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Abstract
The paper investigates an algorithm that can generate random numbers that follow the
three-parameter of the Crack lifetime distribution. The process combines analytical and composite

methods.
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Introduction

Survival Analysis is a branch of statistics for handling the analysis of time duration until
one or more events happen, such as a death of biological organisms, and a failure in mechanical
systems. Survival Analysis consists of techniques for positive valued random variables that model
time to death, time to onset (or relapse) of a disease, length of stay in a hospital, duration of a
strike, money paid by health insurance, viral load measurements, time of crack development in a
plastic concrete, fatigue life of aluminum, fatigue life of spring, and fatigue limit load. Sometimes
this topic is called Reliability Theory or Reliability Analysis in Engineering, Event History Analysis
in Sociology, and Duration Analysis or Duration Modeling in economics. Statistical models that
were developed for any of these topics are generically called Time-to-Event models. In Reliability
Theory, failure is called an event, and the goal is to project or forecast the rate of events for a
given population, or the probability of an event, or the frequency of an event for an individual. In
order to achieve the objectives, it is necessary to define lifetime or failure time.

In the Reliability Theory, a lifetime is the period of time during which a property, or an
object, or a process, or a phenomenon exists or functions. A lifetime distribution gives a useful
information which motivates users to protect damages of the industrial or financial occurred after
the lifetime is terminated. It is not safe, if users do not know the lifetime of their machines or

systems because it will be meant a danger of their lives or health.
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The lifetime distributions that are common in Data Analysis and Reliability Theory
include Log-Normal, Extreme Value, Birnbaum-Saunders, Weibull, Inverse Gaussian, Length
Biased Inverse Gaussian and Crack distributions among many others. Distributions mentioned
above were studied in many research papers and monographs. In this paper, we emphasize the
Crack distribution which contains of Inverse Gaussian, Length Biased Inverse Gaussian and
Birnbaum-Saunders distributions as particular cases.

Now we provide a brief literature survey on Inverse Gaussian distribution shortly denoted
as |G distribution. It has been coming to the attention of the authors and researchers with its
usefulness in Reliability Theory for more than a century already. The IG distribution is a right
skewed distribution also known as the first passage time distribution of Brownian motion with
positive drift, which was discovered by Schrodinger (1915). Later, Tweedie (1957) proposed the
name Inverse Gaussian for this distribution since its cumulant generating function is the inverse
of the cumulant generating function of a normal random variable. It has many interesting
statistical and probabilistic properties that are similar to the normal distribution. Chhikara and
Folks (1989) mentioned that the normal distribution describes the distance traveled by a particle
at fixed time the standard Brownian motion, while the Inverse Gaussian distribution describes the
distribution of the time a Brownian motion with positive drift takes to reach a fixed positive level.
They also showed the connection of IG distribution and ;(2 and F distributions and applied
these facts to the Sampling Theory. Chaubey et al. (2014) proved that the likelihood ratio test for
one sided hypotheses concerning the coefficient of variation in the Inverse Gaussian family is the
uniformly most powerful invariant test under scale transformation. They also investigated some
approximations to the cumulative distribution function of the test statistic. The Inverse Gaussian
distribution is an interesting alternative to the normal distribution for modeling non-negative data
with positive skewness.

Next, we provide a brief literature survey on Length Biased Inverse Gaussian distribution
shortly denoted as LB distribution. This is the length biased version of the Inverse Gaussian
distribution, which was studied by Ahsanullah and Kirmani (1984), and Khattree (1989). It may be
proved that the Length Biased Inverse Gaussian distribution is the reciprocal of the Inverse
Gaussian distribution and hence sometimes it is called Complementary Reciprocal of Inverse
Gaussian distribution. The notion of a Length Biased distribution has been received considerable
attention due to its various applications. Sen (1987) studied the properties of the arithmetic,
geometric and harmonic mean for length biased distributions in a nonparametric fashion. He also
presented the coefficient of variation and the characterization of length biased distributions.
Gupta and Akman (1998) apply some results from Sen (1987) in order to develop confidence

intervals and tests regarding the mean and the coefficient of variation of the Inverse Gaussian
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distribution based on the length biased data.

