

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011 41

Experience on Requirements Engineering for

 Software Product Line

Waraporn Jirapanthong

Faculty of Information Technology, Dhurakij Pundit University, 110/1-4 Prachachuen Road, Laksi,

Bangkok 10210, Thailand, waraporn.jir@dpu.ac.th ,+66(0)9547300 ext. 385

ABSTRACT – Software product line has been recognised as an important paradigm for software

systems engineering. However, it has been quested whether software product line-based approach is more

productive and flexible than a single software development process. This paper thus describes the

experiences and challenges of requirements engineering and management for software product line, in

comparison with individual software systems. This study was conducted to identify the requirements

engineering practices that clearly contribute to software project success. It investigated team knowledge,

allocated resources, and deployed requirements engineering processes. To compare two software processes,

software product line and classic individual software process, this research conducted an experiment

involving three software development projects that have similar requirements and some different

requirements.

KEYWORDS – Software Product Line; Product Family; Requirements Engineering and Management;

and Requirements Development

__

1. Introduction

Requirements management is concerned with

understanding the goals of the organisation and its

customers and the transformation of these goals into

potential functions and constraints applicable to the

development and evolution of products and services.

It involves understanding the relationship between

goals, functions and constraints in terms of the

specification of products, including systems
behaviour, and service definition.

The goals represent why a certain extent relates and

what are in development terms. The specification
provides the basis for analysing requirements,

validating what stakeholders want, defining what

needs to be delivered, and verifying the resultant

developed product or service.

Requirements management aims to establish a

common understanding between the customers and

stakeholders and the project team that will be
addressing the requirements at an early stage in the

project life cycle and maintain control by

establishing suitable baselines for both development

and management use.

In addition to, many software development projects

focus on customer satisfaction, quick adaptation to

changes, and flexibility. Therefore, software product line

development has become popular because it responds

well to frequent changes in user requirements. Software

product line shares a common set of features and are
developed based on the reuse of core assets have been

recognised as an important paradigm for software

systems engineering. Recently, a large number of

software systems are being developed and deployed in

this way in order to reduce cost, effort, and time during

system development. Various methodologies and

approaches have been proposed to support the

development of software systems based on software

product line development.

However software product line development is

criticized as having difficulties. Some difficulties are

concerned with the (a) necessity of having a basic

understanding of the variability consequences during the

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

42 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011

different development phases of software products, (b)

necessity of establishing relationships between product

members and product line artefacts, and relationships

between product members artefacts, (c) poor support for

capturing, designing, and representing requirements at

the level of product line and the level of specific product
members, (d) poor support for handling complex

relations among product members, and (e) poor support

for maintaining information about the development

process.

This paper thus describes the experiences and
challenges of requirements engineering and

management for software product line, in comparison

with individual software systems.

2. Background of Requirements

Engineering and Management for

Software Product Line

Software product line systems share a common set of

features and are developed based on the reuse of core

assets. Many approaches [1],[2],[4],[7],[8] have been

proposed to support software product line development.

Those approaches mainly focus on domain engineering

which is concerned the identification and analysis of

commonality and variability principles among

applications in a domain in order to engineer reusable
and adaptable components and, therefore, support

product line development. There are three steps for

domain engineering:

(a) domain analysis is the process of identifying,

collecting, organizing and representing the relevant

information in a domain, based upon the study of

existing systems and their developing histories,

knowledge captured from domain experts, underlying

theory, and emerging technology within a domain [7].

Software artefacts that are produced during the activity

of domain analysis are called reference requirements,
which define the products and their requirements in a

family. The reference requirements contain

commonality and variability of the product family. The

activities occur during the domain analysis are scoping,

defining of commonality and variability, and planning

for product members and features.

(b) domain design is the process of developing a design

model from the products of domain analysis and the

knowledge gained from the study of software

requirements or design reuse and generic architectures.
Software artefacts that are produced during the activity

of domain design are called software product line

architecture, which forms the backbone of integrating

software systems and consists of a set of decisions and

interfaces which connect software components together.

