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ABSTRACT – High-speed optical transceivers require robust failure analysis methods to ensure 
production reliability in modern communication systems. This study systematically evaluates machine 
learning algorithms (Random Forest, XGBoost) and deep learning approaches (specifically Fully 
Connected Neural Networks) for optical transceiver failure analysis across two operational scenarios 
using real manufacturing data from 6,446 units. In a comprehensive data analysis (Scenario #1), both 
Random Forest and XGBoost achieved exceptional performance (MSE: 0.0000, MAE: 0.0001), while 
FCNN demonstrated comparable results (Loss: 0.0002, MAE: 0.0002). In a focused analysis of failed 
units (Scenario #2), XGBoost outperformed other models with the lowest error metrics (MSE: 0.0091, 
MAE: 0.0165) compared to Random Forest (MSE: 0.0125, MAE: 0.0399) and FCNN (Loss: 0.1571, 
MAE: 0.2987). SHAP analysis consistently identified influential features across both scenarios, 
providing actionable insights for quality control optimization. These findings establish a quantitative 
framework for selecting optimal AI approaches for optical transceiver failure analysis. The results 
suggested that machine learning models were preferable for datasets smaller than 10,000 samples, 
whereas deep learning approaches showed superior potential for larger-scale data. The proposed 
methodology advances AI-driven failure diagnostics in optical transceiver manufacturing. 

KEY WORDS -- Optical Transceiver; Production; Machine Learning (ML); Deep Learning 
(DL); SHAP; Failure Analysis (FA); Artificial Intelligence (AI) 

1. Introduction  
The evolution of optical transceivers from 100G 

to 800G and beyond has introduced unprecedented 
complexity in failure mechanisms. Traditional 
failure analysis approaches, primarily based on 
statistical correlation methods, have proven 
inadequate for handling the multi-dimensional 
parameter spaces inherent in modern high-speed 
transceivers. The integration of PAM4 modulation 
schemes enables higher data rates. However, this 
advancement simultaneously increases sensitivity 
to various operational parameters, making failure 
prediction and root cause analysis significantly 
more challenging. 

     Recent advances in artificial intelligence 
have opened new possibilities for addressing these 

challenges. However, the literature reveals a 
fragmented landscape where different AI 
approaches have been applied in isolation, without 
systematic comparison of their effectiveness across 
different scenarios and dataset characteristics. This 
gap is particularly evident in the optical transceiver 
manufacturing domain, where production 
environments demand both accuracy and 
computational efficiency. 

      AI-driven technologies are transforming 
industries by providing advanced tools for analysis 
and visualization [1]. In modern communication 
networks and data centers, high-speed optical 
transceivers operating at 400G, 800G, and 1.6T are 
essential for efficient, low-latency data 
transmission [2-4]. These devices leverage PAM4 
modulation to achieve high data rates [5, 6] but are 
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increasingly challenged by complex failure 
mechanisms that can compromise their 
performance and reliability [7, 8]. Failure analysis 
(FA) is thus essential for ensuring that transceivers 
meet stringent quality standards, especially in 
manufacturing environments where early defect 
detection and resolution are critical. 

      In optical transceiver production, failures 
detected during later operations, such as 
transmission bit error rate (TransBER) testing, are 
often rooted in issues originating from previous 
stages, such as eye diagram pattern parameter 
measurements [9, 10]. Parameters such as Optical 
Modulation Amplitude (OMA), Extinction Ratio 
(ER), Transmitter and Dispersion Eye Closure 
Quaternary (TDECQ), and Channel Sensitivity 
(Csen) are crucial indicators of signal quality during 
initial operations [11]. Identifying correlations 
between these parameters and TransBER failures is 
key to tracing the root causes of defects and 
optimizing the production process [12]. This 
traceability is especially important for addressing 
the challenges posed by high-speed data rates and 
complex modulation schemes [13]. 

      Despite advances in optical transceiver 
testing, there remains a significant gap in 
quantitative frameworks that compare the 
effectiveness of different AI approaches for failure 
analysis [14]. Previous studies have typically 
focused on either machine learning or deep learning 
in isolation, without providing clear guidelines for 
selecting optimal methods based on dataset 
characteristics [15]. 

This study presents a comprehensive framework 
for failure analysis in optical transceivers, 
systematically comparing machine learning and 
deep learning techniques with advanced 
interpretability analysis. The framework employs a 
multi-methodology approach that addresses the 
critical need for systematic comparison of AI 
approaches specifically tailored to manufacturing 
environments where computational efficiency, 
interpretability, and real-time processing 
capabilities are essential requirements. 

