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ABSTRACT — High-speed optical transceivers require robust failure analysis methods to ensure
production reliability in modern communication systems. This study systematically evaluates machine
learning algorithms (Random Forest, XGBoost) and deep learning approaches (specifically Fully
Connected Neural Networks) for optical transceiver failure analysis across two operational scenarios
using real manufacturing data from 6,446 units. In a comprehensive data analysis (Scenario #1), both
Random Forest and XGBoost achieved exceptional performance (MSE: 0.0000, MAE: 0.0001), while
FCNN demonstrated comparable results (Loss: 0.0002, MAE: 0.0002). In a focused analysis of failed
units (Scenario #2), XGBoost outperformed other models with the lowest error metrics (MSE: 0.0091,
MAE: 0.0165) compared to Random Forest (MSE: 0.0125, MAE: 0.0399) and FCNN (Loss: 0.1571,
MAE: 0.2987). SHAP analysis consistently identified influential features across both scenarios,
providing actionable insights for quality control optimization. These findings establish a quantitative
framework for selecting optimal Al approaches for optical transceiver failure analysis. The results
suggested that machine learning models were preferable for datasets smaller than 10,000 samples,
whereas deep learning approaches showed superior potential for larger-scale data. The proposed
methodology advances Al-driven failure diagnostics in optical transceiver manufacturing.

KEY WORDS -- Optical Transceiver; Production; Machine Learning (ML); Deep Learning
(DL); SHAP; Failure Analysis (FA); Artificial Intelligence (AI)

challenges. However, the literature reveals a
fragmented landscape where different Al
approaches have been applied in isolation, without

1. Introduction
The evolution of optical transceivers from 100G
to 800G and beyond has introduced unprecedented

complexity in failure mechanisms. Traditional
failure analysis approaches, primarily based on
statistical ~correlation methods, have proven
inadequate for handling the multi-dimensional
parameter spaces inherent in modern high-speed
transceivers. The integration of PAM4 modulation
schemes enables higher data rates. However, this
advancement simultaneously increases sensitivity
to various operational parameters, making failure
prediction and root cause analysis significantly
more challenging.

Recent advances in artificial intelligence
have opened new possibilities for addressing these
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systematic comparison of their effectiveness across
different scenarios and dataset characteristics. This
gap is particularly evident in the optical transceiver
manufacturing  domain, where  production
environments demand both accuracy and
computational efficiency.

Al-driven technologies are transforming
industries by providing advanced tools for analysis
and visualization [1]. In modern communication
networks and data centers, high-speed optical
transceivers operating at 400G, 800G, and 1.6T are
essential for efficient, low-latency data
transmission [2-4]. These devices leverage PAM4
modulation to achieve high data rates [5, 6] but are



increasingly challenged by complex failure
mechanisms  that can compromise their
performance and reliability [7, 8]. Failure analysis
(FA) is thus essential for ensuring that transceivers
meet stringent quality standards, especially in
manufacturing environments where early defect
detection and resolution are critical.

In optical transceiver production, failures
detected during later operations, such as
transmission bit error rate (TransBER) testing, are
often rooted in issues originating from previous
stages, such as eye diagram pattern parameter
measurements [9, 10]. Parameters such as Optical
Modulation Amplitude (OMA), Extinction Ratio
(ER), Transmitter and Dispersion Eye Closure
Quaternary (TDECQ), and Channel Sensitivity
(Csen) are crucial indicators of signal quality during
initial operations [11]. Identifying correlations
between these parameters and TransBER failures is
key to tracing the root causes of defects and
optimizing the production process [12]. This
traceability is especially important for addressing
the challenges posed by high-speed data rates and
complex modulation schemes [13].

Despite advances in optical transceiver
testing, there remains a significant gap in
quantitative frameworks that compare the
effectiveness of different Al approaches for failure
analysis [14]. Previous studies have typically
focused on either machine learning or deep learning
in isolation, without providing clear guidelines for
selecting optimal methods based on dataset
characteristics [15].

This study presents a comprehensive framework
for failure analysis in optical transceivers,
systematically comparing machine learning and
deep learning techniques with advanced
interpretability analysis. The framework employs a
multi-methodology approach that addresses the
critical need for systematic comparison of Al
approaches specifically tailored to manufacturing
environments where computational efficiency,
interpretability, = and  real-time  processing
capabilities are essential requirements.

