Experience on Requirements Engineering for
Software Product Line

Waraporn Jirapanthong

Faculty of Information Technology, Dhurakij Pundit University, 110/1-4 Prachachuen Road, Laksi,
Bangkok 10210, Thailand, waraporn.jir @dpu.ac.th ,+66(0)9547300 ext. 385

ABSTRACT - Software product line has been recognised as an important paradigm for software
systems engineering. However, it has been quested whether software product line-based approach is more
productive and flexible than a single software development process. This paper thus describes the
experiences and challenges of requirements engineering and management for software product line, in
comparison with individual software systems. This study was conducted to identify the requirements
engineering practices that clearly contribute to software project success. It investigated team knowledge,
allocated resources, and deployed requirements engineering processes. To compare two software processes,
software product line and classic individual software process, this research conducted an experiment
involving three software development projects that have similar requirements and some different
requirements.

KEYWORDS - Software Product Line; Product Family; Requirements Engineering and Management;

and Requirements Development

1. Introduction

Requirements management is concerned with
understanding the goals of the organisation and its
customers and the transformation of these goals into
potential functions and constraints applicable to the
development and evolution of products and services.
It involves understanding the relationship between
goals, functions and constraints in terms of the
specification of products, including systems
behaviour, and service definition.

The goals represent why a certain extent relates and
what are in development terms. The specification
provides the basis for analysing requirements,
validating what stakeholders want, defining what
needs to be delivered, and verifying the resultant
developed product or service.

Requirements management aims to establish a
common understanding between the customers and
stakeholders and the project team that will be
addressing the requirements at an early stage in the
project life cycle and maintain control by

establishing suitable baselines for both development
and management use.

In addition to, many software development projects
focus on customer satisfaction, quick adaptation to
changes, and flexibility. Therefore, software product line
development has become popular because it responds
well to frequent changes in user requirements. Software
product line shares a common set of features and are
developed based on the reuse of core assets have been
recognised as an important paradigm for software
systems engineering. Recently, a large number of
software systems are being developed and deployed in
this way in order to reduce cost, effort, and time during
system development. Various methodologies and
approaches have been proposed to support the
development of software systems based on software
product line development.

However software product line development is
criticized as having difficulties. Some difficulties are
concerned with the (a) necessity of having a basic
understanding of the variability consequences during the

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011 41

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

different development phases of software products, (b)
necessity of establishing relationships between product
members and product line artefacts, and relationships
between product members artefacts, (c) poor support for
capturing, designing, and representing requirements at
the level of product line and the level of specific product
members, (d) poor support for handling complex
relations among product members, and (e) poor support
for maintaining information about the development
process.

This paper thus describes the experiences and
challenges of requirements engineering and
management for software product line, in comparison
with individual software systems.

2. Background of Requirements
Engineering and Management for
Software Product Line

Software product line systems share a common set of
features and are developed based on the reuse of core
assets. Many approaches [1],[2],[4],[7],[8] have been
proposed to support software product line development.
Those approaches mainly focus on domain engineering
which is concerned the identification and analysis of
commonality and variability principles among
applications in a domain in order to engineer reusable
and adaptable components and, therefore, support
product line development. There are three steps for
domain engineering:

(a) domain analysis is the process of identifying,
collecting, organizing and representing the relevant
information in a domain, based upon the study of
existing systems and their developing histories,
knowledge captured from domain experts, underlying
theory, and emerging technology within a domain [7].
Software artefacts that are produced during the activity
of domain analysis are called reference requirements,
which define the products and their requirements in a
family. = The reference requirements contain
commonality and variability of the product family. The
activities occur during the domain analysis are scoping,
defining of commonality and variability, and planning
for product members and features.

(b) domain design is the process of developing a design
model from the products of domain analysis and the
knowledge gained from the study of software
requirements or design reuse and generic architectures.
Software artefacts that are produced during the activity
of domain design are called software product line
architecture, which forms the backbone of integrating
software systems and consists of a set of decisions and
interfaces which connect software components together.
Software product line architecture differs from an
architecture of individual systems that it must represent
the common design for all product members and
variable design for specific product members. The

activities occur during the domain design are defining
and evaluation of software product line architecture.