Software product line architecture differs from an

architecture of individual systems that it must represent

the common design for all product members and

variable design for specific product members. The

activities occur during the domain design are defining

and evaluation of software product line architecture.

(c) domain implementation is the process of identifying

reusable components based on the domain model and

generic architecture [3]. Software artefacts that are
produced during the activity of domain implementation

are called reusable software components. The activity is

focused on the creation of reusable software

components e.g. source codes and linking libraries that

are later assembled for product members At the end of

the domain engineering process, an organization is

ready for developing product members.

Additionally, application engineering is a systematic
process for the creation of a product member from the

core assets created during the domain engineering.

Domain engineering assures that the activities of

analysis, design and implementation of a product family

are thoroughly performed for all product members, while

application engineering assures the reuse of the core

assets of the product family for the creation of product
members. There are activities such as: (i) requirements

engineering, which is a process that consists of

requirements elicitation, analysis, specification,

verification, and management; (ii) design analysis,

which is a process that is concerned with how the system

functionality is to be provided by the different

components of the system; and (iii) integration and

testing, which is a process of taking reusable

components then putting them together to build a

complete system, and of testing if the system is working

appropriately.

However, although the support for identifying and
analysing common and variable aspects among

applications and the engineering of reusable and

adaptable components are important for software

product line development, they are not easy tasks. This

is mainly due to the large number and heterogeneity of

documents generated during the development of product

line systems.

For the development of individual software system, the
process has five major activities: (a) requirement

definition, (b) software and system design, (c)

implementation, (d) integration and testing, and (e)
operation and maintenance. The documents are created

for each individual software system.

3. Research Method

3.1. Software Development Team and

Projects

This study was conducted to identify the requirements

engineering practices that clearly contribute to software

project success. It investigated team knowledge,

allocated resources, and deployed requirements

engineering processes. To compare two software

processes, software product line and classic individual

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011 43

software process, we established two software

development teams with the equivalent skills but

worked on the same projects and used different

processes.

The software development teams that have experience
in software development were participated in the study.

Each software development team was established and

included a system analyst, a project manager, and four

software developers. This research conducted an

experiment involving three software development

projects that have similar requirements and some

different requirements. Three software projects were

designed in order to narrow set of requirements and

those are based on business applications. On average,

the projects finished in 2.5 months with an effort of 6

person-months. The development team was required to

achieve the software development projects: (i) one team

was to follow the software product line process to

complete those three software projects as a line, and (ii)

another one was to follow any software process to

complete the software projects.

3.2. Empirical Project Development based

on Software Product Line Process

The project started with developers training in software
product line processes and techniques. These developers

were then tested for their understanding of software

product line practices by using questionnaires. Those

who passed the test were assumed to be ready to

implement projects using software product line. At the

beginning of a project the developers need to take

several days to envision the high-level requirements and

to understand the scope of the release. The goal of this

activity is to find what the project is all about, not to

document in detail. The developers then started

developing a set of three projects by following the
software product line practices. They studied and

analyzed all projects together and produced the software

artefacts: (i) reference requirements; (ii) software

product line architecture; and (iii) software components.

The artefacts were checked before submitting to the

domain repository to be ready for application

engineering process. Next, three software products were

created based on the domain artefacts (i.e. reference

requirements, software product line architecture, and

software components). Before the software was accepted
by customers, we ran test cases on the software. When

the software passed all test cases, the projects are

completed. The whole software product line process is

shown in Figure 1. We then calculated and analyzed the

qualitative and quantitative aspects of domain

engineering process and application engineering process

for each project. Then we checked the developers

conform to software product line practices.

Figure 1. Software Produce Line Process

3.3. Empirical Project Development based

on Individual Software Process

For each project, developers divided their work based on

their roles. Firstly, the developers summarized all

requirements from customers and produced a user

requirement specification. Next, they designed the
system architecture, components and data models. They

applied use case descriptions and diagrams to explain the

requirements of each individual software product. In

addition, they also created class diagrams, sequence

diagrams and activity diagrams of the entire project in

this stage. They implemented the software by following

the documents and used unit tests regularly. When

completing all the components, the developers integrated

all the pieces together and began an integration test.