Our methodology begins with rigorous data
preprocessing and quality validation to ensure that
the analyzed failures represent genuine functional
issues rather than external factors. Subsequently,
machine learning models such as Random Forest
(RF) and XGBoost are utilized to evaluate complex
parameter relationships and predict failure
outcomes [18]. These models are specifically
selected for their interpretability, computational
efficiency, and robust performance on tabular
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manufacturing data, addressing the unique
requirements of production environments where
decision transparency is essential for quality control
applications.

Random Forest provides ensemble robustness
against measurement noise  inherent in
manufacturing data. It offers automatic feature
importance ranking that enables systematic
parameter prioritization. XGBoost complements
this approach with gradient boosting optimization
that excels with structured tabular data,
incorporating built-in regularization to prevent
overfitting with limited failure samples typical in

manufacturing scenarios where failure rates
typically remain below 5%.
Complementing these machine learning

methods, a deep learning model employing Fully
Connected Neural Networks (FCNN) with 3 hidden
layers (128, 64, 32 neurons) using ReLU activation
and Adam optimizer is implemented to capture the
nonlinear and high-dimensional interactions that
may underlie complex failure mechanisms [19-22].
The FCNN architecture is specifically chosen for its
suitability to tabular manufacturing parameter data,
avoiding the spatial and temporal assumptions
inherent in  convolutional and  recurrent
architectures that are inappropriate for the discrete
parameter measurements characteristic of optical
transceiver testing.

The predictive performance of each model is
rigorously evaluated using comprehensive metrics
including mean squared error (MSE) and mean
absolute error (MAE), ensuring suitability for
failure diagnostics in manufacturing contexts [21].
Cross-validation protocols with multiple random
seeds provide statistical robustness, while
significance testing enables objective comparison
of performance differences between
methodologies.

To enhance interpretability and ensure practical
applicability for manufacturing quality control,
SHAP (SHapley Additive exPlanations) analysis is
systematically applied across all Al models [23].
This approach provides detailed understanding of
individual parameter contributions to prediction
outcomes, enabling identification of the most
influential features affecting transceiver
performance. Unlike traditional statistical methods
that assume linear relationships, SHAP analysis
captures nonlinear parameter contributions and
complex feature interactions essential for modern
optical transceiver analysis.

The SHAP-based interpretability framework
offers several critical advantages for manufacturing



applications. Global feature importance analysis
identifies consistently influential parameters across
the entire dataset, enabling systematic prioritization
for quality control monitoring. Local explanation
capabilities provide insights into individual
prediction  decisions,  supporting  targeted
troubleshooting and process optimization efforts.
Feature interaction analysis reveals complex
parameter relationships that traditional correlation
methods cannot reliably detect, enabling more
sophisticated quality control strategies that address
the multidimensional nature of modern optical
transceiver failures.

By combining statistical visualization, machine
learning, deep learning techniques, and advanced
interpretability analysis, this study offers a holistic
and innovative approach to failure analysis in high-
speed optical transceivers [24, 25]. The findings
address the unique challenges posed by 400G and
800G transceivers, contributing to the development
of robust diagnostic frameworks and advancing the
state of the art in Al-driven failure diagnostics [26,
27]. Furthermore, this integrated methodology lays
the groundwork for improving reliability and
efficiency in high-speed optical transceiver
production [28].

The rest of the paper is organized as follows.
Section 2 reviews related work and literature.
Section 3 presents the methodology and
experimental setup. Section 4 discusses the
evaluation results. Section 5 provides discussion
and analysis. Section 6 concludes the paper with
future research directions

2. Literature Review

The increasing complexity of optical transceiver
systems has exposed limitations in traditional
failure analysis approaches, prompting a shift
toward Al-driven diagnostic methods. This section
reviews the evolution of failure analysis in optical
manufacturing, beginning with traditional statistical
methods and progressing through machine learning,
deep learning, and explainable Al. Emphasis is
placed on evaluating strengths, limitations, and
applicability = of each  approach  within
manufacturing contexts to identify current research
gaps and practical implementation challenges.

2.1. Traditional Failure Analysis
Methods

Traditional failure analysis in  optical
transceivers relies primarily on statistical
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correlation methods and rule-based approaches
[12]. These methods examine linear relationships
between parameters but struggle with complex,
multidimensional interactions characteristic of
modern high-speed systems.

2.1.1. Statistical Correlation Limitations

Abdelli et al. [12] demonstrated that
conventional correlation analysis achieves accuracy
rates below 65% in scenarios involving more than
five operational parameters. Their study highlighted
that Pearson correlation coefficients fail to capture
nonlinear interdependencies characterizing modern
optical transceiver systems.