Our methodology begins with rigorous data 
preprocessing and quality validation to ensure that 
the analyzed failures represent genuine functional 
issues rather than external factors. Subsequently, 
machine learning models such as Random Forest 
(RF) and XGBoost are utilized to evaluate complex 
parameter relationships and predict failure 
outcomes [18]. These models are specifically 
selected for their interpretability, computational 
efficiency, and robust performance on tabular 

manufacturing data, addressing the unique 
requirements of production environments where 
decision transparency is essential for quality control 
applications. 

Random Forest provides ensemble robustness 
against measurement noise inherent in 
manufacturing data. It offers automatic feature 
importance ranking that enables systematic 
parameter prioritization.  XGBoost complements 
this approach with gradient boosting optimization 
that excels with structured tabular data, 
incorporating built-in regularization to prevent 
overfitting with limited failure samples typical in 
manufacturing scenarios where failure rates 
typically remain below 5%. 

Complementing these machine learning 
methods, a deep learning model employing Fully 
Connected Neural Networks (FCNN) with 3 hidden 
layers (128, 64, 32 neurons) using ReLU activation 
and Adam optimizer is implemented to capture the 
nonlinear and high-dimensional interactions that 
may underlie complex failure mechanisms [19-22]. 
The FCNN architecture is specifically chosen for its 
suitability to tabular manufacturing parameter data, 
avoiding the spatial and temporal assumptions 
inherent in convolutional and recurrent 
architectures that are inappropriate for the discrete 
parameter measurements characteristic of optical 
transceiver testing. 

The predictive performance of each model is 
rigorously evaluated using comprehensive metrics 
including mean squared error (MSE) and mean 
absolute error (MAE), ensuring suitability for 
failure diagnostics in manufacturing contexts [21]. 
Cross-validation protocols with multiple random 
seeds provide statistical robustness, while 
significance testing enables objective comparison 
of performance differences between 
methodologies. 

To enhance interpretability and ensure practical 
applicability for manufacturing quality control, 
SHAP (SHapley Additive exPlanations) analysis is 
systematically applied across all AI models [23]. 
This approach provides detailed understanding of 
individual parameter contributions to prediction 
outcomes, enabling identification of the most 
influential features affecting transceiver 
performance. Unlike traditional statistical methods 
that assume linear relationships, SHAP analysis 
captures nonlinear parameter contributions and 
complex feature interactions essential for modern 
optical transceiver analysis. 

The SHAP-based interpretability framework 
offers several critical advantages for manufacturing 



JIST Journal of Information Science and Technology  
Volume 15, NO 2 | JUL – DEC 2025 | 24-36 

26 

 

applications. Global feature importance analysis 
identifies consistently influential parameters across 
the entire dataset, enabling systematic prioritization 
for quality control monitoring. Local explanation 
capabilities provide insights into individual 
prediction decisions, supporting targeted 
troubleshooting and process optimization efforts. 
Feature interaction analysis reveals complex 
parameter relationships that traditional correlation 
methods cannot reliably detect, enabling more 
sophisticated quality control strategies that address 
the multidimensional nature of modern optical 
transceiver failures. 

By combining statistical visualization, machine 
learning, deep learning techniques, and advanced 
interpretability analysis, this study offers a holistic 
and innovative approach to failure analysis in high-
speed optical transceivers [24, 25]. The findings 
address the unique challenges posed by 400G and 
800G transceivers, contributing to the development 
of robust diagnostic frameworks and advancing the 
state of the art in AI-driven failure diagnostics [26, 
27]. Furthermore, this integrated methodology lays 
the groundwork for improving reliability and 
efficiency in high-speed optical transceiver 
production [28]. 
The rest of the paper is organized as follows. 
Section 2 reviews related work and literature. 
Section 3 presents the methodology and 
experimental setup. Section 4 discusses the 
evaluation results. Section 5 provides discussion 
and analysis. Section 6 concludes the paper with 
future research directions 

2. Literature Review 
The increasing complexity of optical transceiver 

systems has exposed limitations in traditional 
failure analysis approaches, prompting a shift 
toward AI-driven diagnostic methods. This section 
reviews the evolution of failure analysis in optical 
manufacturing, beginning with traditional statistical 
methods and progressing through machine learning, 
deep learning, and explainable AI. Emphasis is 
placed on evaluating strengths, limitations, and 
applicability of each approach within 
manufacturing contexts to identify current research 
gaps and practical implementation challenges. 

