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A Prediction Model for Road Accident Risk in the New Year
with Data Mining
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ABSTRACT-- Thailand's road death rate is the world's highest in 2015, most of
which comes from pedestrians. This research introduces a model to predict the
risk of road accidents in the New Year day. Data mining technique is used with
data based on accident information, casualties and deaths collected during the
2008-2015 by the Government Information Center. By comparing the
performance of Naive Bayes Multilayer Perceptron and Meta bagging, a popular
technique is used to forecast. The experiments show that Meta bagging
technique is more effective than Multilayer Perceptron and Naive Bayes.

KEY WORDS —Prediction, Data Mining, Meta Bagging, Multilayer Perceptron, Naive Bayes.
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