Nyarko-Boateng et al. [13] evaluated 12,000
failure incidents across multiple configurations,
demonstrating that conventional approaches
achieve limited accuracy with mean absolute error
exceeding 40%. Their research revealed that
traditional methods struggle when dealing with
parameter spaces exceeding five dimensions,
common in modern transceivers where 10-15
critical parameters interact simultaneously.

2.1.2. Fundamental Limitations

The fundamental constraints include linear
relationship assumptions that miss complex PAM4-
based system interactions, limited predictive
capability providing only descriptive statistics,
manual interpretation requirements making real-
time implementation impractical, and poor
scalability with high-dimensional data.

2.2. Machine Learning
Systems

in Optical

Recent  research  demonstrates  machine
learning's effectiveness in optical network failure
management [14]. Wang et al. [14] provide a
comprehensive review highlighting superior
performance over traditional methods in complex
scenarios, while Musumeci [16] focuses
specifically on machine learning applications for
failure management frameworks in optical
networks. However, most studies focus on network-
level failures rather than component-level
manufacturing diagnostics.



2.2.1. Ensemble Methods Performance

Wang et al. [14] conducted meta-analysis of 15
studies  across  different optical network
configurations, showing Random Forest achieves
78-85% accuracy compared to traditional
correlation analysis (45-60% accuracy). In
manufacturing applications, Choong and Cheng [8]
demonstrated XGBoost achieving 89% prediction
accuracy versus 62% for traditional methods in
4,200 transceiver units.

2.2.2. Algorithm Selection Rationale

Random Forest Selection: Chosen for robustness
against measurement noise common in optical
manufacturing data, automatic feature importance
ranking enabling systematic parameter
prioritization, overfitting resistance crucial with
limited failure samples, and interpretability
essential for quality control applications.

XGBoost Selection: Selected for gradient
boosting optimization excellence with structured
tabular manufacturing data, built-in regularization
preventing overfitting with limited samples, native
missing value handling common in manufacturing
datasets, and computational efficiency suitable for
industrial implementation.

Behera et al. [18] compared multiple algorithms
across 8,000 scenarios, confirming Random Forest
(84% accuracy) and XGBoost (91% accuracy) as
optimal choices for manufacturing applications
requiring both performance and interpretability
Additionally, Kruse et al. [17] demonstrated
machine learning effectiveness in soft-failure
management using optical spectrum analysis,
achieving significant detection accuracy in
experimental validation.

2.3. Deep Learning Applications

Deep learning shows promise in optical
communication systems [19-22]. Krzyston et al.
[19] achieved 94% accuracy in pattern
classification using FCNN architecture. Li et al.
[22] demonstrated deep reinforcement learning
applications, though these primarily focus on
communication  optimization  rather  than
manufacturing failure analysis.
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2.3.1. FCNN Architecture Selection

FCNN  Selection Criteria: Manufacturing
parameter data is inherently tabular without spatial
or temporal dependencies, making FCNN more
appropriate than CNN or RNN architectures. FCNN
provides universal approximation capability for
complex nonlinear relationships while maintaining

compatibility =~ with SHAP  analysis  for
interpretability requirements.
2.3.2. Deep Learning Constraints

Current limitations include large dataset

requirements (>10,000 samples) often unavailable
in manufacturing failure scenarios where failure
rates typically remain below 5%, and significant
computational ~demands limiting real-time
implementation. Additionally, the black-box nature
of deep learning requires additional interpretability
tools for manufacturing applications where decision
transparency is essential.

2.4. Interpretability and Explainable Al

In high-stakes environments like manufacturing,
where decisions directly impact safety, compliance,
and operational efficiency, understanding the
reasoning behind Al-driven outcomes is crucial.
Explainable AI (XAI) techniques help demystify
complex models, making them more trustworthy
and actionable for human operators. While various
interpretability methods exist, such as Local
Interpretable Model-agnostic Explanations (LIME)
which focuses on local approximation [30], this
study primarily utilizes SHAP due to its consistent
feature attribution properties. This section explores
how SHAP and integrated statistical-Al approaches
enhance transparency and effectiveness in real-
world manufacturing contexts.

2.4.1 SHAP Analysis in Manufacturing

Sun et al. [23] demonstrated that SHAP-based
explanations improved operator confidence by 73%
compared to black-box approaches in optical
transport networks. Babbar et al. [24] achieved 86%
classification accuracy while providing
interpretable insights, emphasizing explainable Al
importance in manufacturing where decision
transparency is essential for regulatory compliance.



