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Abstract 

The paper investigates an algorithm that can generate random numbers that follow the 
three-parameter of the Crack lifetime distribution. The process combines analytical and composite 
methods. 
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Introduction 
 Survival Analysis is a branch of statistics for handling the analysis of time duration until 

one or more events happen, such as a death of biological organisms, and a failure in mechanical 
systems. Survival Analysis consists of techniques for positive valued random variables that model 
time to death, time to onset (or relapse) of a disease, length of stay in a hospital, duration of a 
strike, money paid by health insurance, viral load measurements, time of crack development in a 
plastic concrete, fatigue life of aluminum, fatigue life of spring, and fatigue limit load. Sometimes 
this topic is called Reliability Theory or Reliability Analysis in Engineering, Event History Analysis 
in Sociology, and Duration Analysis or Duration Modeling in economics. Statistical models that 
were developed for any of these topics are generically called Time-to-Event models. In Reliability 
Theory, failure is called an event, and the goal is to project or forecast the rate of events for a 
given population, or the probability of an event, or the frequency of an event for an individual. In 
order to achieve the objectives, it is necessary to define lifetime or failure time. 

In the Reliability Theory, a lifetime is the period of time during which a property, or an 
object, or a process, or a phenomenon exists or functions. A lifetime distribution gives a useful 
information which motivates users to protect damages of the industrial or financial occurred after 
the lifetime is terminated. It is not safe, if users do not know the lifetime of their machines or 
systems because it will be meant a danger of their lives or health. 



2                                                           วารสารวชิาการ วทิยาศาสตรแ์ละเทคโนโลย ีมหาวทิยาลยัราชภฎันครสวรรค ์                                                                  
                                                                                                     ปีที ่10 ฉบบัที ่11 มกราคม – มถิุนายน 2561 

The lifetime distributions that are common in Data Analysis and Reliability Theory 
include Log-Normal, Extreme Value, Birnbaum-Saunders, Weibull, Inverse Gaussian, Length 
Biased Inverse Gaussian and Crack distributions among many others. Distributions mentioned 
above were studied in many research papers and monographs. In this paper, we emphasize the 
Crack distribution which contains of Inverse Gaussian, Length Biased Inverse Gaussian and 
Birnbaum-Saunders distributions as particular cases. 

Now we provide a brief literature survey on Inverse Gaussian distribution shortly denoted 
as IG distribution. It has been coming to the attention of the authors and researchers with its 
usefulness in Reliability Theory for more than a century already. The IG distribution is a right 
skewed distribution also known as the first passage time distribution of Brownian motion with 
positive drift, which was discovered by Schrodinger (1915). Later, Tweedie (1957) proposed the 
name Inverse Gaussian for this distribution since its cumulant generating function is the inverse 
of the cumulant generating function of a normal random variable. It has many interesting 
statistical and probabilistic properties that are similar to the normal distribution. Chhikara and 
Folks (1989) mentioned that the normal distribution describes the distance traveled by a particle 
at fixed time the standard Brownian motion, while the Inverse Gaussian distribution describes the 
distribution of the time a Brownian motion with positive drift takes to reach a fixed positive level. 
They also showed the connection of IG distribution and 2  and F  distributions and applied 
these facts to the Sampling Theory. Chaubey  et al. (2014) proved that the likelihood ratio test for 
one sided hypotheses concerning the coefficient of variation in the Inverse Gaussian family is the 
uniformly most powerful invariant test under scale transformation. They also investigated some 
approximations to the cumulative distribution function of the test statistic. The Inverse Gaussian 
distribution is an interesting alternative to the normal distribution for modeling non-negative data 
with positive skewness.  

Next, we provide a brief literature survey on Length Biased Inverse Gaussian distribution 
shortly denoted as LB distribution. This is the length biased version of the Inverse Gaussian 
distribution, which was studied by Ahsanullah and Kirmani (1984), and Khattree (1989). It may be 
proved that the Length Biased Inverse Gaussian distribution is the reciprocal of the Inverse 
Gaussian distribution and hence sometimes it is called Complementary Reciprocal of Inverse 
Gaussian distribution. The notion of a Length Biased distribution has been received considerable 
attention due to its various applications. Sen (1987) studied the properties of the arithmetic, 
geometric and harmonic mean for length biased distributions in a nonparametric fashion. He also 
presented the coefficient of variation and the characterization of length biased distributions. 
Gupta and Akman (1998) apply some results from Sen (1987) in order to develop confidence 
intervals and tests regarding the mean and the coefficient of variation of the Inverse Gaussian 
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distribution based on the length biased data. 
Birnbaum and Saunders (1969a) proposed a lifetime time distribution for fatigue failure 