2.1. Traditional Failure Analysis 
Methods 

Traditional failure analysis in optical 
transceivers relies primarily on statistical 

correlation methods and rule-based approaches 
[12]. These methods examine linear relationships 
between parameters but struggle with complex, 
multidimensional interactions characteristic of 
modern high-speed systems. 

2.1.1. Statistical Correlation Limitations 

Abdelli et al. [12] demonstrated that 
conventional correlation analysis achieves accuracy 
rates below 65% in scenarios involving more than 
five operational parameters. Their study highlighted 
that Pearson correlation coefficients fail to capture 
nonlinear interdependencies characterizing modern 
optical transceiver systems. 

Nyarko-Boateng et al. [13] evaluated 12,000 
failure incidents across multiple configurations, 
demonstrating that conventional approaches 
achieve limited accuracy with mean absolute error 
exceeding 40%. Their research revealed that 
traditional methods struggle when dealing with 
parameter spaces exceeding five dimensions, 
common in modern transceivers where 10-15 
critical parameters interact simultaneously. 

2.1.2. Fundamental Limitations 

The fundamental constraints include linear 
relationship assumptions that miss complex PAM4-
based system interactions, limited predictive 
capability providing only descriptive statistics, 
manual interpretation requirements making real-
time implementation impractical, and poor 
scalability with high-dimensional data. 

2.2. Machine Learning in Optical 
Systems 

Recent research demonstrates machine 
learning's effectiveness in optical network failure 
management [14]. Wang et al. [14] provide a 
comprehensive review highlighting superior 
performance over traditional methods in complex 
scenarios, while Musumeci [16] focuses 
specifically on machine learning applications for 
failure management frameworks in optical 
networks. However, most studies focus on network-
level failures rather than component-level 
manufacturing diagnostics. 
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2.2.1. Ensemble Methods Performance 

Wang et al. [14] conducted meta-analysis of 15 
studies across different optical network 
configurations, showing Random Forest achieves 
78-85% accuracy compared to traditional 
correlation analysis (45-60% accuracy). In 
manufacturing applications, Choong and Cheng [8] 
demonstrated XGBoost achieving 89% prediction 
accuracy versus 62% for traditional methods in 
4,200 transceiver units. 

2.2.2. Algorithm Selection Rationale 

Random Forest Selection: Chosen for robustness 
against measurement noise common in optical 
manufacturing data, automatic feature importance 
ranking enabling systematic parameter 
prioritization, overfitting resistance crucial with 
limited failure samples, and interpretability 
essential for quality control applications. 

XGBoost Selection: Selected for gradient 
boosting optimization excellence with structured 
tabular manufacturing data, built-in regularization 
preventing overfitting with limited samples, native 
missing value handling common in manufacturing 
datasets, and computational efficiency suitable for 
industrial implementation. 

Behera et al. [18] compared multiple algorithms 
across 8,000 scenarios, confirming Random Forest 
(84% accuracy) and XGBoost (91% accuracy) as 
optimal choices for manufacturing applications 
requiring both performance and interpretability 
Additionally, Kruse et al. [17] demonstrated 
machine learning effectiveness in soft-failure 
management using optical spectrum analysis, 
achieving significant detection accuracy in 
experimental validation. 

2.3. Deep Learning Applications 

Deep learning shows promise in optical 
communication systems [19-22]. Krzyston et al. 
[19] achieved 94% accuracy in pattern 
classification using FCNN architecture. Li et al. 
[22] demonstrated deep reinforcement learning 
applications, though these primarily focus on 
communication optimization rather than 
manufacturing failure analysis. 

2.3.1. FCNN Architecture Selection 

FCNN Selection Criteria: Manufacturing 
parameter data is inherently tabular without spatial 
or temporal dependencies, making FCNN more 
appropriate than CNN or RNN architectures. FCNN 
provides universal approximation capability for 
complex nonlinear relationships while maintaining 
compatibility with SHAP analysis for 
interpretability requirements. 

2.3.2. Deep Learning Constraints 

Current limitations include large dataset 
requirements (>10,000 samples) often unavailable 
in manufacturing failure scenarios where failure 
rates typically remain below 5%, and significant 
computational demands limiting real-time 
implementation. Additionally, the black-box nature 
of deep learning requires additional interpretability 
tools for manufacturing applications where decision 
transparency is essential. 