2.4.2 Integrated Approaches

Khan et al. [27] demonstrated that combining
traditional statistical preprocessing with machine
learning optimization achieves 15% performance
improvement over pure Al approaches, supporting
hybrid  methodologies  for = manufacturing
applications where traditional insights remain
valuable alongside Al predictive capabilities.

2.5. Research Gap Analysis

Current literature lacks systematic comparison
of traditional methods with AI approaches
specifically for optical transceiver manufacturing
failure analysis. Most studies evaluate single
methodologies without providing clear selection

criteria based on practical manufacturing
constraints.

2.5.1 Critical Gaps

Methodological Fragmentation: No

comprehensive comparison using identical datasets
and evaluation criteria for traditional, machine
learning, and deep learning approaches prevents
objective performance assessment.

Manufacturing Focus Mismatch: Research
predominantly addresses network-level
optimization = rather than  component-level
manufacturing diagnostics, limiting practical
applicability for transceiver manufacturers.

Implementation Guidance Absence: Limited
real-world validation and insufficient economic
analysis make it difficult for manufacturers to
justify  investment in advanced analytical
capabilities.

2.5.2. Study Positioning

This study addresses these gaps by providing the
first comprehensive framework systematically
comparing multiple Al-driven approaches using
real manufacturing data from 6,446 optical
transceiver units, establishing clear selection
criteria and practical implementation guidelines for
manufacturing environments.

3. Methodology

To understand the analysis framework, Fig. 1
illustrates the block diagram of the testing
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operations (OPN), comprising Testing Operation
Number 1 (OPN#1: Eye Pattern Test) and Testing
Operation Number 2 (OPN#2: Loopback Test), as
detailed in Section 3.2.

3.1 Data Description: The experimental dataset
consists of 6,446 units of 800G QSFP-DD (Quad
Small Form-factor Pluggable Double Density)
optical transceivers. The devices utilized EML
(Electro-absorption Modulated Laser) technology
with PAM4 modulation. All samples were newly
manufactured units collected from the production
line before the final quality assurance stage. The
data includes both pass and fail units to ensure a
balanced evaluation of the failure analysis models.

In this study, the models are designed as a
regression task to predict the continuous value of
TransBER (Transmission Bit Error Rate) based on
parametric measurements from OPN#1. By
predicting the exact TransBER value rather than a
simple binary classification, the framework
provides a more granular assessment of signal
quality degradation. Consequently, Mean Squared
Error (MSE) and Mean Absolute Error (MAE) are
utilized as the primary performance metrics.

3.2 Data Preprocessing: Testing OPN#1 focuses
on Eye Diagram/Eye Pattern measurements, with
testing parameters evaluated at three specific
temperatures: 15°C, 45°C, and 65°C. These
measurements are performed across 4 to 8
individual channels, depending on the transceiver
model topology, using PAM4 modulation with
bitrates of 50G and 100G [29]. The primary
objective is to analyze Transmission BER
(TransBER) failures in identified problematic units.

Testing OPN#2 is conducted under similar
environmental conditions with 8 channels under
test. The conditions include 15°C and 45°C at 25G
(NRZ), 15°C and 65°C at 50G (PAM4), and 15°C,
45°C, and 65°C at 100G (PAM4). This
comprehensive approach generates 56 rows of
testing data per Serial Number (SN) for units that
pass all conditions, ensuring robust data collection
for detailed failure analysis.
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Figure 1. The block diagram of the testing
operations

Prior to analysis, we establish criteria to exclude
irrelevant factors by ensuring that "4MIE"
conditions (Man, Machine, Method, Material, and
Environment) do not contribute to the observed
issues. This focus on purely functional failures
eliminates extraneous variables and allows for
targeted investigation of core problems.

Our comparative approach evaluates the
performance of machine learning models (Random
Forest and XGBoost) against deep learning
methods, specifically Fully Connected Neural
Networks (FCNN). Each model offers unique
strengths that make it suitable for different
analytical scenarios in optical transceiver failure
analysis.Random Forest provides ensemble
robustness against measurement noise inherent in
manufacturing data while offering automatic
feature importance ranking. The model is
configured with 100 estimators and maximum
depth of 10 to balance performance and
computational efficiency. XGBoost uses gradient
boosting optimization with 100 estimators, learning
rate of 0.1, and maximum depth of 6, making it
particularly effective for handling complex and
structured datasets.