(c) domain implementation is the process of identifying
reusable components based on the domain model and
generic architecture [3]. Software artefacts that are
produced during the activity of domain implementation
are called reusable software components. The activity is
focused on the creation of reusable software
components e.g. source codes and linking libraries that
are later assembled for product members At the end of
the domain engineering process, an organization is
ready for developing product members.

Additionally, application engineering is a systematic
process for the creation of a product member from the
core assets created during the domain engineering.
Domain engineering assures that the activities of
analysis, design and implementation of a product family
are thoroughly performed for all product members, while
application engineering assures the reuse of the core
assets of the product family for the creation of product
members. There are activities such as: (i) requirements
engineering, which is a process that consists of
requirements elicitation, analysis, specification,
verification, and management; (ii) design analysis,
which is a process that is concerned with how the system
functionality is to be provided by the different
components of the system; and (iii) integration and
testing, which is a process of taking reusable
components then putting them together to build a
complete system, and of testing if the system is working
appropriately.

However, although the support for identifying and
analysing common and variable aspects among
applications and the engineering of reusable and
adaptable components are important for software
product line development, they are not easy tasks. This
is mainly due to the large number and heterogeneity of
documents generated during the development of product
line systems.

For the development of individual software system, the
process has five major activities: (a) requirement
definition, (b) software and system design, (c)
implementation, (d) integration and testing, and (e)
operation and maintenance. The documents are created
for each individual software system.

3. Research Method

3.1. Software Development Team and
Projects

This study was conducted to identify the requirements
engineering practices that clearly contribute to software
project success. It investigated team knowledge,
allocated resources, and deployed requirements
engineering processes. To compare two software
processes, software product line and classic individual

42 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

software process, we established two software
development teams with the equivalent skills but
worked on the same projects and used different
processes.

The software development teams that have experience
in software development were participated in the study.
Each software development team was established and
included a system analyst, a project manager, and four
software developers. This research conducted an
experiment involving three software development
projects that have similar requirements and some
different requirements. Three software projects were
designed in order to narrow set of requirements and
those are based on business applications. On average,
the projects finished in 2.5 months with an effort of 6
person-months. The development team was required to
achieve the software development projects: (i) one team
was to follow the software product line process to
complete those three software projects as a line, and (ii)
another one was to follow any software process to
complete the software projects.

3.2. Empirical Project Development based
on Software Product Line Process

The project started with developers training in software
product line processes and techniques. These developers
were then tested for their understanding of software
product line practices by using questionnaires. Those
who passed the test were assumed to be ready to
implement projects using software product line. At the
beginning of a project the developers need to take
several days to envision the high-level requirements and
to understand the scope of the release. The goal of this
activity is to find what the project is all about, not to
document in detail. The developers then started
developing a set of three projects by following the
software product line practices. They studied and
analyzed all projects together and produced the software
artefacts: (i) reference requirements; (ii) software
product line architecture; and (iii) software components.

The artefacts were checked before submitting to the
domain repository to be ready for application
engineering process. Next, three software products were
created based on the domain artefacts (i.e. reference
requirements, software product line architecture, and
software components). Before the software was accepted
by customers, we ran test cases on the software. When
the software passed all test cases, the projects are
completed. The whole software product line process is
shown in Figure 1. We then calculated and analyzed the
qualitative and quantitative aspects of domain
engineering process and application engineering process
for each project. Then we checked the developers
conform to software product line practices.