Finally, the developers delivered the customers the

complete software when all of these stages finished. The

artefacts that are checked and submitted to the repository

are: (i) use case descriptions; (ii) use case diagrams; (iii)

class diagrams; (iv) sequence diagrams; (v) activity

diagrams; (vi) source code; (vii) testing documents; and

(viii) coding standard and technical documents. All the

end of this step, we calculated and analyzed the

qualitative and quantitative aspects in each project.

Domain
Analysis

Domain
Design

Domain
Implementation

Domain Engineering

Details of three
projects

Reference
requirements

Software product
line architecture

Software
components

Domain Artefacts

Requirements

Engineering
Design Analysis Integration and

Testing

Application Engineering

Individual
software
product

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

44 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011

4. Requirements Development for

Software Products

4.1. Artefact Type

At the beginning of the experiment, the developers are

given the description of artifact types which should be

applied for requirement engineering process. However,

in practical, there are several different types of

requirements. Each modeling artifact has its strengths

and weakness. We then propose a set of artifact types
which are applied to capture and specify the software

requirements. Therefore several requirements modeling

artefacts are applied. Table 1 summarises common

artefacts for modeling requirements in projects. Each

artifact type is applied in order to make the

requirements precise and consistent. Some of these

methods have separated the data, functional, and

behavioral aspects of requirements and specified

software by creating one or more distinct models.

Prototypes, for instance, attempt to create an operational

model that stakeholders or users can directly experience.

Followed by many other models, the development team

found missing and inconsistency of some requirements.

Thus this set of artifact types is integrated and focused

on establishing of a closer link between models and

business goals. As shown in Table 1, each artifact type is

applied to specify either behavioral or non-behavioral

requirements, and captured by different simple tools.

4.2. Requirement Development for Software

Product Line and Individual Software

Systems

According to the software product line approach, the

projects have been developed based on study, analysis,

and discussions of business domain. The team of

developers analysed and designed a family of software

systems with three members. Each member has shared

and specialized functionalities with the family. The

product members are aimed to satisfy different targets

of customers. As shown in Table 1, several types of

requirements artefacts are created and specified the
requirements. Moreover, those artefacts are further

developed according to the software product line

approach and the models [5] are created to represent the

software product line. Particularly, the reference

requirements is produced and documented in term of a

feature model as software product line architecture is

produced and documented in terms of subsystem,

feature, and process models [5]. The feature model is

created and composed of common features representing

mandatory features, alternative and optional,

representing different features between product

members. The subsystem models is created and

provides facilities for performing basic tasks in the

systems. But there exist various instances of the process

and module models, as well as there exist many

instances of use cases, class, statechart, and sequence
diagrams. The process models are created and each is

refined for a subsystem in the subsystem model. The

module models are created and each is refined for a

process in the process models. Moreover, the artefacts

of each product member are created. For example, a use

case is used to elaborate the satisfaction of the

functionalities for each product member.

For individual software development, requirements for
each software project is captured according to the

artifact type in Table 1 and further developed to be a

number of artefacts for each individual software product

during individual software development process.

Finally, the software artefacts of each individual

software product are usecase diagram, use case

descriptions, class diagrams, statechart diagrams,
sequence diagrams, and source code.

During the activities of requirements elicitation in order
to transform the requirements to be other software

artefacts for each product, there are several techniques

applied. We summarised in Table 2.

4.3. Change Management for Software

Product Line and Individual Software

Systems

As mentioned earlier, this study was conducted to

identify the requirements engineering practices that

clearly contribute to software project success,
comparatively between software product line and

individual software systems. The experiment involved

three software development projects, PM1, PM2, and

PM3 that have similar requirements and some different

requirements. Furthermore, the study was conducted to

handle a situation of change management on

requirements. There was a set of change on the existing

software products.

According to the software product line-based systems,

new requirements management can be facilitated by the

identification and analysis of commonality and
variability principles among software product line and

product members. A number of relations between

artefacts are detected in order to determine the

association between the new requirements and existing

software artefacts in product member and software

product line. Different types of traceability relations are

created to identify the role of those relations [6].