To enhance interpretability of all Al models, SHAP
(SHapley Additive ExPlanations) analysis is
applied, providing detailed understanding of
individual parameter contributions to prediction
outcomes. SHAP analysis offers superior insights
compared to traditional correlation methods by
capturing nonlinear relationships and complex
feature interactions essential for manufacturing
quality control applications. The rationale for
comparing machine learning models, such as
Random Forest and XGBoost, with neural network
architectures like Fully Connected Neural
Networks (FCNN), lies in their complementary
strengths. Neural networks excel at capturing
complex patterns but often demand large datasets
and significant computational resources. In
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Intersection

Figure 2. Set operation between OPN#1 and OPN#2
datasets

contrast, Random Forest and XGBoost offer
reliable performance and interpretability without
requiring extensive resources, making them
practical and efficient alternatives.

These machine learning models are particularly
effective for tabular or medium-sized datasets,
delivering faster training times and robust results.
By balancing accuracy and efficiency, they provide
valuable alternatives in scenarios where deep
learning may not be the most practical choice.
Although Linear Regression offers simplicity and
clear insights into variable relationships for initial
exploratory analysis, it often underperforms when
handling datasets with numerous parameters or
complex relationships, where more advanced
models typically yield better results.

Furthermore, Random Forest and XGBoost
provide enhanced interpretability compared to deep
learning models. Both generate feature importance
metrics that identify parameters contributing most
significantly to predictions. While deep learning
models excel at capturing complex relationships,
their "black box" nature often limits transparency,
making result interpretation and key factor
identification challenging.

Incorporating these diverse models ensures
comprehensive dataset evaluation by balancing
interpretability with predictive performance. By
comparing results from Random Forest, XGBoost,
and deep learning approaches, we can determine
whether simpler models deliver comparable or
superior outcomes, particularly when
computational efficiency and implementation ease
are priorities. This balanced methodology leverages
each approach's strengths, creating a robust
framework for data analysis and informed decision-
making.



Tablel.OPN#1 Test parameters for TransBER
failure analysis.

Test Parameters
OER (dB)
DMI_TxLOP (dBm)
DMI RxPwr (dBm)
ICC (mA)

DMI _VTEC (V)
Csen(dBm)
CsenOMA (dBm)
OverloadBER
OOMA (dBm)
OOMA-TDECQ (dB)
TDECQ-Ceq
TDECQ (dB)

DMI ITEC (mA)

OPN#2

TransBER

Our analysis scenario focuses on identifying the
root causes of TransBER failures by tracing them
back to the OPN#1 testing parameters that have the
highest impact on failure outcomes. Ensuring that
the same Serial Numbers (SNs) exist in both
OPN#1 and OPN#2 is crucial for this analysis.
Using set theory, the intersection of SNs represents
units that are mapped across both operations. In
OPN#2, failure categories include TransBER, ICC,
and Rx Power, representing specific quality metrics
monitored during testing. Units can only advance to
OPN#2 after successfully passing all testing criteria
in OPN#1, establishing a sequential quality gate
structure.

In Scenario #1, the analysis incorporates both
failed SNs from OPN#2 and all intersecting SNs for
calculation and comparison. This approach yields a
larger dataset that allows us to distinguish between
two groups in OPN#1: the failed SN group and the
non-failed SN group. By expanding the dataset, this
method enables a more comprehensive analysis of
which parameters in OPN#1 contribute to failures,
systematically highlighting their impact.

In Scenario #2, the analysis focuses exclusively
on failed SNs from OPN#2, specifically
"TransBER" failures. While this approach provides
more targeted insights, it results in a smaller dataset,
particularly when the number of failure units is
limited. This narrower scope potentially affects the
statistical robustness of the analysis. Table 1 below
displays the OPN#1 test parameters used for
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predicting and analyzing the relationship with
TransBER failures.

We separate these scenarios based on their
different dataset sizes, enabling a more nuanced
evaluation and facilitating more robust conclusions.
The analysis employs Python 3.6 with TensorFlow
2.x, Pandas, NumPy, and Scikit-learn libraries,
Keras, and SHAP. Data preprocessing involves z-
score normalization, and 80/20 train-test split with
5-fold cross-validation. These tools facilitate the
processing and evaluation of the raw data, which
constitutes a large dataset that would be
unmanageable without structured computational
methodologies.