Details of three
projects

Domain Engineering

Domain Domain Domain

Analysis Design Implementation
I “bomain:Artefacts ¢ i T T 1
I 1
1 Reference Software product Software I
I irements line architecture components

1
! 1
B o o e e o e o e e o e e e e e e e e
Application Engineering
Requirements Design Analysis Integration and
Engineering Testing
1

Individual
software
product

Figure 1. Software Produce Line Process

3.3. Empirical Project Development based
on Individual Software Process

For each project, developers divided their work based on
their roles. Firstly, the developers summarized all
requirements from customers and produced a user
requirement specification. Next, they designed the
system architecture, components and data models. They
applied use case descriptions and diagrams to explain the
requirements of each individual software product. In
addition, they also created class diagrams, sequence
diagrams and activity diagrams of the entire project in
this stage. They implemented the software by following
the documents and used unit tests regularly. When
completing all the components, the developers integrated
all the pieces together and began an integration test.
Finally, the developers delivered the customers the
complete software when all of these stages finished. The
artefacts that are checked and submitted to the repository
are: (i) use case descriptions; (ii) use case diagrams; (iii)
class diagrams; (iv) sequence diagrams; (v) activity
diagrams; (vi) source code; (vii) testing documents; and
(viii) coding standard and technical documents. All the
end of this step, we calculated and analyzed the
qualitative and quantitative aspects in each project.

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011 43

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

4. Requirements Development for
Software Products

4.1. Artefact Type

At the beginning of the experiment, the developers are
given the description of artifact types which should be
applied for requirement engineering process. However,
in practical, there are several different types of
requirements. Each modeling artifact has its strengths
and weakness. We then propose a set of artifact types
which are applied to capture and specify the software
requirements. Therefore several requirements modeling
artefacts are applied. Table 1 summarises common
artefacts for modeling requirements in projects. Each
artifact type is applied in order to make the
requirements precise and consistent. Some of these
methods have separated the data, functional, and
behavioral aspects of requirements and specified
software by creating one or more distinct models.
Prototypes, for instance, attempt to create an operational
model that stakeholders or users can directly experience.

Followed by many other models, the development team
found missing and inconsistency of some requirements.
Thus this set of artifact types is integrated and focused
on establishing of a closer link between models and
business goals. As shown in Table 1, each artifact type is
applied to specify either behavioral or non-behavioral
requirements, and captured by different simple tools.

4.2. Requirement Development for Software
Product Line and Individual Software
Systems

According to the software product line approach, the
projects have been developed based on study, analysis,
and discussions of business domain. The team of
developers analysed and designed a family of software
systems with three members. Each member has shared
and specialized functionalities with the family. The
product members are aimed to satisfy different targets
of customers. As shown in Table 1, several types of
requirements artefacts are created and specified the
requirements. Moreover, those artefacts are further
developed according to the software product line
approach and the models [5] are created to represent the
software product line. Particularly, the reference
requirements is produced and documented in term of a
feature model as software product line architecture is
produced and documented in terms of subsystem,
feature, and process models [5]. The feature model is
created and composed of common features representing
mandatory features, alternative and optional,

representing different features between product
members. The subsystem models is created and
provides facilities for performing basic tasks in the
systems. But there exist various instances of the process
and module models, as well as there exist many
instances of use cases, class, statechart, and sequence
diagrams. The process models are created and each is
refined for a subsystem in the subsystem model. The
module models are created and each is refined for a
process in the process models. Moreover, the artefacts
of each product member are created. For example, a use
case is used to elaborate the satisfaction of the
functionalities for each product member.

For individual software development, requirements for
each software project is captured according to the
artifact type in Table 1 and further developed to be a
number of artefacts for each individual software product
during individual software development process.
Finally, the software artefacts of each individual
software product are usecase diagram, use case
descriptions, class diagrams, statechart diagrams,
sequence diagrams, and source code.

During the activities of requirements elicitation in order
to transform the requirements to be other software
artefacts for each product, there are several techniques
applied. We summarised in Table 2.

4.3. Change Management for Software
Product Line and Individual Software
Systems

As mentioned earlier, this study was conducted to
identify the requirements engineering practices that
clearly contribute to software project success,
comparatively between software product line and
individual software systems. The experiment involved
three software development projects, PM1, PM2, and
PM3 that have similar requirements and some different
requirements. Furthermore, the study was conducted to
handle a situation of change management on
requirements. There was a set of change on the existing
software products.

According to the software product line-based systems,
new requirements management can be facilitated by the
identification and analysis of commonality and
variability principles among software product line and
product members. A number of relations between
artefacts are detected in order to determine the
association between the new requirements and existing
software artefacts in product member and software
product line. Different types of traceability relations are
created to identify the role of those relations [6].