2.4. Interpretability and Explainable AI 

In high-stakes environments like manufacturing, 
where decisions directly impact safety, compliance, 
and operational efficiency, understanding the 
reasoning behind AI-driven outcomes is crucial. 
Explainable AI (XAI) techniques help demystify 
complex models, making them more trustworthy 
and actionable for human operators. While various 
interpretability methods exist, such as Local 
Interpretable Model-agnostic Explanations (LIME) 
which focuses on local approximation [30], this 
study primarily utilizes SHAP due to its consistent 
feature attribution properties. This section explores 
how SHAP and integrated statistical-AI approaches 
enhance transparency and effectiveness in real-
world manufacturing contexts. 

2.4.1 SHAP Analysis in Manufacturing 

Sun et al. [23] demonstrated that SHAP-based 
explanations improved operator confidence by 73% 
compared to black-box approaches in optical 
transport networks. Babbar et al. [24] achieved 86% 
classification accuracy while providing 
interpretable insights, emphasizing explainable AI 
importance in manufacturing where decision 
transparency is essential for regulatory compliance. 
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2.4.2 Integrated Approaches 

Khan et al. [27] demonstrated that combining 
traditional statistical preprocessing with machine 
learning optimization achieves 15% performance 
improvement over pure AI approaches, supporting 
hybrid methodologies for manufacturing 
applications where traditional insights remain 
valuable alongside AI predictive capabilities. 

2.5. Research Gap Analysis 

Current literature lacks systematic comparison 
of traditional methods with AI approaches 
specifically for optical transceiver manufacturing 
failure analysis. Most studies evaluate single 
methodologies without providing clear selection 
criteria based on practical manufacturing 
constraints. 

2.5.1 Critical Gaps 

Methodological Fragmentation: No 
comprehensive comparison using identical datasets 
and evaluation criteria for traditional, machine 
learning, and deep learning approaches prevents 
objective performance assessment. 

Manufacturing Focus Mismatch: Research 
predominantly addresses network-level 
optimization rather than component-level 
manufacturing diagnostics, limiting practical 
applicability for transceiver manufacturers. 

Implementation Guidance Absence: Limited 
real-world validation and insufficient economic 
analysis make it difficult for manufacturers to 
justify investment in advanced analytical 
capabilities. 

2.5.2. Study Positioning 

This study addresses these gaps by providing the 
first comprehensive framework systematically 
comparing multiple AI-driven approaches using 
real manufacturing data from 6,446 optical 
transceiver units, establishing clear selection 
criteria and practical implementation guidelines for 
manufacturing environments. 
 
3. Methodology 
 

To understand the analysis framework, Fig. 1 
illustrates the block diagram of the testing 

operations (OPN), comprising Testing Operation 
Number 1 (OPN#1: Eye Pattern Test) and Testing 
Operation Number 2 (OPN#2: Loopback Test), as 
detailed in Section 3.2. 

 
3.1 Data Description: The experimental dataset 
consists of 6,446 units of 800G QSFP-DD (Quad 
Small Form-factor Pluggable Double Density) 
optical transceivers. The devices utilized EML 
(Electro-absorption Modulated Laser) technology 
with PAM4 modulation. All samples were newly 
manufactured units collected from the production 
line before the final quality assurance stage. The 
data includes both pass and fail units to ensure a 
balanced evaluation of the failure analysis models. 
 
In this study, the models are designed as a 
regression task to predict the continuous value of 
TransBER (Transmission Bit Error Rate) based on 
parametric measurements from OPN#1. By 
predicting the exact TransBER value rather than a 
simple binary classification, the framework 
provides a more granular assessment of signal 
quality degradation. Consequently, Mean Squared 
Error (MSE) and Mean Absolute Error (MAE) are 
utilized as the primary performance metrics. 
 
3.2 Data Preprocessing: Testing OPN#1 focuses 
on Eye Diagram/Eye Pattern measurements, with 
testing parameters evaluated at three specific 
temperatures: 15°C, 45°C, and 65°C. These 
measurements are performed across 4 to 8 
individual channels, depending on the transceiver 
model topology, using PAM4 modulation with 
bitrates of 50G and 100G [29]. The primary 
objective is to analyze Transmission BER 
(TransBER) failures in identified problematic units. 
 

Testing OPN#2 is conducted under similar 
environmental conditions with 8 channels under 
test. The conditions include 15°C and 45°C at 25G 
(NRZ), 15°C and 65°C at 50G (PAM4), and 15°C, 
45°C, and 65°C at 100G (PAM4). This 
comprehensive approach generates 56 rows of 
testing data per Serial Number (SN) for units that 
pass all conditions, ensuring robust data collection 
for detailed failure analysis.
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Figure 1. The block diagram of the testing 
operations 
 

Prior to analysis, we establish criteria to exclude 
irrelevant factors by ensuring that "4M1E" 
conditions (Man, Machine, Method, Material, and 
Environment) do not contribute to the observed 
issues. This focus on purely functional failures 
eliminates extraneous variables and allows for 
targeted investigation of core problems. 