Birnbaum and Saunders (1969a) proposed a lifetime time distribution for fatigue failure
caused by reliability a crack development under cyclic loading. The model is established under
the assumption that the failure is due to development and growth of a dominant crack. They also
considered some closure properties of this family and compared with other families such as the
lognormal distribution. This distribution is called the two-parameter Birnbaum-Saunders
distribution (herein after BS distribution). Birnbaum and Saunders (1969b) presented theoretical
and practical review of the fitting this distribution to several extensive sets of fatigue data.
Desmond (1986) proposed a more general derivation based on a biological model and
strengthened the physical justification for the use of this distribution. His derivation follows from
considerations of renewal theory for the number of cycles needed to force a fatigue crack
extension to exceed a critical value. Ahmad (1988) proposed the estimation of the scale
parameter by the jackknife method to eliminate first-order bias. This estimate has the same
limiting behavior as that of Birnbaum and Saunders (1969b). Lemonte et al. (2007) developed
nearly unbiased estimators for the Birnbaum-Saunders distribution. They derived modified
maximum likelihood estimators that are bias-free to second order and considered bootstrap-
based bias correction. Additionally, they derived a Bartlett correction that improves the finite-
sample performance of the likelihood ratio test in finite samples.

Kamon et al. (2008) proposed the new parametrization of the Birnbaum-Saunders
distribution. Essentially, this re-parametrization fits the physics of studying phenomena since the
proposed parameters characterize the thickness and the nominal treatment loading on the
metallic plate where a crack is developing. The usual shape and scale parameters of the
distribution do not allow this physical interpretation. They also presented the relationship between
the usual parameters and the proposed parameters. Kundu et al. (2010) presented bivariate
absolutely continuous Birnbaum-Saunders distribution and discussed different properties and
parameter estimation of this distribution. Some recent publications on the Birnbaum-Saunders
distribution we refer to Ng et al. (2006), From and Li (2006), Ng et al. (2007) and Cordeiro and
Lemonte (2011).

The Crack distribution is a positively skewed model, which is widely applicable to model
failure times of fatiguing materials. Up to our knowledge, this distribution was introduced in
Jargensen et al. (1991) as JSW distribution and it was discussed from the reliability point of view.
It is also known as the Inverse Gaussian Mixture distribution and discussed by Gupta and Akman
(1995a). Gupta and Akman (1995b) studied the Bayesian estimation of this distribution. Volodin
and Dzhungurova (2000) introduced a five-parameter family of so-called General Crack

distributions, which contains, in particular, the Inverse Gaussian Mixture distribution, normal
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distribution, the Inverse Gaussian distribution, and the Birnbaum-Saunders distribution, as well as
others which are used in applications of the Reliability Theory. Balakrishnan et al. (2009)
considered Inverse Gaussian Mixture distribution and produced a lifetime analysis by developing
the EM-algorithm for maximum likelihood estimation of parameters and illustrating the obtained
results with real data showing the robustness of the estimation procedure.

Bowonrattanaset (2011a) and Bowonrattanaset and Budsaba (2011b) re-introduced the
Inverse Gaussian mixture distribution based on re-parametrization model presented in Ahmed et
al. (2008) and called it Crack distribution. In the following we use this term and it will be denoted
by CR(A,6, p). Bowonrattanaset (2011a) and Bowonrattanaset and Budsaba (2011b) also
established some basic probability properties of the Crack distribution and derived distribution,
moment generating, and characteristic functions in the closed form. Duangsaphon (2014) studied
Crack distribution in the view of regression-quantile estimation, Bayesian estimation and
confidence interval estimation. Additionally, Saengthong and Bodhisuwan (2014) proposed a
new two-parameter Crack distribution which is obtained by adding a new weight parameter to the
Crack distribution.

In this article, we provide a new procedure to generate random number that follow three
parameter Crack distribution. To generate Crack random number by composition method, first we
generate random number from already known two parameter distributions: Inverse Gaussian
distribution, and Length Biased Inverse Gaussian distribution. Finally, we derive Crack random
number generation procedure.

Inverse Gaussian Distribution

According to Chhikara and Folks (1989), the classical parametrization of the inverse
Gaussian distribution is a two parameter family of continuous probability distributions with support
on (0, o0). Suppose a random variable X has the inverse Gaussian distribution, and the

corresponding probability density function (pdf.) is

fie (X1, B) = \/7)( exp| — (Zy X) Xx>0.

where parameter 1 > 0 is the mean of the distribution and £ > 0 is a scale parameter.
Shuster (1968) mentioned a method to obtain the exact probabilities for Inverse
Gaussian distribution by using Standard Normal tables and Log tables.