44 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

Table 1. Common artefacts for modeling requirements

Artifact Type Simple Description
tool
Acceptance Either Paper Describes an observable feature of a system which is of
test interest to one or more project stakeholders.
Business rule Behavioral Index A business rule is an operating principle or policy that
definition card software must satisfy
Constraint Either Index A constraint is a restriction on the degree of freedom that a
definition card developer team have in providing a solution. Constraints are
effectively global requirements for a project.
Data flow Behavioral Paper A data-flow diagram (DFD) shows the movement of data
diagram within a system between processes, entities, and data stores.
(DFD) When modeling requirements a DFD can be used to model the
context of the system, indicating the major external entities
that the system interacts with.
Essential UI Either Draft An essential user interface (UI) prototype is a low-fidelity
prototype paper model, or prototype, of the UI for the system. It represents the
general ideas behind the Ul but not the exact details.
Essential use Behavioral Paper A use case is a sequence of actions that provides a measurable
case value to an actor. An essential use case is a simplified,
abstract, generalized use case that captures the intentions of a
user in a technology and implementation independent manner.
Feature Either Index A feature is a small useful result in the perspective view of
card users. A feature is a tiny characteristic of the system. It is
understandable, and do-able.
Technical Non- Index A technical requirement pertains to a non-functional aspect of
requirements behavioral card the system, such as a performance related issue, a reliable
issue, or technical environment issue.
Usage Behavioral Index A usage scenario describes a single path of logic through one
scenario card Or more use cases or user stories. A use case scenario could
represent the basic course of action.
Use case Behavioral Draft The use case diagram depicts a collection of use cases, actors,
diagram paper their associations , and optionally a system boundary box.
When modeling requirements a use case diagram can be used
to model the context of the system, indicating the major
external entities that the system interacts with.
User story Either Index A user story is a reminder to have a conversation with the
card project stakeholders. User stories capture high-level

requirements, including behavioral requirements, business
rules, constraints, and technical requirements.

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011 45

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

Table 2. Techniques for eliciting requirements

Technique Description Strength(s) Weakness(es)

Active Extends on- - Highly collaborative - Many stakeholders need to
stakeholder site user to technique learn modeling skills
participation have

stakeholders
(users)
actively
involved with
the modeling

- Domain expert can define
the requirements

- Information is provided to
the team in a timely manner

- Decisions are made in a

- Stakeholders are not
available full time

of their .
requirements. timely manner
Face-to-face Meets key - Collaborative technique - Interviews must be schedules
Interview stakeholders .. in advance
to discuss - Devel(?pers can elicit a lot o .
their of information quickly from a - Interviewing skills ~ are
. single person difficult to learn
requirements.
- Stakeholders can provide
private information that they
would not publicly tell
Reading A wealth of - Opportunity to learn the - Restricted interaction
written fundamentals of the domain technique
:\igﬁﬁgon ls)teai)erkel old er;nteractlng with - .Pract.ical usually differs from
from which what is written down
developers - There are limits how much
can discern developers can read, and
potential comprehend the information
requirements
or just to
understand
stakeholders
better.

46

Changes on PM1

Domaln -Artefacts“u

Reference Software product

requirements line architecture

»
.,
A3

—_—————— ..,_____..___,:____

.,
.
. H
‘e
e

Details of

Figure 2. Change Management for Software Product Line System

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

For the software product line-based systems, it is
supposed the situation in which the organization has
established a software product line for their software
systems with software product members. Those are
created from the development phase. And the new
requirements are done to a product member. Therefore,
it is necessary to evaluate how these new requirements
will affect the other artefacts of the product member and
if these new requirements also affect other product
members in the software product line that may be
related to the new requirements. The artefacts are
inspected and determined if they are related to the new
requirements as shown in Figure 2. The change on
software product member, PM1, was related to some of
reference requirements, of software product line
architecture, and of software components. During the
activities of change management, the development team
must have evaluated whether and how those changes
would affect other software product members, PM2 and
PM3. The team also must make a compromise between
existing software products and new requirements in
order to maintain the consistency of software
requirements.