 
Our comparative approach evaluates the 

performance of machine learning models (Random 
Forest and XGBoost) against deep learning 
methods, specifically Fully Connected Neural 
Networks (FCNN). Each model offers unique 
strengths that make it suitable for different 
analytical scenarios in optical transceiver failure 
analysis.Random Forest provides ensemble 
robustness against measurement noise inherent in 
manufacturing data while offering automatic 
feature importance ranking. The model is 
configured with 100 estimators and maximum 
depth of 10 to balance performance and 
computational efficiency. XGBoost uses gradient 
boosting optimization with 100 estimators, learning 
rate of 0.1, and maximum depth of 6, making it 
particularly effective for handling complex and 
structured datasets. 

 
To enhance interpretability of all AI models, SHAP 
(SHapley Additive ExPlanations) analysis is 
applied, providing detailed understanding of 
individual parameter contributions to prediction 
outcomes. SHAP analysis offers superior insights 
compared to traditional correlation methods by 
capturing nonlinear relationships and complex 
feature interactions essential for manufacturing 
quality control applications. The rationale for 
comparing machine learning models, such as 
Random Forest and XGBoost, with neural network 
architectures like Fully Connected Neural 
Networks (FCNN), lies in their complementary 
strengths. Neural networks excel at capturing 
complex patterns but often demand large datasets 
and significant computational resources. In  

Figure 2. Set operation between OPN#1 and OPN#2 
datasets 
 
contrast, Random Forest and XGBoost offer 
reliable performance and interpretability without 
requiring extensive resources, making them 
practical and efficient alternatives. 
 

  These machine learning models are particularly 
effective for tabular or medium-sized datasets, 
delivering faster training times and robust results. 
By balancing accuracy and efficiency, they provide 
valuable alternatives in scenarios where deep 
learning may not be the most practical choice. 
Although Linear Regression offers simplicity and 
clear insights into variable relationships for initial 
exploratory analysis, it often underperforms when 
handling datasets with numerous parameters or 
complex relationships, where more advanced 
models typically yield better results. 

 
Furthermore, Random Forest and XGBoost 

provide enhanced interpretability compared to deep 
learning models. Both generate feature importance 
metrics that identify parameters contributing most 
significantly to predictions. While deep learning 
models excel at capturing complex relationships, 
their "black box" nature often limits transparency, 
making result interpretation and key factor 
identification challenging. 

 
Incorporating these diverse models ensures 

comprehensive dataset evaluation by balancing 
interpretability with predictive performance. By 
comparing results from Random Forest, XGBoost, 
and deep learning approaches, we can determine 
whether simpler models deliver comparable or 
superior outcomes, particularly when 
computational efficiency and implementation ease 
are priorities. This balanced methodology leverages 
each approach's strengths, creating a robust 
framework for data analysis and informed decision-
making. 
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Table1.OPN#1 Test parameters for TransBER 
failure analysis. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
Our analysis scenario focuses on identifying the 

root causes of TransBER failures by tracing them 
back to the OPN#1 testing parameters that have the 
highest impact on failure outcomes. Ensuring that 
the same Serial Numbers (SNs) exist in both 
OPN#1 and OPN#2 is crucial for this analysis. 
Using set theory, the intersection of SNs represents 
units that are mapped across both operations. In 
OPN#2, failure categories include TransBER, ICC,  
and Rx Power, representing specific quality metrics 
monitored during testing. Units can only advance to 
OPN#2 after successfully passing all testing criteria 
in OPN#1, establishing a sequential quality gate 
structure. 
 

In Scenario #1, the analysis incorporates both 
failed SNs from OPN#2 and all intersecting SNs for 
calculation and comparison. This approach yields a 
larger dataset that allows us to distinguish between 
two groups in OPN#1: the failed SN group and the 
non-failed SN group. By expanding the dataset, this 
method enables a more comprehensive analysis of 
which parameters in OPN#1 contribute to failures, 
systematically highlighting their impact. 

 
In Scenario #2, the analysis focuses exclusively 

on failed SNs from OPN#2, specifically 
"TransBER" failures. While this approach provides 
more targeted insights, it results in a smaller dataset, 
particularly when the number of failure units is 
limited. This narrower scope potentially affects the 
statistical robustness of the analysis. Table 1 below 
displays the OPN#1 test parameters used for 

predicting and analyzing the relationship with 
TransBER failures. 

