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ABSTRACT - Fine particulate matter (PM2.5) is a significant air pollution issue, particularly in
urban areas with high emissions, such as Bangkok, Thailand, and Guangzhou, China—one of the
most populous cities in the world. This research focuses on developing a predictive system for
PM2.5 concentration using machine learning techniques, including Linear Regression (LR),
Support Vector Regression (SVR), and XGBoost, to aid in air pollution monitoring and
management. The dataset used in this study is a secondary source containing recorded PM2.5
values from Guangzhou, China, between 2010 and 2015. Experimental comparisons of the three
models reveal that XGBoost demonstrates the highest predictive performance across all
timeframes. Specifically, for the 1-hour ahead prediction, the XGBoost model incorporating
historical PM2.5 averages and seasonal data achieved an R? of 0.6728, MAE of 12.06, and RMSE
0f 17.87, outperforming both LR and SVR. Furthermore, the predictive performance of all models
declined as the forecasting timeframe increased, but XGBoost consistently outperformed the other
methods in every scenario. The inclusion of seasonal information and historical PM2.5 averages
significantly enhanced the model’s ability to predict future PM2.5 concentrations.
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