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Abstract
This research paper proves the strong convergence theorems of the Ishikawa iterative
process to the set of attractive points for generalized hybrid mappings (a,ﬁ) in CAT(K ) space

with x>0,
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Introduction
Let X be a metric space and C be a nonempty subset of X. Let T be a mapping

from C into X. A point Y € X is called an attractive point of T if for each X € C,
p(TX,y) < p(X,y).
Let A(T) be the set of all attractive points of T . Then
A(M)={ze X : p(z,Ty) < p(z,y), Yy eC}.
A mapping T :C — C s called nonexpansive if
p(Tx,Ty) < p(X,y), vx, yeC.

In 2008, Kohsaka and Takahashi (Kohsaka et al., 2008), introduced the class of
nonspreading mappings in a Hilbert space H. A mapping T:C—>H iscalled nonspreading if

20°(TX, Ty) < p° (X, Ty) + p°(TX,y), Vx,yeC.
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In 2010, Takahashi (Takahashi, 2010) and Kocourek, Takahashi and Yao (Kocourek et
al., 2010), introduced wider classes of nonspreading mappings in Hilbert spaces as follows: A

mapping T :C — H s called hybrid (Takahashi, 2010) if

3% (Tx, Ty) < p* (X, Ty) + p*(TX, ¥) + p*(X, ¥), VxyeC.

A mapping T :C — X s called (a,ﬂ) -generalized hybrid (Kocourek et al., 2010) if
there exist &, f € R such that

apz (TX!Ty) + (1_a)p2 (X!Ty) < ﬂpz(TX, y) + (1_ﬂ)p2(x’ y)’ VX,y eC.

31
We can see that (0,1), (2,1) and (E,E -generalized hybrid mappings are nonexpansive
mappings, nonspreading mappings and hybrid mappings, respectively.
In 2015, Zheng (Zheng, 2015) proved the following result.

Theorem 1.1 (Zheng, 2015) Let C bea nonempty closed and convex subset of a uniformly
convex Banach space X andlet T:C —>C be an (a,ﬂ) -generalized hybrid mapping with
A(T) #J and satisfies Condition I. Suppose that the sequence {Xn} is defined by the

Ishikawa iteration
yn = ﬂnxn + (1_ﬁn)TXn’
Xn+l =Qa, Xn + (1_ a, )Ty’

where {a, } and {,} are sequences in (0,1) such that

liminf g, (1-¢,)(1-3,) > 0.

n—o

Then the sequence {Xn} converges strongly to an attractive point Z of T.

In this paper, motivated by Zheng (Zheng, 2015), we consider the concept of attractive
points in CAT(x ) spaces with k& >0 and prove strong convergence theorems of the Ishikawa

iteration for (a, ﬂ) -generalized hybrid mappings in such spaces.



MIEFATIMI Ingnemaasuazinalulad ¥ IneseNTAYUaIEIIIN 35

U 10 a1fuf 11 anAn - TawIowu 2561
Preliminaries

Let (X,p) be a metric space. A geodesic path joining X€ X to Yy € X (or,
morebriefly, a geodesic from X to Yy) is a map C: [0,|] cR—> X such that
c(0)=x,c(l)=y and p(C(p), c(q))=| p—q| forall p, qe[0,1]. In particular, C is an
isometry and p(X, y) =l. The image of a geodesic path is called a geodesic segment. This
geodesic segment is denoted by [X, y] if it is unique. We write that W e [X, y] if and only if
there exists & €[0,1] such that p(X,W)=(1-a)p(X,y) and p(y,W)=ap(X,Y).

In this case, we will write W=ax®(1—a)y for simplicity. Let D be a positive

constant. A metric space (X ) p) is said to be a geodesic space (D -geodesic space) if every
two points of X (every two points of distance smaller than D) are joined by a geodesic, and
X is said to be a uniquely geodesic (D -uniquely geodesic) if there is exactly one geodesic

joining X and Yy for each X,y € X (for X,y € X with p(X, y) <D).