The new parametrization of the inverse Gaussian probability density function, denote as

fio(4,0),is
[6 3 (x—A10Y
f.(xA4,0)=A,]—Xx 2exp|l ———| :x>0.
16 ( ) o p ok
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The new parameters are A >0 and @ >0 corresponding to the thickness of the machine
element and nominal treatment pressure on the machine element, respectively. The relations

between classical parameters «, ﬁ' and new parameter 4,6 can be expressed as

H B
(=216 and S =A%6.

Length Biased Inverse Gaussian Distribution

According to Khattree (1989) , the length biased density of its original density function is
defined as follows. Let X be a non-negative random variable having an absolutely continuous pdf.
f(-) and a finite first moment E[ X]. We say that a non-negative random variable Y with pdf.
h(:) has the length biased random variable associated with X, if its density function is given by
the formula
xf (X)
E[X]’

We are interested in the Length Biased Inverse Gaussian distribution. Thus, we will find the

x> 0.

h(x) =

density of the Length Biased inverse Gaussian distribution in form of parameters 4,6 .
We know that the first moment of the inverse Gaussian distribution is
E(X) = =160. Hence the density of the Length Biased Inverse Gaussian distribution is

given by the following formula

1 2
1 AP 1( [x 0
f.(A,0)=——| = | expl—==| .]—=A.]— Xx>0.
o ) 6’«/27[[Xj P32 \f@ \/;

Here, A >0 and @>0 are the shape and scale parameters, respectively. Hereafter, this
distribution will be denoted by LB(A4,8).

Birnbaum-Saunders Distribution

The Birnbaum-Saunders distribution arises as fatigue life model. This distribution helps
us to explain how material failure occurs to the development and growth of a dominant crack.

First we provide the density function of the Birnbaum-Saunders distribution in the
classical parametrization. Let a random variable X has the Birnbaum-Saunders distribution, its
density function can be written as

fos (X, B) = Li3exp - 212 (l+ﬁ_ ] x>0
20(278)2 X2 “

here, a >0 and ,B > 0 are the shape and the scale parameter. (see Birnbaum and Saunders

(1969a, 1969b); Ng, Kundu and Balakrishnan (2003); Patel and Read (1996); Rausand and
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Hayland (2004).

Ahmed et al (2008) introduced the new parametrization of the Birnbaum-Saunders
distribution and discussed various estimation strategies for this new parametrization. Their
proposed parameters are important by fitting the physical phenomena of fatigue cracks. The
parameters A > 0 and >0 correspond to the thickness of the machine element and the
nominal treatment pressure on the machine element, respectively. The relation between classical

parameters a,ﬂ and proposed parameters A, & in physical interpretation can be expressed as

/l=i and 0 = a’f3;

2
(24

a:iand p=ab.

Ja

The new parametrization of the Birnbaum-Saunders density function, denoted as

fes(1,0) s

3 1

2
1 0 (0): 1( [x 0
f X;ﬂ,,@ = A — +| — exp| —— —— A= ;X>0.
os ) 2027 (xj (x] P73 \/; \/;

Note that
1
fas (X, 2,0) = E[fle (X 2,0)+ fg(x; 1,6’)].

Crack Distribution
The three-parameter crack distribution had been proposed by Bowonrattanaset and
Budsaba (2011). This distribution is formed by adding the weighted parameter and including the
two parameters inverse Gaussian distribution and the two parameters length biased inverse
Gaussian distribution as follows:
fr (%4,0, p) = pfic(X;2,0) + (1- p) f g (X; 4,6)
where 1 >0,0>0 and 0< p<1.

The density function of three-parameter Crack distribution is given by

3 1 2
1 0\2 0\2 1 [x 0
fo(xA4,0,p)= A= +(1-p)| = | lexp|—=|.—=A.— x>0
orl P) ov2r | " (xj ( p)(xj P32 \/; \/;

here, 1 >0,0>0 and 0< p <1. Hereafter, this distribution will be denoted by CR (4,8, p).
The cumulative distribution function of X : CR(A,8, p) is

X 0 X 0
F.(1,0,p)=®| . |=—-A.]= |-1-2pe*|1-® \/:—;t\/: x>0
ox P) \/; \/; P 0 X

where @ (X) is the distribution function of the standard normal distribution.
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The relevance of the density functions of four distributions i.e. the Crack distribution, the
Inverse Gaussian distribution, the Length Biased Inverse Gaussian distribution and the Birnbaum-
Saunders distribution is as follows. Suppose X1 and X2 be independent random variables
such as X, :1G(4,8) and X, :LB(A,8). For the Crack distribution, we consider the new

random variable X such that,
X1 with probability p
X =
X9 with probability 1- p

where 0 < p <1. Obviously, X is a mixture of X, and X, . Namely

fe(x4,0) ;p=1

1

fer (X 4,6, p) =1 fg5(X;4,6) ;p:E
fle(x4,60) ;p=0

where, 4 >0,0>0 and 0< p<1.