Data preprocessing constituted a critical
component using manufacturing data from 6,446
optical transceiver units collected over a one-month
period, involving multiple stages of data cleaning
and normalization. Raw data from both OPN#1 and
OPN#2 operations underwent rigorous quality
checks to identify and handle missing values,
outliers, and inconsistencies. We implemented a
standardized scaling approach using z-score
normalization to ensure all parameters contributed
equally to the model training process, regardless of
their original measurement scales.

4. Evaluation Results

Before presenting the evaluation results, it is
essential to provide an overview of the dataset
details in Table 2.

Table 2. Summary of Dataset Details

Category Count
Total Unique SN in OPN#1 6,446
Total Unique SN in OPN#2 3,291
SN Found in both of 2 operations 2,886
SN Not in OPN#2 (From OPN#1) 3,560
Failed SN at OPN#2 with Failure = 132
TransBER
Failed SN at OPN#2 mapped in 81
OPN#1
SN out of failed OPN#2 in 2,805

OPN#1(Found in both of 2 operations)



4.1 Machine Learning Performance Evaluation

For the analysis, we selected the Random Forest
and XGBoost algorithms due to their robustness in
handling complex, high-dimensional datasets.
These algorithms are highly effective at capturing
non-linear relationships between features and the
target variable, a critical capability for analyzing
intricate data structures. Moreover, both methods
provide feature importance rankings, offering
valuable insights into the relative contribution of
each parameter to the prediction outcome. This
approach is particularly useful for understanding
and quantifying the impact of diverse parameters on
the target variable across both scenarios. The
adaptability and scalability of these algorithms
make them ideal for a wide range of applications,
enabling the development of interpretable and
accurate models. By leveraging these advanced
machine learning techniques, our analysis provides
a comprehensive understanding of the underlying
dynamics, ensuring reliable and actionable results
to guide effective decision-making.

We implemented the Random Forest algorithm
and visualized the results using SHAP charts.
Outcomes for Scenario #1 and Scenario #2 are
presented in Figures 3 and 4, respectively.
Similarly, Figures 5 and 6 display the results for the
XGBoost algorithm. Table 3 summarizes the
performance metrics—Mean Squared Error (MSE)
and Mean Absolute Error (MAE) for both models
across the two scenarios.

Table 3. Feature point difference between Random
Forest vs XGBoost

Aspect Random XGBoost
Forest

Category Ensemble = Ensemble
(Bagging) | (Boosting)

Assumes No No

Linearity

Handles Good Excellent

Nonlinearity

Interpretability = Moderate Low

Overfitting Risk = Low (with | Moderate
enough (needs tuning)
trees)

Performance Robust and = High accuracy
versatile

Computation Moderate High

Cost
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SHAP Summary: Scenario 1: Failed + Non-Failed SNs
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Figure 3. RF SHAP analysis Scenario#1

SHAP Summary: Scenario 2: Only Failed SNs

CImA "Q.-' - e o sa
oo Mo
DMI_ITEC(mA! ® o
*_ .
R A

Mo

Feature value

Low

SHAP value (impact on model output)

Figure 4. RF SHAP analysis Scenario#2

Figure 5. XGBoost SHAP analysis Scenario#l



SHAP Summary: Scenario 2: Only Failed SNs
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Feature value

SHAP value (impact on model output)

Figure 6. XGBoost SHAP analysis Scenario#2

Table 4. MSE and MAE results for Random
Forest and XGBoost

Model Random Forest XGBoost
MSE MAE MSE MAE

Scen#1 | 0.0000 | 0.0001 = 0.0000 & 0.0001

Scen#2 | 0.0125 @ 0.0399 0.0091 @ 0.0165

Based on the SHAP summaries and performance
metrics in Table 4 (MSE and MAE), we can draw
the following key insights:

Model Accuracy Across Scenarios:

In Scenario #1, both Random Forest and XGBoost
demonstrate  exceptional performance  with
extremely low MSE (0.0000) and MAE (0.0001),
indicating near-perfect prediction. This likely
results from well-structured data or minimal
variance between features and the target variable.

In Scenario #2, XGBoost outperforms Random
Forest with lower error metrics (MSE: 0.0091,
MAE: 0.0165) compared to Random Forest (MSE:
0.0125, MAE: 0.0399). This suggests that XGBoost
more effectively handles the complexity and noise
present in the more focused analysis of failed units.

Feature Importance:

Figures 3 and 4 (Random Forest SHAP plots)
reveal that features such as TDECQ (dB),
DMI VTEC (V), and ICC (mA) consistently
demonstrate significant impact on the target
variable across both scenarios.