For a real number «, let M,f denote the following metric spaces:
(i) if £x=0, then Mi is the Euclidean space R?;
(i) if & >0, then M,f is obtained from the spherical space S? by multiplying the distance
function by the constant 1/\/;;

(i) if £ <0, then M,f is obtained from the hyperbolic space H? by multiplying the

distance function by the constant 1/N—«k.

The diameter of M2 is denoted by D_. Thus D = oo if <0 and D, =7 /+/k
if K <0. A geodesic triangle A(X, Y, Z) in a geodesic space (X,p) consists of three points
X, ¥,Z in X (the vertices of A) and three geodesic segments between each pair of vertices
(the edges of A).

A comparison triangle for a geodesic triangle A(X, y,z) in (X,p) is a triangle
~v 55 . 2 oy 55
A (x, Y, z) in M. such that p(X y)szE(x, y), p(y,z)szﬁ(y, z) and
p(Z, X) =p,.(2,X). if x>0, then such a tiangle exists whenever
p(x,y)+ p(y,2)+ p(z,x)< 2D,, where D, = z/~/k. A point pe[x,y] is called a

comparison point for P € [X, y] if p(X, p) = P2 (;,6)
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A geodesic triangle A(X, Y, Z) in X is said to satisfy the CAT( k) inequality if for any

p, Qe A(X, Y, Z) and for their comparison points _p, ae Z(>_<,§,E), we have
p( p,q) < pMz(p,q). Given k >0, a metric space X is called a CAT( k) space if X is

D, -geodesic and all geodesic triangles in X of perimeter less than 2D satisfy the CAT( k)

inequality. For example, the N -dimensional unit sphere S" is a CAT (1) space.

Lemma 2. 3 (Ohta, 2007) Let x>0 and (X,p) be a CAT( k) space with
w/2—¢

Ji

a €[0,1], we have

(% (1-a) y®az) < (1-a) o7 (x, y)+ap2(x,Z)—ga(l—a)pz(y,z),

where K = (7 —2¢)tan(e).

diam(X) < for some 86(0,72’/2). Then for any three points X, Y, Z€ X and

Lemma 2.4 (Bridson and Haeiger, 1999) Let K > 0 and (X , p) be a complete CAT(K ) space
with
. 7/2—¢
diam(X) < ——=— for some ¢ €(0,7/2). Then
Ji
pxay®(L-a)z)<ap(x y)+L-a)p(x z)
forall X,y,Z2€ X and  €[0,1].

Main Results

We begin this section by proving the following lemmas.
w/2—¢
Jie

for some ¢ € (0,72'/2). Let C be a nonempty closed convex subset of X. Let T :C—>C
} in C by

Lemma 3.1 Let k¥ >0 and (X , p) be a complete CAT( k) space with diam(X) <

be an (a,ﬂ)-generalized hybrid mapping with A(T) # (J. Define a sequence {X

n

Ya :ﬂnxn @(1_ﬂn)TXn’
X1 = XX, ®(1_an )Tyn’

where {a, } and {3, } are real sequences in (0,1) . Then lim P(%,,2) exists for each
n—oo

ze A(T).
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Proof. Let Z € A(T). Then
(%o, 2)= pla,x, ®(1-a, )Ty, 2)
<a,p(%,.2)+1-a,)p(Ty,.2)
<a,p(x,.2)+{1-a,)ply, 2)
<a,p(x,,2)+0-a,)o(B,x, ®1-,)T,,2)
< @, + -, B, + 1 4, )lx,.2)

<p(x.,2).

This implies that {,O(Xn ) Z)} is bounded below and nonincreasing for all Z € A(T ). Hence
limp(X ,2) exists.
n—oo ,0( n )

w/2—¢

K

Lemma 3.2 Let ¥ >0 and (X , p) be a complete CAT( k") space with diam(X) <

for some & €(0,7/2). Let C be a nonempty closed convex subset of X and T:C —C
be an (a,ﬁ)-generalized hybrid mapping with A(T) # . Define a sequence {Xn} in C by

{yn :ﬂnxn 6_)(:l'_ﬂn )Txn'
X

1 = XXy, ® (1_ a, )Tyn ’

where {an} and {ﬂn} are real sequences in (0,1) such that
liminf 8, (1-«,)(1-3,)>0
Then |imp(Xn,TXn ) =0.