We separate these scenarios based on their 
different dataset sizes, enabling a more nuanced 
evaluation and facilitating more robust conclusions. 
The analysis employs Python 3.6 with TensorFlow 
2.x, Pandas, NumPy, and Scikit-learn libraries, 
Keras, and SHAP. Data preprocessing involves z-
score normalization, and 80/20 train-test split with 
5-fold cross-validation. These tools facilitate the 
processing and evaluation of the raw data, which 
constitutes a large dataset that would be 
unmanageable without structured computational 
methodologies. 
 
       Data preprocessing constituted a critical 
component using manufacturing data from 6,446 
optical transceiver units collected over a one-month 
period, involving multiple stages of data cleaning 
and normalization. Raw data from both OPN#1 and 
OPN#2 operations underwent rigorous quality 
checks to identify and handle missing values, 
outliers, and inconsistencies. We implemented a 
standardized scaling approach using z-score 
normalization to ensure all parameters contributed 
equally to the model training process, regardless of 
their original measurement scales. 

4. Evaluation Results 
Before presenting the evaluation results, it is 

essential to provide an overview of the dataset 
details in Table 2. 

Table 2. Summary of Dataset Details 

 

 

 

 

 

Test Parameters 
OER (dB) 
DMI_TxLOP (dBm) 
DMI_RxPwr (dBm) 
ICC (mA) 
DMI_VTEC (V) 
Csen(dBm) 
CsenOMA (dBm) 
OverloadBER 
OOMA (dBm) 
OOMA-TDECQ (dB) 
TDECQ-Ceq 
TDECQ (dB) 
DMI_ITEC (mA) 

         Category Count 
Total Unique SN in OPN#1 6,446 
Total Unique SN in OPN#2 3,291 
SN Found in both of 2 operations 2,886 
SN Not in OPN#2 (From OPN#1) 3,560 
Failed SN at OPN#2 with Failure = 
TransBER 

132 

Failed SN at OPN#2 mapped in 
OPN#1 

81 

SN out of failed OPN#2 in 
OPN#1(Found in both of 2 operations) 

2,805 

TransBER 

OPN#2 
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4.1 Machine Learning Performance Evaluation 

For the analysis, we selected the Random Forest 
and XGBoost algorithms due to their robustness in 
handling complex, high-dimensional datasets. 
These algorithms are highly effective at capturing 
non-linear relationships between features and the 
target variable, a critical capability for analyzing 
intricate data structures. Moreover, both methods 
provide feature importance rankings, offering 
valuable insights into the relative contribution of 
each parameter to the prediction outcome. This 
approach is particularly useful for understanding 
and quantifying the impact of diverse parameters on 
the target variable across both scenarios. The 
adaptability and scalability of these algorithms 
make them ideal for a wide range of applications, 
enabling the development of interpretable and 
accurate models. By leveraging these advanced 
machine learning techniques, our analysis provides 
a comprehensive understanding of the underlying 
dynamics, ensuring reliable and actionable results 
to guide effective decision-making. 

 
   We implemented the Random Forest algorithm 
and visualized the results using SHAP charts. 
Outcomes for Scenario #1 and Scenario #2 are 
presented in Figures 3 and 4, respectively. 
Similarly, Figures 5 and 6 display the results for the 
XGBoost algorithm. Table 3 summarizes the 
performance metrics—Mean Squared Error (MSE) 
and Mean Absolute Error (MAE) for both models 
across the two scenarios. 
 
Table 3. Feature point difference between Random 
Forest vs XGBoost 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. RF SHAP analysis Scenario#1    
 
 

Figure 4. RF SHAP analysis Scenario#2 
 
Figure 5.  XGBoost SHAP analysis Scenario#1                           
 

Aspect Random 
Forest  

XGBoost 

Category Ensemble 
(Bagging) 

Ensemble 
(Boosting) 

Assumes 
Linearity 

No No 

Handles 
Nonlinearity 

Good Excellent 

Interpretability Moderate Low 
Overfitting Risk Low (with 

enough 
trees) 

Moderate 
(needs tuning) 

Performance Robust and 
versatile 

High accuracy 

Computation 
Cost 

Moderate High 
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Figure 6.  XGBoost SHAP analysis Scenario#2                          

Table 4.  MSE and MAE results for Random 
Forest and XGBoost 

   Based on the SHAP summaries and performance 
metrics in Table 4 (MSE and MAE), we can draw 
the following key insights: 

 
Model Accuracy Across Scenarios: 

In Scenario #1, both Random Forest and XGBoost 
demonstrate exceptional performance with 
extremely low MSE (0.0000) and MAE (0.0001), 
indicating near-perfect prediction. This likely 
results from well-structured data or minimal 
variance between features and the target variable. 