Figures 5 and 6 (XGBoost SHAP plots) confirm
similar trends, reinforcing the critical role of these
key features. However, XGBoost provides more
nuanced insights into feature impacts, particularly
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in Scenario #2, where the analysis focuses
exclusively on failed units.

Scenario-Specific Observations:

In Scenario #1, the SHAP charts indicate that
features related to signal quality (e.g., TDECQ
(dB), DMI_TxLOP (dBm)) and power consumption
(ICC (mA)) emerge as dominant contributors,
highlighting their importance in distinguishing
between failed and non-failed SNs.

In Scenario #2, where only failed SNs are
analyzed, the SHAP charts reveal that operational
parameters such as DMI VTEC (V) and
OverloadBER play critical roles in diagnosing
failures, providing valuable insights into failure
mechanisms.

Model Robustness:

XGBoost demonstrates superior robustness in
handling complex data with higher variability, as
evidenced by its lower MSE and MAE values in
Scenario #2. Its gradient-boosting framework
excels with noisy datasets, making it particularly
suitable for challenging analytical scenarios.

Practical Implications:

Insights derived from SHAP visualizations and
error metrics enable the prioritization of critical
parameters for monitoring and optimization in real-
world operations. Advanced algorithms like
XGBoost prove especially effective in scenarios
involving greater complexity or noise, while
simpler scenarios can be reliably addressed using
Random Forest. Based on our comprehensive
analysis, both Random Forest and XGBoost
performed exceptionally well in Scenario #1,
achieving minimal error rates and demonstrating
their reliability in less complex cases. In Scenario
#2, however, XGBoost exhibited superior
robustness with lower MSE and MAE values,
establishing it as better suited for handling complex
or noisy datasets. The SHAP visualizations
consistently highlighted the significance of key
features—TDECQ (dB), DMI_VTEC (V), and ICC
(mA)—which influenced model predictions across
both scenarios. These findings underscore the
potential for enhancing operational performance
and predictive accuracy through targeted
optimization of these critical parameters.



FCNN Evaluation

We also incorporated the FCNN model into our
evaluation framework, given our substantial dataset
of over 1,000 SN units. The Fully Connected Neural
Network (FCNN) model was assessed under
identical conditions for both scenarios, with results
illustrated in Figures 7 and 8. We selected FCNN
based on its proven efficiency and effectiveness in
processing large datasets. Performance results are
presented in terms of Loss and MAE metrics in
Table 5.

Table 5. Loss and MAE results for FCNN

Model FCNN
Loss MAE
Scenario#1 0.0002 0.0002
Scenario#2 0.1571 0.2987
SHAP Summary Scenario 1:Faled + Non-Falled sNs
DMI_ITEC(mA)

TDECQ(dB)
TDECQ-Ceq
OOMA-TDECQ(dB)
OOMA(dBm)

OverloadBER

Feature value

Csen(dBm)
DMI_VTEC(V)
ICC(mA)
DMI_RxPwr(dBm)
DMI_TXLOP(dBm)

|
|
|
|
|
|
CsenOMA(dBm) |
|
|
|
|
|
|

OER(dB)

Low
-0.04 -0.02 0.00 0.02 0.04

SHAP value (impact on model output)

Figure 7. FCNN, Scenario#l

Scenario #1: The FCNN achieved a loss value of
0.0002 and a Mean Absolute Error (MAE) of
0.0002, indicating excellent performance in
distinguishing between failed and non-failed SNs.
These low values demonstrate that the model
effectively captured the relationship between input
features and the target variable.

Scenario #2: The FCNN showed a loss value of
0.1571 and an MAE of 0.2987, which are
significantly higher compared to Scenario #1. This
indicates that analyzing failed SNs exclusively
presents greater challenges due to increased data
complexity and variability.
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SHAP Summary Scenario 2: Only Failed SNs Hioh
g

DMI_ITEC(mA)
TDECQ(dB)
TDECQ-Ceq
OOMA-TDECQ(dB)
OOMA(dBm)

OverloadBER

Csen(dBm)

Feature value

DMI_VTEC(V)
ICC(mA)
DMI_RxPwr(dBm)
DMI_TxLOP(dBm)

|
|
|
|
|
|
CsenOMA(dBm) |
|
|
|
|
|
|

OER(dB)

-0.04 -0.02 0.00 0.02 0.04
SHAP value (impact on model output)

Figure 8. FCNN, Scenario#2

Feature Importance: The SHAP plots in Figures 7
and 8 illustrate the relative impact of each feature
on the model's predictions. Features such as
DMI VTEC (V), TDECQ-Ceq, and ICC (mA)
consistently appear as key contributors across both
scenarios. These visualizations provide valuable
insights into the critical parameters influencing the
model's output.