According to the individual software systems, it is
necessary to evaluate how these new requirements will
affect any artefacts of each software product. Developers
divided their work based on their roles. They reproduced
new user requirement specification and redesigned the
system architecture, components and data models. They
applied use case descriptions and use case diagrams to
explain the new requirements of the software product.
They updated class diagrams, sequence diagrams and
activity diagrams of the entire project in this stage. They
re-implemented the software by following the documents
and used unit tests regularly. When completing all the
components, the developers integrated all the pieces
together again and began an integration test. Those
activities were done to all individual software products.
Finally, the developer delivered the customers the
complete software when all of these stages finished.

5. Discussion and Conclusion

Requirements engineering and management is a central
task of software product line development. It must be
capable of deal with factors like upfront development of
a domain model, the constant flow of requirements, a
heterogeneous stakeholder community, a complex
development organization, long-term release planning,
demanding software architecture, and challenging testing
processes. For successful software product line
development, a collection of essential requirement
development practices must be in place, which needs to
support the meta project management capabilities. Many
requirements engineering and management practices
must be tailored appropriately to the specific demands of
software product lines. The software engineering
literature has pointed out the software product line
development is more complex and demanding than

individual software product development. This
complexity has also particularly impact on requirements
engineering and management. Of course, general
challenges of requirements engineering and management
also reoccur in software product line.

This work experienced the requirements engineering and
management that arise in the context of industrial
software product line development. To measure the
project effort between using software product line and a
single software process, we evaluated the number of
entities that were created when the software products
were developed and that were changed when there was
new requirements. The entities are such as software
design, software design specification, software code, and
software development team. Attributes are such as
defects discovered in design review, number of pages,
number of line of code, number of operations, and team
size, average team experience. In particular the size
measure of software products involves two ratios: (a)
line of code (LOC) and (b) function point (FP). As
shown in Tables 3 and 4, the number of LOC created for
each product members (PM1, PM2, and PM3) are 3689,
1251, and 2280. Moreover, there are 7280 LOCs
additionally created for software product line artefacts.
The numbers of LOC created for each individual
software product are 6830, 5420, and 8845. However,
the numbers of function point between same software
products using different software processes are the same.

Additionally, the quality measure of software product
involves maintainability measurement such as coding
effort, design effort, percentage of modules changes,
classes changes, classes added. In addition, we measured
the maintainability metrics in external view such as
mean time to implement the changes. Based on the same
set of changes, it is found that the mean time to
implement the changes on product member, PM1, which
is created by using software product line process is 15.5
days. Comparatively, it is found that the mean time to
implement the changes on software product, PM1, which
is created by using a single software development
process is 24 days. It is thus believed that well- and
proper-implementation of software product line will be
effective to maintainability.

Moreover, we also compare the development team’s
satisfaction. We conducted the survey and interview.
The developers are observed for the satisfaction
regarding the process of software product line. It is
found that the developers are satisfied the process that
emphasis the software more than the documentation.
However, the process would be difficult to inexperience
developers and some experience developers tend to resist
some software product line practices. According to the
survey, it is found that 33% of developers tend to resist
software product line practices with the above reasons,
whereas 70% of developers are positive to using
software product line practices. Particularly, 82% of
developers are satisfied when performed the
maintenance phase with software product line. Some of

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011 47

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

software product line artefacts are used during the
maintenance phase. And it is satisfied by the developers.
However, application engineering process depends on
developer’ skill. Moreover, some developers are
unsatisfied to frequently update the documentation.

