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Predict stock price trends in Stock Exchange of Thailand using
Ensemble Model
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ABSTRACT — The investment in the stock market has been interesting for domestic and foreign
investors. There are many analysts attempting to improve forecasting models to increase
prediction accuracy and stock return. Mostly focus on the single classifier using stock prices data
as the main factor. However, the accuracy and stock return of the prediction were low. Thus, the
purpose of this study attempt to increase prediction accuracy and stock return. Four factors were
considered: stock prices data, indicator data, holding days and indicator days (the days that used
to calculate indicators). In addition, 4 techniques of machine learning and ensemble model were
used to forecast the trends of stock price by using SET’s information from January 2011 to
December 2016. The results show that ensemble model in term of weight form can increase the
prediction accuracy by 5% - 14% and increase the stock return by 1% - 3%. Moreover, the factors
of indicators data and holding days are important factors to improve efficiency of prediction and
stock return.

KEY WORDS - stock; prediction; machine learning; ensemble model; SET
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