General Observations: The results demonstrate
that FCNN performs exceptionally well on simpler
datasets with clear distinctions, as in Scenario #1,
but struggles with more complex patterns, as
observed in Scenario #2. This highlights the need
for further optimization or complementary
approaches when handling challenging datasets.

5. Discussion

5.1. AI Model Performance Superiority

XGBoost emerged as the superior model,
achieving MSE of 0.0091 and MAE of 0.0165 in
complex failure scenarios (Scenario #2),
significantly outperforming Random Forest and
FCNN. Machine learning approaches demonstrate
clear advantages for manufacturing datasets with
limited failure samples, requiring less training data
while providing interpretable outputs essential for
quality control applications. The FCNN model
showed performance degradation with limited
samples (FCNN: Loss 0.1571, MAE 0.2987),
confirming that traditional machine learning
methods are more suitable for typical



manufacturing failure analysis scenarios where
failure rates are typically below 5%.

5.2 Critical Parameter Identification

SHAP analysis consistently identified three
critical failure predictors across all Al methods:
TDECQ, DMI VTEC, and ICC. This finding
provides actionable guidance for manufacturing
quality control, enabling targeted monitoring of
critical parameters that traditional correlation
analysis could not reliably identify. The consistent
parameter ranking across different Al approaches
validates the robustness of these findings and
establishes a reliable foundation for industrial
implementation.

5.3. Implementation Guidelines

Dataset Size-Based Selection: For dataset size-
based selection, XGBoost is recommended for
optimal performance with datasets smaller than
10,000 samples. Random Forest provides efficiency
for resource-constrained environments, while
neural networks become viable for datasets
exceeding 10,000 samples.

Quality Control Focus: Prioritize monitoring of
TDECQ, DMI_VTEC, and ICC parameters based
on SHAP analysis findings, enabling proactive
failure prevention rather than reactive quality
control.

From a practical manufacturing perspective, the
insights provided by SHAP analysis can be directly
translated into process improvements. For instance,
since TDECQ and DMI_VTEC are identified as the
most influential features affecting TransBER
failures, production engineers can establish stricter
guard-band limits for these specific parameters at
the earlier station (OPN#1). Units exceeding these
preventive limits can be flagged for rework or
tuning immediately, preventing them from
proceeding to the costly TransBER testing stage
(OPN#2). This proactive screening based on SHAP
feature importance significantly reduces machine
time waste and overall manufacturing costs.

5.4. Industry Impact

The proposed Al-driven framework enables
manufacturers to transition from reactive post-
production failure analysis to proactive quality
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control  strategies. Early failure detection
capabilities reduce manufacturing rework costs,
warranty claims, and customer relationship
challenges. Additionally, this approach improves
product reliability and competitive positioning.

6. Conclusion

This study presented the first comprehensive
comparison of traditional statistical methods with
Al-driven approaches for optical transceiver failure
analysis using real manufacturing data from 6,446
units. The key contributions: Al Superiority
Validated: XGBoost achieved superior
performance (MSE: 0.0091, MAE: 0.0165)
significantly outperforming traditional statistical
methods. Critical Parameters Identified: SHAP
analysis revealed TDECQ, DMI_VTEC, and ICC
as consistently influential failure predictors,
providing clear quality control targets that
traditional correlation analysis could not identify.
Practical Framework Established: Clear
selection criteria for optimal AI method choice
based on dataset characteristics, with concrete
implementation guidance for manufacturers
seeking enhanced failure analysis capabilities.
Industry Advancement: This research provides
the foundational framework for Al-driven failure
diagnostics in optical transceiver manufacturing,

essential for next-generation quality control
systems as the industry advances toward
increasingly  demanding data  transmission

requirements. Limitations: This study focused on
specific optical transceiver parameters within a
single manufacturing environment. The
framework's generalizability across different
manufacturers and transceiver types requires
further validation. Future Research Directions:
Future work includes extending the framework to
real-time manufacturing implementation,
investigating additional AI architectures such as
ensemble methods, and validating the approach
across diverse manufacturing environments and
optical transceiver configurations.
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