caused by reliability a crack development under cyclic loading. The model is established under 
the assumption that the failure is due to development and growth of a dominant crack. They also 
considered some closure properties of this family and compared with other families such as the 
lognormal distribution. This distribution is called the two-parameter Birnbaum-Saunders 
distribution (herein after BS distribution). Birnbaum and Saunders (1969b) presented theoretical 
and practical review of the fitting this distribution to several extensive sets of fatigue data. 
Desmond (1986) proposed a more general derivation based on a biological model and 
strengthened the physical justification for the use of this distribution. His derivation follows from 
considerations of renewal theory for the number of cycles needed to force a fatigue crack 
extension to exceed a critical value. Ahmad (1988) proposed the estimation of the scale 
parameter by the jackknife method to eliminate first-order bias. This estimate has the same 
limiting behavior as that of Birnbaum and Saunders (1969b). Lemonte  et al. (2007)  developed 
nearly unbiased estimators for the Birnbaum-Saunders distribution. They derived modified 
maximum likelihood estimators that are bias-free to second order and considered bootstrap-
based bias correction. Additionally, they derived a Bartlett correction that improves the finite-
sample performance of the likelihood ratio test in finite samples. 

Kamon et al. (2008) proposed the new parametrization of the Birnbaum-Saunders 
distribution. Essentially, this re-parametrization fits the physics of studying phenomena since the 
proposed parameters characterize the thickness and the nominal treatment loading on the 
metallic plate where a crack is developing. The usual shape and scale parameters of the 
distribution do not allow this physical interpretation. They also presented the relationship between 
the usual parameters and the proposed parameters. Kundu  et al. (2010) presented bivariate 
absolutely continuous Birnbaum-Saunders distribution and discussed different properties and 
parameter estimation of this distribution. Some recent publications on the Birnbaum-Saunders 
distribution we refer to Ng  et al. (2006), From and Li (2006), Ng  et al. (2007)  and Cordeiro and 
Lemonte (2011).  

The Crack distribution is a positively skewed model, which is widely applicable to model 
failure times of fatiguing materials. Up to our knowledge, this distribution was introduced in 
Jørgensen et al. (1991) as JSW distribution and it was discussed from the reliability point of view. 
It is also known as the Inverse Gaussian Mixture distribution and discussed by Gupta and Akman 
(1995a). Gupta and Akman (1995b) studied the Bayesian estimation of this distribution. Volodin 
and Dzhungurova (2000) introduced a five-parameter family of so-called General Crack 
distributions, which contains, in particular, the Inverse Gaussian Mixture distribution, normal 
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distribution, the Inverse Gaussian distribution, and the Birnbaum-Saunders distribution, as well as 
others which are used in applications of the Reliability Theory. Balakrishnan  et al. (2009) 
considered Inverse Gaussian Mixture distribution and produced a lifetime analysis by developing 
the EM-algorithm for maximum likelihood estimation of parameters and illustrating the obtained 
results with real data showing the robustness of the estimation procedure. 

Bowonrattanaset (2011a) and Bowonrattanaset and Budsaba (2011b) re-introduced the 
Inverse Gaussian mixture distribution based on re-parametrization model presented in Ahmed  et 
al. (2008) and called it Crack distribution. In the following we use this term and it will be denoted 
by ),,( pCR  . Bowonrattanaset (2011a) and Bowonrattanaset and Budsaba (2011b) also 
established some basic probability properties of the Crack distribution and derived distribution, 
moment generating, and characteristic functions in the closed form. Duangsaphon (2014) studied 
Crack distribution in the view of regression-quantile estimation, Bayesian estimation and 
confidence interval estimation. Additionally, Saengthong and Bodhisuwan (2014)  proposed a 
new two-parameter Crack distribution which is obtained by adding a new weight parameter to the 
Crack distribution. 

In this article, we provide a new procedure to generate random number that follow three 
parameter Crack distribution. To generate Crack random number by composition method, first we 
generate random number from already known two parameter distributions: Inverse Gaussian 
distribution, and Length Biased Inverse Gaussian distribution. Finally, we derive Crack random 
number generation procedure.  