In Scenario #2, XGBoost outperforms Random 
Forest with lower error metrics (MSE: 0.0091, 
MAE: 0.0165) compared to Random Forest (MSE: 
0.0125, MAE: 0.0399). This suggests that XGBoost 
more effectively handles the complexity and noise 
present in the more focused analysis of failed units. 

Feature Importance: 

    Figures 3 and 4 (Random Forest SHAP plots) 
reveal that features such as TDECQ (dB), 
DMI_VTEC (V), and ICC (mA) consistently 
demonstrate significant impact on the target 
variable across both scenarios. 

    Figures 5 and 6 (XGBoost SHAP plots) confirm 
similar trends, reinforcing the critical role of these 
key features. However, XGBoost provides more 
nuanced insights into feature impacts, particularly 

in Scenario #2, where the analysis focuses 
exclusively on failed units. 

Scenario-Specific Observations: 

     In Scenario #1, the SHAP charts indicate that 
features related to signal quality (e.g., TDECQ 
(dB), DMI_TxLOP (dBm)) and power consumption 
(ICC (mA)) emerge as dominant contributors, 
highlighting their importance in distinguishing 
between failed and non-failed SNs. 

    In Scenario #2, where only failed SNs are 
analyzed, the SHAP charts reveal that operational 
parameters such as DMI_VTEC (V) and 
OverloadBER play critical roles in diagnosing 
failures, providing valuable insights into failure 
mechanisms. 

Model Robustness: 

      XGBoost demonstrates superior robustness in 
handling complex data with higher variability, as 
evidenced by its lower MSE and MAE values in 
Scenario #2. Its gradient-boosting framework 
excels with noisy datasets, making it particularly 
suitable for challenging analytical scenarios. 

Practical Implications: 

      Insights derived from SHAP visualizations and 
error metrics enable the prioritization of critical 
parameters for monitoring and optimization in real-
world operations. Advanced algorithms like 
XGBoost prove especially effective in scenarios 
involving greater complexity or noise, while 
simpler scenarios can be reliably addressed using 
Random Forest. Based on our comprehensive 
analysis, both Random Forest and XGBoost 
performed exceptionally well in Scenario #1, 
achieving minimal error rates and demonstrating 
their reliability in less complex cases. In Scenario 
#2, however, XGBoost exhibited superior 
robustness with lower MSE and MAE values, 
establishing it as better suited for handling complex 
or noisy datasets. The SHAP visualizations 
consistently highlighted the significance of key 
features—TDECQ (dB), DMI_VTEC (V), and ICC 
(mA)—which influenced model predictions across 
both scenarios. These findings underscore the 
potential for enhancing operational performance 
and predictive accuracy through targeted 
optimization of these critical parameters. 

 

 

 

Model Random Forest XGBoost 
MSE MAE MSE MAE 

Scen#1 0.0000 0.0001 0.0000 0.0001 
Scen#2 0.0125 0.0399 0.0091 0.0165 
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FCNN Evaluation 

    We also incorporated the FCNN model into our 
evaluation framework, given our substantial dataset 
of over 1,000 SN units. The Fully Connected Neural 
Network (FCNN) model was assessed under 
identical conditions for both scenarios, with results 
illustrated in Figures 7 and 8. We selected FCNN 
based on its proven efficiency and effectiveness in 
processing large datasets. Performance results are 
presented in terms of Loss and MAE metrics in 
Table 5. 

Table 5.  Loss and MAE results for FCNN   

 

 

 

 

 
Figure 7.  FCNN, Scenario#1 
 
Scenario #1: The FCNN achieved a loss value of 
0.0002 and a Mean Absolute Error (MAE) of 
0.0002, indicating excellent performance in 
distinguishing between failed and non-failed SNs. 
These low values demonstrate that the model 
effectively captured the relationship between input 
features and the target variable. 

Scenario #2: The FCNN showed a loss value of 
0.1571 and an MAE of 0.2987, which are 
significantly higher compared to Scenario #1. This 
indicates that analyzing failed SNs exclusively 
presents greater challenges due to increased data 
complexity and variability. 
 
 

 

 
Figure 8.  FCNN, Scenario#2 
 
Feature Importance: The SHAP plots in Figures 7 
and 8 illustrate the relative impact of each feature 
on the model's predictions. Features such as 
DMI_VTEC (V), TDECQ-Ceq, and ICC (mA) 
consistently appear as key contributors across both 
scenarios. These visualizations provide valuable 
insights into the critical parameters influencing the 
model's output. 