Table 3. The details of LOC and FP created for software
products using software product line

LOC FP
Product Member created created
PMI 3689 10
PM2 1251 5
PM3 2280 4
Software Product 7280 n/a

Line Artefacts

Table 4. The details of LOC and FP created for software
products using a single software process

Individual Software LOC FP
Product created created
PM1 6830 10
PM2 5420 5
PM3 8845 4

Additionally, the developer teams found that types of
requirements can be separated into two categories:
behavioural and non-behavioural. A behavioural
requirements describes how a user will interact with a
system concerning user interface issues, how a user will
use a system or how a system fufills a business function
or business rules. These are often referred to as
functional requirements. A non- behavioural
requirements describes a technical feature of a system,
features typically pertaining to availability, security,
performance, interoperability, dependability, and
reliability. Non-behavioural requirements are often
referred to as “non-functional” requirements. It is very
important to understand that the distinction between
behavioural and non-behavioural requirements is fuzzy.
A performance requirement which describes the
expected speed of data access is clearly technical in
nature but will also be reflected in the response time of
the user interface which affects usability and potential
usage. Access control issues, such as who is allowed to

access particular information, partly is a behavioural
requirement although they are generally considered to be
a security issue which falls into the non-behavioral
category. The critical thing is to identify and understand
a given requirement. We found that it becomes an issue
if the requirements are managed and mis-categorised.

Moreover, the results show that the effort metric of
software product line-based projects is less than
individual software projects. Software product line-based
projects enhance the productivity by using existing
software artefacts. The methodology supports software
reuse at the largest level of granularity. However,
developers spent time and effort to establish domain
artefacts. Also, some defects are discovered during the
integration process for a product member. It took some
effort to fix them. On the other hand, in the single
software team, customers are involved at the inception of
project determined requirements and contractual
agreement. Developers wrote all documents before
coding. Then customers changed some requirements,
maybe after they acquired finally product, developers
needed to significantly redesign and edit their
documents. This took a lot of effort to achieve the task.

However, software product line is unsuitable for all
projects. It serves the reuse practice in an organization
having a large number of products, which have similar
requirements and some differences. Developers must
consider the characteristics of the project to ensure
software product line is appropriate. In the other hand,
waterfall process is suitable to serve a software project
which is small and has solid requirements. Also, the
developers are responsible for estimating the -effort
required to implement the requirements which they will
work on. Although the developers may not have the
requisite estimating skills, it does not take long for them
to get better at estimating when they know and get
familiar with the software process methods.

References

(1] Atkinson, C., J. Bayer, and D. Muthig. 2000.
Component-based product line development: The
KobrA approach. Pages 289-310. the 1st Software
Product Line Conference, SPLC. Kluwer, Denver,
Colorado, USA.

[2] Bayer, J., O. Flefe, P. Knauber, R. Laqua, D.
Muthig, K. Schmid, T. Widen, and J.-M. DeBaud.
1999. PuLSE: A methodology to develop software
product lines. Pages 122-131. the Fifth ACM
SIGSOFT Symposium on Software Reusability
(SSR'99), Los Angeles, CA, USA.

(3] Clements, P., and L. Northrop. 2004. A Framework
for Software Product Lines Practice.
lrlrhtp://www.sei.cmu.edu/productlines/framework.ht

Griss, M. L., J. Favaro, and M. d. Alessandro. 1998.
Integrating feature modeling with the RSEB. Pages
76-85 in P. Devanbu and J. Poulin, eds. the 5th
International Conference on Software Reuse. IEEE
Computer Society Press.

Jirapanthong, W. 2008. An Approach to Software
Artefact Specification for Supporting Product Line
Systems. the 2008 International éonference on

[4

=

(5

—

48 JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011

Jirapanthong W. : Experience on Requirements Engineering for Software Product Line

Software Engineering Research and Practice Institute, Carnegie Mellon University, Pittsburgh,
(SERP’08), Las Vegas, Nevada, USA, 2008. A.

(6] Jirapanthong, W., and A. Zisman. 2009. XTraQue: (8] Weiss, D. 1995. Software Synthesis: The FAST
traceability for product line systems. Software and Process. the International Conference on Computing
System Modeling 8(1): 117-144 (2009). in High Energy Physics (CHEP), Rio de Janeiro,

(71 Kang, K., S. Cohen, J. Hess, W. Novak, and A. Brazil.

Peterson. 1990. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Software Engineering

Copyright © 2011 by the Journal of Information Science and Technology.

JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | VOL 2 [ISSUE 1 | JAN-JUN 2011 49