Inverse Gaussian Distribution 
 According to Chhikara and Folks (1989), the classical parametrization of the inverse 

Gaussian distribution is a two parameter family of continuous probability distributions with support 
on (0,  ). Suppose a random variable X has the inverse Gaussian distribution, and the 
corresponding probability density function (pdf.) is  
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where parameter 0>  is the mean of the distribution and 0>  is a scale parameter. 
Shuster (1968) mentioned a method to obtain the exact probabilities for Inverse 

Gaussian distribution by using Standard Normal tables and Log tables. 
The new parametrization of the inverse Gaussian probability density function, denote as 
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The new parameters are 0>  and 0>  corresponding to the thickness of the machine 
element and nominal treatment pressure on the machine element, respectively. The relations 
between classical parameters  ,  and new parameter ,  can be expressed as  
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Length Biased Inverse Gaussian Distribution 
 According to Khattree (1989) , the length biased density of its original density function is 

defined as follows. Let X be a non-negative random variable having an absolutely continuous pdf. 
)(f  and a finite first moment ][XE . We say that a non-negative random variable Y with pdf. 
)(h  has the length biased random variable associated with X, if its density function is given by 

the formula  

0.>,
][

)(
=)( x

XE

xxf
xh  

We are interested in the Length Biased Inverse Gaussian distribution. Thus, we will find the 
density of the Length Biased inverse Gaussian distribution in form of parameters , . 

We know that the first moment of the inverse Gaussian distribution is 
 ==)(XE . Hence the density of the Length Biased Inverse Gaussian distribution is 

given by the following formula  
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Here, 0>  and 0>  are the shape and scale parameters, respectively. Hereafter, this 
distribution will be denoted by ),( LB . 

Birnbaum-Saunders Distribution 
 The Birnbaum-Saunders distribution arises as fatigue life model. This distribution helps 

us to explain how material failure occurs to the development and growth of a dominant crack. 
First we provide the density function of the Birnbaum-Saunders distribution in the 

classical parametrization. Let a random variable X has the Birnbaum-Saunders distribution, its 
density function can be written as  
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here, 0>  and 0>  are the shape and the scale parameter. (see Birnbaum and Saunders 
(1969a, 1969b); Ng, Kundu and Balakrishnan (2003); Patel and Read (1996); Rausand and 
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Høyland (2004). 
Ahmed  et al (2008) introduced the new parametrization of the Birnbaum-Saunders 

distribution and discussed various estimation strategies for this new parametrization. Their 
proposed parameters are important by fitting the physical phenomena of fatigue cracks. The 
parameters 0>  and 0>  correspond to the thickness of the machine element and the 
nominal treatment pressure on the machine element, respectively. The relation between classical 
parameters  ,  and proposed parameters ,  in physical interpretation can be expressed as  
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The new parametrization of the Birnbaum-Saunders density function, denoted as 
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Crack Distribution 
 The three-parameter crack distribution had been proposed by Bowonrattanaset and 

Budsaba (2011). This distribution is formed by adding the weighted parameter and including the 
two parameters inverse Gaussian distribution and the two parameters length biased inverse 
Gaussian distribution as follows:  
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where 0>0,>   and 10  p .  

The density function of three-parameter Crack distribution is given by  
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here, 0>0,>   and 10  p . Hereafter, this distribution will be denoted by ),,( pCR  .  
The cumulative distribution function of ),,( pCRX :  is  
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where )(x  is the distribution function of the standard normal distribution. 
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The relevance of the density functions of four distributions i.e. the Crack distribution, the 
Inverse Gaussian distribution, the Length Biased Inverse Gaussian distribution and the Birnbaum-
Saunders distribution is as follows. Suppose 1X  and 2X  be independent random variables 
such as ),(1 IGX :  and ),(2 LBX : . For the Crack distribution, we consider the new 
random variable X  such that,  
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where, 0>0,>   and 10  p .  
Random numbers generation methods 
 There are many algorithms to generate a random numbers with some specific 

distribution, for example, the Inversion method, Convolution method, Composite method, the 
Acceptance-Rejection method and etc. 