Random numbers generation methods

There are many algorithms to generate a random numbers with some specific
distribution, for example, the Inversion method, Convolution method, Composite method, the
Acceptance-Rejection method and etc.

The Acceptance-Rejection method, applicable to continuous, discrete, and mixed
distributions, is widely used in generating random variables from a specified probability
distribution on a computer. The method can be used alone, but more typically it is used together
with other methods, especially the Mixture method, in creating exact and efficient algorithms. It is
a common ingredient in many of the proposed methods for generating random variables from
various distributions.

Composite method is applied for generation of random number for a distribution whose
density function f(X) can be written as a weighted sum of N density functions fi(X), where

1<i<n, thatis

f(9=2p,,(0,p, >0 and,Yp, =1.

In this case, as a random number for such distribution we can take random number for a
distribution whose density function f;(X) with probability P, . This method is called composition
algorithm, see for example Ross (2013).
It is easy to see that the Crack distribution is the weighted linear combination of the
Inverse Gaussian and Length Biased Inverse Gaussian distributions
fCR(X;ﬂ“va p)= pflG(X;/LH)"'(l_ p)fLB(X;ﬁ“’g)'

This representation gives us an idea to use the composition method to generate random number
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which follows the three parameter Crack distribution.
Outline of the procedure for generating Crack random number
The following steps are the procedure to generate Crack random number :
1. Find the connection between Inverse Gaussian, Length Biased Inverse Gaussian
and y*(1) (Chi-square) distribution.
2. Find the connection between Inverse Gaussian, and ;(2(1) distribution.
3. Find the Inverse Gaussian random number generation procedure based on step 2.
4. Find the Length Biased Inverse Gaussian random number generation procedure
based on steps 1 and 3.

5. Derive the Crack random number generation procedure based on steps 3 to 4.

Connection between Inverse Gaussian, Length Biased Inverse Gaussian and ;{2(1)
distribution

Theorem 1 If random variable Y has |G (A, 8) distribution, random variable Z has
;(2 (1) distribution (Chi - square distribution with 1 degree of freedom) and random variables Y
and Z are independent, then random variable X =Y +6Z has LB(A,8) distribution.

n/2

Proof: The Moment Generating Function of () distribution is (1—2t)™"*, hence

the Moment Generating Function of random variable GZ is
0 (1) = (1-20) .
Since random variables Y and Z are independent, the Moment Generating Function of
X=Y+6Z is
ox ) =0y 7 O) =0, (1) ¢, 1) = ¢|G(t;)“’ 9)(1_ 26) ™
= explAfi- (120} [(1-200) = g4 (14, 0). o
The next theorem is the connection between |G and y*(1) distribution which is related to

Theorem 4.6 Chhikara and Folks (1989) and Shuster (1968).

Connection between Inverse Gaussian and ;(2(1) distribution

o (y-210) )
Theorem 2 If Y has |G(l,0) distribution, then Z = ~—————— has y“(1)
distribution with one degree of freedom.
o _ | (Y-20)
Proof: The distribution function of a random variable Z = T is

F,(t) = P(z<t)
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where

/w+—[t—\/t +42] and u, /w+—[t+\/t +42]

are the solutions of the quadratic equation U’ — 9(2/1 +t)u + A20% = 0. Hence,
F,(t)= Fs(Uy; A,0) — Fg (U;;1,6) and the density function
f,(t) = fc(uy;4,0)-uy(t)— f,o(u; A,0)-u/(t). Since U; and U, are solutions of the
quadratic equation U® —@(21+t)u+A26* =0, we have U, +U, = @(24 +t) and
u,-u, = A°6°.
Then,
(0" ~utf = v, +u, -2, f* =

Also note that =Vt +40t, 24+t = Tl and therefore

u’(t):Q 1_ﬂ _9 1Yt Oy
' 2 V2 + 40t 2 U, =l ) U, —U

0 24+t 0 u,+u au
uy(t)= =] 1+ —==—= :—[1+ 2 1]: 2_,
i 2( \/t2+4/1tJ 2 U, =U; ) U=y
2 2
Moreover, (ul _/19) = (U2 _/19) =t.
u,6 u,o
Hence,
2 2
exp{— (u,-26) } = exp{— (u, - 26)" } = exp{— l}
2u,6 2u,0 2
and

f,() = fo(U,;4,0)-uyt) - fio(u;4,6)-ul(t)
26" 73/2e p{ (uz_jﬁ)z}. aJz
u

N2 2U20 2 —Up
+/191/2 u~2 ex ps— (Ul _19)2 . 6“1
Jorr ! 2u,0 u, —u,

26" expl-t/2} u;"* +u,*"?
A/ 272' U2 - Ul
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216°? exp{-t/2} uy? +u)”?

