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ABSTRACT - Cancer is a leading cause of death in the world. In 2020 World Health
Organization (WHO) reported that approximately 10 million deaths caused by cancer and will
increase for the coming years. This research paper aims to study the prediction of cancer epitope
using machine learning for classifying between cancer cell surface and epitope on healthy cell
surface. The comparison between the different machine learning algorithms is presented. This
work can help to training T-cell for recognizing cancer cell and release enzyme to kill cancer cell
(Targeted Therapy). The experiment results shown that imbalance data the model from Support
Vector Machine (SVM) calculated based on Dipeptide Composition (DPC) feature achieved the
best accuracy of 79 % Sensitivity 16% and Specificity 100% on test dataset. While balance data
with SMOTE Random Forest (RF) calculated based on Dipeptide Composition (DPC) feature
achieved the best accuracy of 80% Sensitivity 28% and Specificity 96% on the same test dataset.
In conclusion, Support Vector Machine (SVM) and Random Forest (RF) calculated based on
Dipeptide Composition (DPC) feature can employ these models for predicting the cancer epitope
in imbalance dataset and balanced dataset.
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Phenylalanine Phe F hydrophobic
Glycine Gly G hydrophobic
Histidine His H positive
Isoleucine Ile 1 hydrophobic
Lysine Lys K positive
Leucine Leu L hydrophobic
Methionine Met M hydrophobic
Asparagine Asn N polar
Proline Pro P hydrophobic
Glutamine Gln Q polar
Arginine Arg R positive
Serine Ser S polar
Threonine Thr T polar