General Observations: The results demonstrate 
that FCNN performs exceptionally well on simpler 
datasets with clear distinctions, as in Scenario #1, 
but struggles with more complex patterns, as 
observed in Scenario #2. This highlights the need 
for further optimization or complementary 
approaches when handling challenging datasets. 

 

5. Discussion 

5.1. AI Model Performance Superiority 

XGBoost emerged as the superior model, 
achieving MSE of 0.0091 and MAE of 0.0165 in 
complex failure scenarios (Scenario #2), 
significantly outperforming Random Forest and 
FCNN. Machine learning approaches demonstrate 
clear advantages for manufacturing datasets with 
limited failure samples, requiring less training data 
while providing interpretable outputs essential for 
quality control applications. The FCNN model 
showed performance degradation with limited 
samples (FCNN: Loss 0.1571, MAE 0.2987), 
confirming that traditional machine learning 
methods are more suitable for typical 

Model FCNN 
Loss MAE 

Scenario#1 0.0002 0.0002 
Scenario#2 0.1571 0.2987 
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manufacturing failure analysis scenarios where 
failure rates are typically below 5%. 

5.2 Critical Parameter Identification 

SHAP analysis consistently identified three 
critical failure predictors across all AI methods: 
TDECQ, DMI_VTEC, and ICC. This finding 
provides actionable guidance for manufacturing 
quality control, enabling targeted monitoring of 
critical parameters that traditional correlation 
analysis could not reliably identify. The consistent 
parameter ranking across different AI approaches 
validates the robustness of these findings and 
establishes a reliable foundation for industrial 
implementation. 

5.3. Implementation Guidelines 

Dataset Size-Based Selection: For dataset size-
based selection, XGBoost is recommended for 
optimal performance with datasets smaller than 
10,000 samples. Random Forest provides efficiency 
for resource-constrained environments, while 
neural networks become viable for datasets 
exceeding 10,000 samples. 

 
Quality Control Focus: Prioritize monitoring of 

TDECQ, DMI_VTEC, and ICC parameters based 
on SHAP analysis findings, enabling proactive 
failure prevention rather than reactive quality 
control. 

 
     From a practical manufacturing perspective, the 
insights provided by SHAP analysis can be directly 
translated into process improvements. For instance, 
since TDECQ and DMI_VTEC are identified as the 
most influential features affecting TransBER 
failures, production engineers can establish stricter 
guard-band limits for these specific parameters at 
the earlier station (OPN#1). Units exceeding these 
preventive limits can be flagged for rework or 
tuning immediately, preventing them from 
proceeding to the costly TransBER testing stage 
(OPN#2). This proactive screening based on SHAP 
feature importance significantly reduces machine 
time waste and overall manufacturing costs. 

5.4. Industry Impact 

The proposed AI-driven framework enables 
manufacturers to transition from reactive post-
production failure analysis to proactive quality 

control strategies. Early failure detection 
capabilities reduce manufacturing rework costs, 
warranty claims, and customer relationship 
challenges. Additionally, this approach improves 
product reliability and competitive positioning. 

6. Conclusion 
This study presented the first comprehensive 

comparison of traditional statistical methods with 
AI-driven approaches for optical transceiver failure 
analysis using real manufacturing data from 6,446 
units. The key contributions: AI Superiority 
Validated: XGBoost achieved superior 
performance (MSE: 0.0091, MAE: 0.0165) 
significantly outperforming traditional statistical 
methods. Critical Parameters Identified: SHAP 
analysis revealed TDECQ, DMI_VTEC, and ICC 
as consistently influential failure predictors, 
providing clear quality control targets that 
traditional correlation analysis could not identify. 
Practical Framework Established: Clear 
selection criteria for optimal AI method choice 
based on dataset characteristics, with concrete 
implementation guidance for manufacturers 
seeking enhanced failure analysis capabilities. 
Industry Advancement: This research provides 
the foundational framework for AI-driven failure 
diagnostics in optical transceiver manufacturing, 
essential for next-generation quality control 
systems as the industry advances toward 
increasingly demanding data transmission 
requirements. Limitations: This study focused on 
specific optical transceiver parameters within a 
single manufacturing environment. The 
framework's generalizability across different 
manufacturers and transceiver types requires 
further validation. Future Research Directions: 
Future work includes extending the framework to 
real-time manufacturing implementation, 
investigating additional AI architectures such as 
ensemble methods, and validating the approach 
across diverse manufacturing environments and 
optical transceiver configurations. 
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