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011 45

Table 1. Common artefacts for modeling requirements

Artifact Type Simple
tool

Description

Acceptance
test

Either Paper Describes an observable feature of a system which is of
interest to one or more project stakeholders.

Business rule
definition

Behavioral Index
card

A business rule is an operating principle or policy that
software must satisfy

Constraint
definition

Either Index
card

A constraint is a restriction on the degree of freedom that a
developer team have in providing a solution. Constraints are
effectively global requirements for a project.

Data flow
diagram
(DFD)

Behavioral Paper A data-flow diagram (DFD) shows the movement of data
within a system between processes, entities, and data stores.
When modeling requirements a DFD can be used to model the
context of the system, indicating the major external entities
that the system interacts with.

Essential UI
prototype

Either Draft
paper

An essential user interface (UI) prototype is a low-fidelity
model, or prototype, of the UI for the system. It represents the
general ideas behind the UI but not the exact details.

Essential use
case

Behavioral Paper A use case is a sequence of actions that provides a measurable
value to an actor. An essential use case is a simplified,
abstract, generalized use case that captures the intentions of a
user in a technology and implementation independent manner.

Feature Either Index
card

A feature is a small useful result in the perspective view of
users. A feature is a tiny characteristic of the system. It is
understandable, and do-able.

Technical
requirements

Non-
behavioral

Index
card

A technical requirement pertains to a non-functional aspect of
the system, such as a performance related issue, a reliable
issue, or technical environment issue.

Usage
scenario

Behavioral Index
card

A usage scenario describes a single path of logic through one
or more use cases or user stories. A use case scenario could
represent the basic course of action.

Use case
diagram

Behavioral Draft
paper

The use case diagram depicts a collection of use cases, actors,
their associations , and optionally a system boundary box.
When modeling requirements a use case diagram can be used
to model the context of the system, indicating the major
external entities that the system interacts with.

User story Either Index
card

A user story is a reminder to have a conversation with the
project stakeholders. User stories capture high-level
requirements, including behavioral requirements, business
rules, constraints, and technical requirements.

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

46 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011

Table 2. Techniques for eliciting requirements

Technique Description Strength(s) Weakness(es)

Active
stakeholder
participation

Extends on-
site user to
have
stakeholders
(users)
actively
involved with
the modeling
of their
requirements.

- Highly collaborative
technique

- Domain expert can define
the requirements

- Information is provided to
the team in a timely manner

- Decisions are made in a
timely manner

- Many stakeholders need to
learn modeling skills

- Stakeholders are not
available full time

Face-to-face
Interview

Meets key
stakeholders
to discuss
their
requirements.

- Collaborative technique

- Developers can elicit a lot
of information quickly from a
single person

- Stakeholders can provide
private information that they
would not publicly tell

- Interviews must be schedules
in advance

- Interviewing skills are
difficult to learn

Reading A wealth of
written
information
available
from which
developers
can discern
potential
requirements
or just to
understand
stakeholders
better.

- Opportunity to learn the
fundamentals of the domain
before interacting with
stakeholders

- Restricted interaction
technique

- Practical usually differs from
what is written down

- There are limits how much
developers can read, and
comprehend the information

Figure 2. Change Management for Software Product Line System

Details of

Changes on PM1

Reference
requirements

Software product
line architecture

Software
component

s

Domain Artefacts

PM3

PM1

PM2

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011 47

For the software product line-based systems, it is

supposed the situation in which the organization has

established a software product line for their software

systems with software product members. Those are

created from the development phase. And the new

requirements are done to a product member. Therefore,
it is necessary to evaluate how these new requirements

will affect the other artefacts of the product member and

if these new requirements also affect other product

members in the software product line that may be

related to the new requirements. The artefacts are

inspected and determined if they are related to the new

requirements as shown in Figure 2. The change on

software product member, PM1, was related to some of

reference requirements, of software product line

architecture, and of software components. During the

activities of change management, the development team

must have evaluated whether and how those changes

would affect other software product members, PM2 and

PM3. The team also must make a compromise between

existing software products and new requirements in

order to maintain the consistency of software

requirements.