The Acceptance-Rejection method, applicable to continuous, discrete, and mixed 
distributions, is widely used in generating random variables from a specified probability 
distribution on a computer. The method can be used alone, but more typically it is used together 
with other methods, especially the Mixture method, in creating exact and efficient algorithms. It is 
a common ingredient in many of the proposed methods for generating random variables from 
various distributions. 

Composite method is applied for generation of random number for a distribution whose 
density function )(xf  can be written as a weighted sum of n  density functions ),(xfi  where 

ni 1 , that is  
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In this case, as a random number for such distribution we can take random number for a 
distribution whose density function )(xfi  with probability ip . This method is called composition 
algorithm, see for example Ross (2013). 

It is easy to see that the Crack distribution is the weighted linear combination of the 
Inverse Gaussian and Length Biased Inverse Gaussian distributions  

( ) ( ) ( ) ( ).,;1,;=,,;  xfpxpfpxf LBIGCR −+  
This representation gives us an idea to use the composition method to generate random number 
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which follows the three parameter Crack distribution. 
Outline of the procedure for generating Crack random number 
 The following steps are the procedure to generate Crack random number :   
    1. Find the connection between Inverse Gaussian, Length Biased Inverse Gaussian 

and (1)2  (Chi-square) distribution.  
    2. Find the connection between Inverse Gaussian, and (1)2  distribution.  
    3. Find the Inverse Gaussian random number generation procedure based on step 2.  
    4. Find the Length Biased Inverse Gaussian random number generation procedure 

based on steps 1 and 3.  
    5. Derive the Crack random number generation procedure based on steps 3 to 4. 
 

Connection between Inverse Gaussian, Length Biased Inverse Gaussian and (1)2  
distribution  

Theorem 1 If random variable Y  has ),( IG  distribution, random variable Z  has 
(1)2  distribution (Chi - square distribution with 1 degree of freedom) and random variables Y  

and Z  are independent, then random variable ZYX +=  has ),( LB  distribution.  
  Proof: The Moment Generating Function of )(2 n  distribution is /2)2(1 nt −− , hence 

the Moment Generating Function of random variable Z  is  
.)2(1=)( 1/2−− ttZ   

Since random variables Y  and Z  are independent, the Moment Generating Function of 
ZYX +=  is  
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 The next theorem is the connection between IG  and (1)2  distribution which is related to 
Theorem 4.6 Chhikara and Folks (1989) and Shuster (1968). 
 
Connection between Inverse Gaussian and (1)2  distribution  
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Hence,  

 ( ) ( )








−







 −
−







 −
−

2
exp=

2
exp=

2
exp

2

2

2

1

2

1 t

u

u

u

u







   

and  
               ( ) )(),;()(),;( 1122 tuuftuuftf IGIGZ
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1/2

1
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2
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−

+


−
=
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 

( ) ( )( )1/2

1

1/2

2

1/2

1

1/2

2

1/2

12

1/2

1

1/2

2

3/2

2

/2exp

uuuuuu

uut

−+

+


−
=



  

                          
 

( )1/2

3/2 1

2

/2exp

t

t






−
=  

                            ,/2exp
2

1 1/2 tt −= −


 

which is a density function of the (1)2  distribution with one degree of freedom.                                   
 The theorem proved above gives as a way to generate Inverse Gaussian ( ),IG  

random numbers. There is no difficulty to generate a random variable Z  with Chi–square 
distribution with one degree of freedom. The problem is that when we solve the equation 

( )
Y

Y
Z




2

=
−  for Y , then there are two roots:  

  ZZZu 


 4
2

= 2

1 +−+ (smaller root) and 

 
1

22

2 =
u

u
 (larger root). 

 Which root to choose, smaller or larger? The next theorem answers this question and it is based 
on an argument presented in Michael, Schucany, and Haas (1976). 

Theorem 3 Let Z  be a random variable with Chi–square distribution with one degree of 

freedom. Consider a random variable Y  that takes value  ZZZu 


 4
2

= 2

1 +−+  with 

probability 
1

1 =
u

p
+

  and the value 
1

22

2 =
u

u
  with probability 

( )
1

1
12 =1=

u

u
Zpp

+
−


. Then Y  has ( ),IG  distribution.  