J2r (uzul )1/2 (ué’z + ul1/2 Xu ;/2 _ ul1/2 )
6% expl-ti2} 1

J2za0 (&)

1 -1/2
—t exps—t/2 ,
N2 p{ }

which is a density function of the ;(2 (1) distribution with one degree of freedom. |

The theorem proved above gives as a way to generate Inverse Gaussian |G(/1,6’)
random numbers. There is no difficulty to generate a random variable Z with Chi-square

distribution with one degree of freedom. The problem is that when we solve the equation

5 = (Y=20)

for Y , then there are two roots:

u, =10+ g [Z —\Z%+40Z ] (smaller root) and

22

u, = (larger root).

1
Which root to choose, smaller or larger? The next theorem answers this question and it is based

on an argument presented in Michael, Schucany, and Haas (1976).
Theorem 3 Let Z be a random variable with Chi-square distribution with one degree of

0
freedom. Consider a random variable Y that takes value U, = 160+ E Z—~Z?+42Z |with

22

A0
probability P, = F and the value U, = with probability

+U; U,
p,=1-p,(Z)=—2  Then Y has IG(A,0) distribution.
A0+u;

Proof: Consider the interval ('[—h,t+h), where h>0. According to the inverse
function theorem, for h sufficiently small, the inverse image g’l of the interval (t - h,t + h) is
comprised of two disjoint intervals about roots U; and U,. Denote them by (Vll,Vlz) (contains
u;) and (V21,V22) (contains U,). If pl(t) denotes the probability with which an observation of
Y should be chosen from the first interval (V11’V12) given that Z is in the interval
(t—h,t+h), then

pi(t) = Pl <Y <v,|t-h<Z<t+h)
P(v, <Y <v, andt-h<Z <t+h)
P(t-h<Z <t+h)
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P(Vn <Y< V12)
P(Vn <Y < V12)+ P(V21 <Y < sz)
— FIG (V12 )_ FIG (Vn)
FIG (V12 )_ FIG (Vn ) + FIG (sz )_ FIG (V21)
-1
_ (1_'_ FIG (sz)_ FIG (V21 )) .
FIG (VlZ )_ FIG (Vll)
Note that |im (t —h,t+ h) =t and |lim (V11:V12) =u,, and so pl(t) =lim plh(t) will yield the
h—0 h—0 h—0

conditional probability with which the first root U; should be selected. Hence,

p.(t) = lim p;'(t)

Il
[EEN
+
3
o
—~
N
S~
|
m|_mn
@
<
N
[
SN— |
|
N

-1
_ (H ) f.G<u2>J
’
9'(u,)| fie(uy)

!
The absolute value in the expression g,(ul) appears because M >0 always. Note

(uz) Vip =V

2 22

that g’(x)= X ;j; 0 , and using the relations U,U, = A°6* and

2 2
exp{— (uz _19) } — exp{— (ul _2*0) }
2u,0 2u,0

established above, we obtain
2 2n2\,2 2 202
gl(ul) (uz —-A0 )Jl — ul(ul_UZ)UZ — _Uy — 40

g'(uz) (ulz_lzez)Jzz uz(uz_ul)ulz U, ulz

and
fle(uz) — u2—3/2 — ul3
fIG (u1) uf3/2 26 -

Hence, the smaller root U; should be chosen with probability pl(t):

and the larger

A0+u,

root U, = 2?6*/u, should be chosen with probability pz(t) =1- pl(t): l@u-l%u .
1

The above theorem is the main driver to generate IG random number. Therefore, the

O
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IG random number generator process follows the steps below.
The Inverse Gaussian |G(ﬂ, 0) random number generation procedure.
The following is an IG( A, @) random number generator procedure.
1. Generate a random number a uniform [0,1] and independently a standard normal

number & .

2. Calculate U = /19+§[0{2 —a'+40a? ]

2 92
3. If a<i, then take |G = U, otherwise 1G = A0 }
(16+u) u

Now we can easily obtain LB random number generator process.