According to the individual software systems, it is
necessary to evaluate how these new requirements will

affect any artefacts of each software product. Developers

divided their work based on their roles. They reproduced

new user requirement specification and redesigned the
system architecture, components and data models. They

applied use case descriptions and use case diagrams to

explain the new requirements of the software product.

They updated class diagrams, sequence diagrams and

activity diagrams of the entire project in this stage. They

re-implemented the software by following the documents

and used unit tests regularly. When completing all the

components, the developers integrated all the pieces

together again and began an integration test. Those

activities were done to all individual software products.

Finally, the developer delivered the customers the

complete software when all of these stages finished.

5. Discussion and Conclusion

Requirements engineering and management is a central

task of software product line development. It must be
capable of deal with factors like upfront development of

a domain model, the constant flow of requirements, a

heterogeneous stakeholder community, a complex

development organization, long-term release planning,

demanding software architecture, and challenging testing

processes. For successful software product line

development, a collection of essential requirement

development practices must be in place, which needs to

support the meta project management capabilities. Many

requirements engineering and management practices

must be tailored appropriately to the specific demands of
software product lines. The software engineering

literature has pointed out the software product line

development is more complex and demanding than

individual software product development. This

complexity has also particularly impact on requirements
engineering and management. Of course, general

challenges of requirements engineering and management

also reoccur in software product line.

This work experienced the requirements engineering and
management that arise in the context of industrial

software product line development. To measure the

project effort between using software product line and a

single software process, we evaluated the number of

entities that were created when the software products

were developed and that were changed when there was

new requirements. The entities are such as software
design, software design specification, software code, and

software development team. Attributes are such as

defects discovered in design review, number of pages,

number of line of code, number of operations, and team

size, average team experience. In particular the size

measure of software products involves two ratios: (a)

line of code (LOC) and (b) function point (FP). As

shown in Tables 3 and 4, the number of LOC created for

each product members (PM1, PM2, and PM3) are 3689,

1251, and 2280. Moreover, there are 7280 LOCs

additionally created for software product line artefacts.

The numbers of LOC created for each individual

software product are 6830, 5420, and 8845. However,

the numbers of function point between same software

products using different software processes are the same.

Additionally, the quality measure of software product
involves maintainability measurement such as coding

effort, design effort, percentage of modules changes,

classes changes, classes added. In addition, we measured

the maintainability metrics in external view such as

mean time to implement the changes. Based on the same

set of changes, it is found that the mean time to

implement the changes on product member, PM1, which
is created by using software product line process is 15.5

days. Comparatively, it is found that the mean time to

implement the changes on software product, PM1, which

is created by using a single software development

process is 24 days. It is thus believed that well- and

proper-implementation of software product line will be

effective to maintainability.

Moreover, we also compare the development team’s
satisfaction. We conducted the survey and interview.

The developers are observed for the satisfaction

regarding the process of software product line. It is

found that the developers are satisfied the process that

emphasis the software more than the documentation.

However, the process would be difficult to inexperience

developers and some experience developers tend to resist

some software product line practices. According to the

survey, it is found that 33% of developers tend to resist

software product line practices with the above reasons,

whereas 70% of developers are positive to using

software product line practices. Particularly, 82% of

developers are satisfied when performed the

maintenance phase with software product line. Some of

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

48 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011

software product line artefacts are used during the

maintenance phase. And it is satisfied by the developers.

However, application engineering process depends on

developer’ skill. Moreover, some developers are

unsatisfied to frequently update the documentation.