  Proof: Consider the interval ( )htht +− , , where 0>h . According to the inverse 
function theorem, for h  sufficiently small, the inverse image 1−g  of the interval ( )htht +− ,  is 
comprised of two disjoint intervals about roots 1u  and 2u . Denote them by ( )1211,vv  (contains 

1u ) and ( )2221,vv  (contains 2u ). If ( )tp1  denotes the probability with which an observation of 
Y  should be chosen from the first interval ( )1211,vv  given that Z  is in the interval 
( )htht +− , , then  

                   ( ) ( )htZhtvYvPtp h +−= <<|<< 12111  

                                
( )

( )htZhtP

htZhtandvYvP

+−

+−
=

<<

<<<< 1211  
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( )

( ) ( )22211211

1211

<<<<

<<

vYvPvYvP

vYvP

+
=  

                                
( ) ( )

( ) ( ) ( ) ( )21221112

1112

vFvFvFvF

vFvF

IGIGIGIG

IGIG

−+−

−
=  

                                
( ) ( )
( ) ( )

.1

1

1112

2122

−












−

−
+=

vFvF

vFvF

IGIG

IGIG  

Note that ( ) ththt
h

=,lim
0

+−
→

 and ( ) 11211
0

=,lim uvv
h→

, and so ( ) ( )tptp h

h
1

0
1 lim=

→

 will yield the 

conditional probability with which the first root 1u  should be selected. Hence,   
                ( ) ( )tptp h

h
1

0
1 lim

→

=  

                            
( ) ( )
( ) ( )

1

1112

2122

0
lim1

−

→











−

−
+=

vFvF

vFvF

IGIG

IGIG

h

 

                            
( )
( )

( ) ( )( ) ( )
( ) ( )( ) ( )

1

11121112

21222122

1112

2122

0 /

/

/

/
lim1

−

→











−−

−−


−

−
+=

vvvFvF

vvvFvF

hvv

hvv

IGIG

IGIG

h

 

                            
( )
( )

( )
( )

.1

1

1

2

2

1

−


















+=

uf

uf

ug

ug

IG

IG  

The absolute value in the expression ( )
( )2

1

ug

ug




 appears because 0>

1112

2122

vv

vv

−

−  always. Note 

that ( )
2

222

=
x

x
xg



−
 , and using the relations 22

21 = uu  and  

 ( ) ( )







 −
−







 −
−









1

2

1

2

2

2

2
exp=

2
exp

u

u

u

u  

established above, we obtain  

 ( )
( )

( )
( )

( )
( ) 2

1

22

1

2

2

1122

2

2211

2

2

222

1

2

1

222

2

2

1 ====
uu

u

uuuu

uuuu

uu

uu

ug

ug 




−−

−

−

−

−




 

and  

 ( )
( )

.==
33

3

1

3/2

1

3/2

2

1

2



u

u

u

uf

uf

IG

IG

−

−

 

Hence, the smaller root 1u  should be chosen with probability ( )
1

1 =
u

tp
+

  and the larger 

root 1

22

2 /= uu   should be chosen with probability ( ) ( )
1

1
12 =1=

u

u
tptp

+
−


.                          

 The above theorem is the main driver to generate IG  random number. Therefore, the 
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IG  random number generator process follows the steps below. 
The Inverse Gaussian ( ),IG  random number generation procedure. 
The following is an IG( , ) random number generator procedure. 
    1.  Generate a random number a  uniform [0,1] and independently a standard normal 

number  . 

    2.  Calculate  242 4
2

= 


 +−+u . 

    3.  If 
( )u

a
+


< , then take uIG = , otherwise 

u
IG

22

=
 .  

 Now we can easily obtain LB  random number generator process. 
The Length Biased Inverse Gaussian ( ),LB  random number generation 

procedure. 
The following is an LB( , ) random number generator procedure. 
    1.  Generate a random number a  uniform [0,1] and independently a two independent 

standard normal numbers   and 1 . 

    2.  Calculate  242 4
2

= 


 +−+u . 

    3.  If 
( )u

a
+


< , then take uIG = , otherwise 

u
IG

22

=
 . 

    4.  Take 2

1=  +IGLB .  
 

The Crack random number generation procedure. 
According to the composition method the following is the Crack random number 

generation procedure. 
    1.  Fix p,, , the parameters of the Crack distribution. 
    2.  Generate a random number b  uniform [0,1]. 
    3.  If pb < , then generate a random number with ( ),IG  distribution. Otherwise, 

generate a random number with ( ),LB  distribution.  
Algorithm for Crack random number generation 
    Fix initial values for ,p  and  .  
    Select two random numbers uniformly distributed between 0  and 1 , call them a  

and b .  