Valine Val \ hydrophobic
Tryptophan Trp W hydrophobic
Tyrosine Tyr Y polar
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3.2.2 0anilszneunsaezlug (Dipeptide Composition
(DPC))
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3.2.3 avinInezily (Amino acid index (AAI))
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3.2.4 Composition enhanced Transition and
Distribution (CETD)
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3.2.5 paAilszneunsaesi Tunew (Pseudo Amino Acid
Composition (PAAC))
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Feature Classifier Ac (%) Sn (%) Sp (%) MCC AUC
0 fold 10 fold test 0 fold 10 fold test 0 fold 10 fold test 0 fold 10 fold test 0 fold 10 fold test
AAI LR 75 75 75 3 3 0 99 99 100 0.07 0.07 N/A 0.59 0.59 0.56
K-NN 73 73 75 24 24 0 90 90 100 0.17 0.17 N/A 0.65 0.65 0.51
CART 64 64 70 32 32 19 75 75 87 0.07 0.07 0.06 0.55 0.55 0.53
NB 55 55 25 44 44 100 59 59 0 0.03 0.03 N/A 0.55 0.55 0.50
RF 77 77 25 12 12 100 98 98 0 0.21 021 N/A 0.70 0.70 047
GBOOST 71 71 25 19 19 100 88 88 0 0.10 0.10 N/A 0.66 0.66 0.52
SVM 77 77 75 11 11 0 98 98 100 0.20 020 N/A 0.69 0.69 0.50
AAC LR 75 75 69 3 3 33 99 99 81 0.08 0.08 0.14 0.60 0.60 0.59
K-NN 75 75 75 29 29 25 91 91 91 0.25 025 0.20 0.67 0.67 0.66
CART 69 69 48 42 42 71 79 79 40 0.21 021 0.10 0.59 0.59 0.56
NB 73 73 63 22 22 48 90 90 68 0.16 0.16 0.14 0.59 0.59 0.59
RF 78 78 58 21 21 55 98 98 59 0.32 0.32 0.12 0.72 0.72 0.61
GBOOST 75 75 52 17 17 48 95 95 54 0.19 0.19 0.01 0.63 0.63 0.51
SVM 77 77 75 15 15 0 98 98 100 0.25 025 N/A 0.65 0.65 0.50
CETD LR 74 74 41 9 9 71 96 96 31 0.09 0.09 0.01 0.59 0.59 0.49
K-NN 74 74 69 25 25 16 90 90 87 0.19 0.19 0.04 0.62 0.62 0.55
CART 66 66 24 37 37 94 76 76 1 0.12 0.12 -0.14 0.57 0.57 047
NB 46 46 75 68 68 1 38 38 100 0.05 0.05 0.03 0.53 0.53 0.54
RF 78 78 69 17 17 11 98 98 88 0.28 0.28 -0.02 0.66 0.66 0.45
GBOOST 73 73 28 11 11 97 95 95 5 0.09 0.09 0.04 0.59 0.59 0.53
SVM 76 76 75 7 7 0 99 99 100 0.15 0.15 N/A 0.71 0.71 0.50
DPC LR 73 73 65 37 37 42 84 84 73 0.22 022 0.13 0.61 0.61 0.60
K-NN 75 75 77 21 21 24 93 93 94 0.20 020 0.26 0.66 0.66 0.68
CART 73 73 61 37 37 58 84 84 63 0.22 022 0.18 0.60 0.60 0.60
NB 40 40 75 83 83 0 26 26 100 0.09 0.09 N/A 0.58 0.58 0.50
RF 80 80 72 25 25 46 98 98 81 0.38 0.38 0.26 0.72 0.72 0.71
GBOOST 74 74 52 27 27 63 90 90 48 0.21 021 0.10 0.63 0.63 0.57
SVM 79 79 79 22 22 16 98 98 100 0.34 0.34 0.34 0.69 0.69 0.73
PAAC LR 75 75 66 2 2 34 99 99 77 0.04 0.04 0.11 0.59 0.59 0.59
K-NN 76 76 77 32 32 25 90 90 94 0.28 0.28 0.27 0.61 0.61 0.67
CART 68 68 39 41 41 71 77 77 28 0.17 0.17 0.00 0.59 0.59 0.50
NB 73 73 62 23 23 44 90 90 68 0.17 0.17 0.11 0.60 0.60 0.58
RF 79 79 67 21 21 31 98 98 79 0.32 032 0.10 0.71 0.71 0.61
GBOOST 76 76 57 17 17 34 95 95 65 0.20 020 -0.01 0.64 0.64 0.49
SVM 77 77 75 17 17 0 97 97 100 0.26 026 N/A 0.62 0.62 0.50
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Feature Classifier Ac (%) Sn (%) Sp (%) MCC AUC
0 fold 10 fold test 0 fold 10 fold test 0 fold 10 fold test 0 fold 10 fold test 0 fold 10 fold test
AAI LR 60 58 56 50 56 50 63 60 58 0.11 0.16 0.07 0.60 0.60 0.60
K-NN 60 74 61 63 93 63 59 55 61 0.19 0.53 0.21 0.65 0.65 0.67
CART 66 74 65 40 79 39 74 69 74 0.13 0.48 0.12 0.57 0.57 0.56
NB 52 55 50 59 62 54 50 47 48 0.08 0.09 0.02 0.56 0.56 0.55
RF 77 90 79 30 90 36 91 91 93 0.25 0.80 0.36 0.69 0.69 0.71
GBOOST 67 72 69 34 73 47 77 71 76 0.10 0.44 0.22 0.59 0.59 0.63
SVM 66 72 68 42 72 48 73 73 74 0.14 0.45 0.20 0.64 0.64 0.68
AAC LR 56 58 55 54 59 51 56 58 57 0.09 0.17 0.07 0.59 0.59 0.58
K-NN 63 76 64 68 93 68 61 60 62 0.25 0.56 0.26 0.70 0.70 0.69
CART 68 76 66 41 77 40 76 74 75 0.17 0.51 0.15 0.59 0.59 0.58
NB 62 61 61 52 58 47 65 64 66 0.16 0.22 0.11 0.61 0.61 0.60
RF 77 87 77 30 80 31 92 93 93 0.28 0.74 0.30 0.70 0.70 0.73
GBOOST 71 79 71 31 73 29 84 84 85 0.16 0.57 0.16 0.57 0.57 0.64
SVM 69 78 72 38 77 48 79 79 80 0.17 0.56 0.27 0.68 0.68 0.70
CETD LR 56 62 56 51 63 48 58 60 59 0.07 0.24 0.06 0.55 0.55 0.56
K-NN 56 71 55 73 96 71 51 47 49 0.20 0.49 0.17 0.67 0.67 0.63
CART 68 77 68 43 78 39 75 77 77 0.17 0.55 0.16 0.59 0.59 0.58
NB 44 55 43 68 75 67 37 35 35 0.04 0.10 0.02 0.52 0.52 0.53
RF 78 89 79 14 79 21 99 98 99 0.28 0.78 0.35 0.73 0.73 0.72
GBOOST 70 81 75 20 73 20 87 88 93 0.08 0.62 0.18 0.57 0.57 0.58
SVM 70 76 71 40 74 37 80 78 82 0.19 0.53 0.20 0.65 0.65 0.64
DPC LR 68 74 64 48 76 40 74 72 72 0.20 0.48 0.11 0.68 0.68 0.62
K-NN 44 62 44 88 99 89 30 26 29 0.17 036 0.19 0.67 0.67 0.66
CART 72 80 73 44 78 40 80 82 84 0.24 0.60 0.25 0.62 0.62 0.62
NB 55 67 56 64 85 64 52 50 53 0.14 0.37 0.15 0.61 0.61 0.60
RF 82 89 80 31 81 28 98 97 96 0.42 0.79 0.36 0.77 0.77 0.74
GBOOST 72 79 71 39 76 36 82 83 82 0.21 0.58 0.19 0.65 0.65 0.60
SVM 78 88 78 25 82 34 95 93 93 0.29 0.75 0.34 0.70 0.70 0.67
PAAC LR 61 56 56 62 55 55 60 57 56 0.20 0.12 0.10 0.63 0.63 0.60
K-NN 60 78 60 63 95 66 59 60 58 0.20 0.59 0.21 0.64 0.64 0.68
CART 65 77 67 35 78 34 77 77 78 0.11 0.54 0.12 0.56 0.56 0.56
NB 63 59 63 56 55 49 66 64 68 0.20 0.19 0.15 0.63 0.63 0.63
RF 75 88 79 26 82 33 94 93 94 0.28 0.76 0.35 0.67 0.67 0.73
GBOOST 70 78 72 34 73 30 84 83 85 0.20 0.56 0.17 0.61 0.61 0.64
SVM 69 79 72 47 78 49 78 80 80 0.25 0.57 0.28 0.68 0.68 0.70

AAI: Amino Acid Index, AAC: amino acid composition, CETD: Composition enhanced Transition and Distribution, DPC: dipeptide composition, PAAC: pseudo amino acid composition

LR: m3ynanauladafin, K-NN: iaufioisawues, CART: dul

VAN

19, NB: 1dliud, RF: 11gw, GBOOST: inaifinuviunds, SVM: fuwasnianiaasuusiu

Ac: anuusiui, Sn: anwla, Sp: ANwEwE, MCC: duLlazAng 184 Matthews, AUC: Wuildnsidulds
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