The Length Biased Inverse Gaussian LB(/L 9) random number generation
procedure.
The following is an LB(A, @ ) random number generator procedure.
1. Generate a random number @ uniform [0,1] and independently a two independent

standard normal numbers ¢ and &; .

2. Calculate U = /M9+§[a2 —a* +41a? ]

A6°
, then take 1G = U, otherwise 1G = }
(10+u) u

4. Take LB=1G+0-af.

3. Ifa<

The Crack random number generation procedure.
According to the composition method the following is the Crack random number
generation procedure.
1. Fix 4,0, p, the parameters of the Crack distribution.
2. Generate a random number D uniform [0,1].
3. If b < p, then generate a random number with |G(Z, 9) distribution. Otherwise,
generate a random number with LB(/l, 9) distribution.
Algorithm for Crack random number generation
Fix initial values for p, A and 6.
Select two random numbers uniformly distributed between 0 and 1, call them a

and b.

Let U= /16’+g(a2\/a4 +41a%)
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16°
L

if 0> p then CR = CR +@” where I is random number from a standard normal

ifa<( A8 jthen CR=U else CR=
AB+u

distribution.

CR is a random number from the Crack distribution.

Results of Monte Carlo simulations Crack—distribution and Conclusion

For computer simulations we consider the following values of A,0 and p.

A =2,510,20,50,6 =1,5,10,50 and p =0.0,0.2,0.4,0.6,0.8,1.0

For each fixed values of three parameters, We run simulations of corresponding random
numbers independently. Simulations are repeated 1,000 times.

We presented the research result. The histogram from generating the random numbers
that follow three-parameter Crack distribution by the Composition method and density function of

the Crack distribution shown in Figure 1-15.

Figure 1 Histogram of Crack when A4 =2, Figure 3 Histogram of Crack when A = 10,
6 =1and p=02. 6 =1and p=02.
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Figure 2 Histogram of Crack when A =5, Figure 4 Histogram of Crack when A = 20,
6 =1and p=02. 6 =1and p=02.
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Figure 5 Histogram of Crack when A = 50,
€ =1and p=0.2.
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From Figure 1-5, we show the histogram of
Crack when parameter @ and P are fixed
but A varies, we found that in each case,
the histogram shape based on the random
numbers that follow three-parameter Crack
distribution generation by the Composition
method and the shape of the density
function graph of crack distribution were
similar. Moreover, we found that the
histogram shape and the shape of the
density function graph of crack distribution
will change the shape from skewed to the
right to the bell shape when the value of
parameter A increase.

Figure 6 Histogram of Crack when A = 2,
€ =1and pP=04.
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Figure 7 Histogram of Crack when A =2,
0 =5and pP=04.
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Figure 8 Histogram of Crack when A =2,
0 =10and p=0.4.
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Figure 9 Histogram of Crack when A =2,
0 =50and p=0.4.
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From Figure 6-9, we show the histogram of
Crack when parameter 4 and ] are fixed
but @ varies, we found that in each case,

the histogram shape based on the random
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numbers that follow three-parameter Crack Figure 12 Histogram of Crack when A =
distribution generation by the Composition 50, € =5 and p=0.4.
method and the shape of the density Histogram of Crack

function graph of crack distribution were

Frequency
100 200
S E——

similar. If the value of parameter @ - ‘ ‘ | ‘ ‘
. . . 200 250 300 350 400
increasing, the graph shape will not change Crack

obviously.

Figure 10 Histogram of Crack when A =
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50, @ =5and p=0.0.
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j ;‘_H_h_’__‘ Figure 13 Histogram of Crack when A =
50, # =5and P =0.6.
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Figure 11 Histogram of Crack when A =
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Figure 14 Histogram of Crack when A =
T T T T T i 50, 9 =5 and p =0.8.
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Figure 15 Histogram of Crack when A = based on the random numbers that follow
50, 8 =5 and p=1.0. three-parameter Crack distribution
Histogram of Crack generation by the Composition method and

5 s the shape of the density function graph of
¢ 7 crack distribution were similar. When the

value of parameter P increase, the graph

shape will not change obviously.

forack(x)
001 003 005
L

From Figure 10-15, we show the histogram
of Crack when parameter 4 and & are

fixed but P varies, the histogram shape

Discussions

When we consider all cases found that all of histogram shapes based on the random
numbers that follow three-parameter Crack distribution generation by the Composition method
and the shape of the density function graph of crack distribution were both similar. This shows
that the Composition method can be used to generate the random numbers that follow Crack

distribution for all values of parameters.
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