    Let )4(
2

= 242 


 ++u   
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    if 








+u
a




<  then uCR =  else 

u
CR

22

=
 .  

    if pb >  then 2= rCRCR +  where r  is random number from a standard normal 
distribution.  

    CR  is a random number from the Crack distribution.  
 

Results of Monte Carlo simulations Crack–distribution and Conclusion 
For computer simulations we consider the following values of , and p . 

5020,10,5,2,= , 5010,5,1,=  and 1.00.8,0.6,0.4,0.2,0.0,=p  
For each fixed values of three parameters, We run simulations of corresponding random 

numbers independently. Simulations are repeated 1,000 times. 
We presented the research result. The histogram from generating the random numbers 

that follow three-parameter Crack distribution by the Composition method and density function of 
the Crack distribution shown in Figure 1-15. 
Figure 1 Histogram of Crack when

 
  = 2, 

  = 1 and 
 

p = 0.2. 
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Figure 2 Histogram of Crack when

 
  = 5, 

  = 1 and  p = 0.2. 
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Figure 3 Histogram of Crack when
 
  = 10, 

  = 1 and  p = 0.2. 
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Figure 4 Histogram of Crack when

 
  = 20, 

  = 1 and  p = 0.2. 
Histogram of Crack
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Figure 5 Histogram of Crack when
 
  = 50, 

  = 1 and  p = 0.2. 
Histogram of Crack
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From Figure 1-5, we show the histogram of 
Crack when parameter   and p  are fixed 
but   varies, we found that in each case, 
the histogram shape based on the random 
numbers that follow three-parameter Crack 
distribution generation by the Composition 
method and the shape of the density 
function graph of crack distribution were 
similar. Moreover, we found that the 
histogram shape and the shape of the 
density function graph of crack distribution 
will change the shape from skewed to the 
right to the bell shape when the value of 
parameter  increase. 
Figure 6 Histogram of Crack when

 
  = 2, 

  = 1 and  p = 0.4. 
Histogram of Crack
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Figure 7 Histogram of Crack when
 
  = 2, 

  = 5 and  p = 0.4. 
Histogram of Crack
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Figure 8 Histogram of Crack when

 
  = 2, 

  = 10 and  p = 0.4. 
Histogram of Crack

Crack

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
2

0
0

4
0

0

0 20 40 60 80 100

0
.0

0
0

.0
3

0
.0

6

x

fc
ra

c
k
(x

)

 
Figure 9 Histogram of Crack when

 
  = 2, 

  = 50 and  p = 0.4. 
Histogram of Crack
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From Figure 6-9, we show the histogram of 
Crack when parameter   and p  are fixed 
but  varies, we found that in each case, 
the histogram shape based on the random 
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numbers that follow three-parameter Crack 
distribution generation by the Composition 
method and the shape of the density 
function graph of crack distribution were 
similar. If the value of parameter   
increasing, the graph shape will not change 
obviously. 
Figure 10 Histogram of Crack when

 
  = 

50,   = 5 and  p = 0.0. 
Histogram of Crack
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Figure 11 Histogram of Crack when

 
  = 

50,   = 5 and  p = 0.2. 
Histogram of Crack
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Figure 12 Histogram of Crack when
 
  = 

50,   = 5 and  p = 0.4. 
Histogram of Crack
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Figure 13 Histogram of Crack when

 
  = 

50,   = 5 and  p = 0.6. 
Histogram of Crack
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Figure 14 Histogram of Crack when

 
  = 

50,   = 5 and  p = 0.8. 
Histogram of Crack
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Figure 15 Histogram of Crack when
 
  = 

50,   = 5 and  p = 1.0. 
Histogram of Crack
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From Figure 10-15, we show the histogram 
of Crack when parameter   and   are 
fixed but p varies, the histogram shape 

based on the random numbers that follow 
three-parameter Crack distribution 
generation by the Composition method and 
the shape of the density function graph of 
crack distribution were similar. When the 
value of parameter p increase, the graph 
shape will not change obviously. 

Discussions 
When we consider all cases found that all of histogram shapes based on the random 

numbers that follow three-parameter Crack distribution generation by the Composition method 
and the shape of the density function graph of crack distribution were both similar. This shows 
that the Composition method can be used to generate the random numbers that follow Crack 
distribution for all values of parameters.  
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