Table 3. The details of LOC and FP created for software
products using software product line

Product Member
LOC

created
FP

created

PM1 3689 10

PM2 1251 5

PM3 2280 4

Software Product

Line Artefacts
7280 n/a

Table 4. The details of LOC and FP created for software
products using a single software process

Individual Software

Product

LOC

created

FP

created

PM1 6830 10

PM2 5420 5

PM3 8845 4

Additionally, the developer teams found that types of

requirements can be separated into two categories:
behavioural and non-behavioural. A behavioural

requirements describes how a user will interact with a

system concerning user interface issues, how a user will

use a system or how a system fufills a business function

or business rules. These are often referred to as

functional requirements. A non- behavioural

requirements describes a technical feature of a system,

features typically pertaining to availability, security,

performance, interoperability, dependability, and

reliability. Non-behavioural requirements are often

referred to as “non-functional” requirements. It is very

important to understand that the distinction between
behavioural and non-behavioural requirements is fuzzy.

A performance requirement which describes the

expected speed of data access is clearly technical in

nature but will also be reflected in the response time of

the user interface which affects usability and potential

usage. Access control issues, such as who is allowed to

access particular information, partly is a behavioural

requirement although they are generally considered to be

a security issue which falls into the non-behavioral

category. The critical thing is to identify and understand

a given requirement. We found that it becomes an issue

if the requirements are managed and mis-categorised.

Moreover, the results show that the effort metric of
software product line-based projects is less than

individual software projects. Software product line-based

projects enhance the productivity by using existing

software artefacts. The methodology supports software

reuse at the largest level of granularity. However,

developers spent time and effort to establish domain

artefacts. Also, some defects are discovered during the

integration process for a product member. It took some

effort to fix them. On the other hand, in the single

software team, customers are involved at the inception of

project determined requirements and contractual

agreement. Developers wrote all documents before

coding. Then customers changed some requirements,

maybe after they acquired finally product, developers

needed to significantly redesign and edit their

documents. This took a lot of effort to achieve the task.

However, software product line is unsuitable for all
projects. It serves the reuse practice in an organization

having a large number of products, which have similar

requirements and some differences. Developers must

consider the characteristics of the project to ensure

software product line is appropriate. In the other hand,
waterfall process is suitable to serve a software project

which is small and has solid requirements. Also, the

developers are responsible for estimating the effort

required to implement the requirements which they will

work on. Although the developers may not have the

requisite estimating skills, it does not take long for them

to get better at estimating when they know and get

familiar with the software process methods.

References

[1] Atkinson, C., J. Bayer, and D. Muthig. 2000.

Component-based product line development: The
KobrA approach. Pages 289-310. the 1st Software
Product Line Conference, SPLC. Kluwer, Denver,
Colorado, USA.

[2] Bayer, J., O. Flege, P. Knauber, R. Laqua, D.
Muthig, K. Schmid, T. Widen, and J.-M. DeBaud.
1999. PuLSE: A methodology to develop software
product lines. Pages 122-131. the Fifth ACM
SIGSOFT Symposium on Software Reusability
(SSR'99), Los Angeles, CA, USA.

[3] Clements, P., and L. Northrop. 2004. A Framework
for Software Product Lines Practice.
http://www.sei.cmu.edu/productlines/framework.ht
ml

[4] Griss, M. L., J. Favaro, and M. d. Alessandro. 1998.
Integrating feature modeling with the RSEB. Pages
76-85 in P. Devanbu and J. Poulin, eds. the 5th
International Conference on Software Reuse. IEEE
Computer Society Press.

[5] Jirapanthong, W. 2008. An Approach to Software
Artefact Specification for Supporting Product Line
Systems. the 2008 International Conference on

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 | ISSUE 1 | JAN-JUN 2011 49

Software Engineering Research and Practice
(SERP’08), Las Vegas, Nevada, USA, 2008.

[6] Jirapanthong, W., and A. Zisman. 2009. XTraQue:
traceability for product line systems. Software and
System Modeling 8(1): 117-144 (2009).

[7] Kang, K., S. Cohen, J. Hess, W. Novak, and A.
Peterson. 1990. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Software Engineering

Institute, Carnegie Mellon University, Pittsburgh,
PA.

[8] Weiss, D. 1995. Software Synthesis: The FAST
Process. the International Conference on Computing
in High Energy Physics (CHEP), Rio de Janeiro,
Brazil.

Copyright © 2011 by the Journal of Information Science and Technology.

