s\n>%s\n",s1,s2);
printf("weight = %ld\n",Ics(s1,52));
I printf("weight =
%Id\n",Ics(""abc","cabd™));
return 0;
}

Copyright © 2010 by the Journal of Information Science and Technology.

10 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 1| ISSUE 2 | JUL-DEC 2010