Proof. Let Z € A(T). Then by Lemma 3.1, we have lim p(Xn, Z) exists. From Lemma 2.3,

n—oo

we obtain

pz(yn,Z)zpz(ﬂan ®(1_ﬂn)TXn’Z)
Sﬂnpz(xn’Z)—i_(:l'_ﬁn)pZ(TXn’Z)_gﬂn(l_ﬂn)pz(xn’Txn)

< ﬁnpz(xn’z)+(l_ﬁn )pz(xn J Z)_gﬂn (1_ﬂn )pz(xn'TXn)
< P*(%012)= 5 (0= 5,07 (x,Tx,)
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and
P (X 2)= p*(a,, @ (1=0t, )Ty, 2)

<" (%0, 2)+ W=, P (17, 2)- 5, (-, ) x,, Ty,
<a,p’(x,,2)+(1-a,)p*(Ty,, 2)
<at,p*(%,,2)+1~a, )p? (¥, 2)
S (0 20+ | 970, 2) 5 410 )07, )
<anpz(xn,z)+(1—an)p2(xn,z)—g(l—an)ﬂn (1= 8.) % (%, T%,).

Hence

@) A1 A1) P (0T%) £ 2 (4,:2)= 2 (X,2)

By taking N —> 00 in the above inequality, we obtain that lim ,O(Xn TX, ) =0.
n—oo

Strong Convergent Theorems

Let C be a nonempty closed convex subset of a metric space X. A mapping
T :C — C is said to satisfy Condition I (Senter et al., 1974) if there is a nondecreasing function
f :[0,00) >[0,0)  with f(0)=0, f(r)>0 for re(0,©) such that

p(x,TX) 2 f (p(x, A(T)))for all xeC, where p(X, A(T))=inf{p(x,y):yeAT)].

Theorem 4.1 Let x>0 and (X,p) be a complete CAT(K) space with
w/2—¢
Ji

X. Let T:C —C be an (a, 3)-generalized hybrid mapping with A(T) # & and satisfying

diam(X) < for some ¢ € (O,;z/Z). Let C be a nonempty closed convex subset of

Condition 1. Define a sequence {Xn} in C by

Yn :ﬂnxn C—D(l_ﬂn )Txn’
X = X, <_B(:I'_Otn )Tyn’

where {an} and {ﬂn} are real sequences in (0,1) such that
liminf g, (1-«,)(1-8,)>0.

Then the sequence {Xn} converges strongly to an attractive point Z of T.
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Proof. Let P € A(T) It follows from Lemma 3.1 that the sequence {Xn} is bounded and
p(Xn+1, p)Sp(Xn, p) foreach pe A(T). 4.1)

By Lemma 3.2, we have

Iimp(xn,Txn)zo. 4.2)
By condition |, we obtain that lim f ( ): 0 and hence
I|m p(Xn,A(T)) (4.3)

Next we show that the sequence {Xn} is a Cauchy sequence of C. In fact, for any

n,meN
without loss of generality, we may set M > N. Then p(Xm, p)S p(Xn, p) foreach pe A(T)
by (4.1), and so

(X, %)< p (X, P)+ (P, Xy ) <20(X,, P)- (4.4)
Since P is arbitrary, then we may take the infimum for p in above,

P (% Xy ) <2inf{p(x,, p) 1 pe A(T)}=2p(x,, A(T)).
From (4.3), it follows that r|1i_rllop(xn,xm) =0, which means that {X, } is a Cauchy sequence.

So there exists Z € C such that

lim p(x,,z)=0.
By (4.2), we have
lim p(Tx,,z)=0.

Now, we prove Z € A(T). In fact, it follows from the definition of (a,ﬂ)-generalized

hybrid mapping that for all X € C, we get

ap® (Tx, TX)+(1—a) p* (%, Tx) < Bo* (TX,, X) + (1= B) p* (X, X). (4.5)
Let N —> o0 in (4.5). Then
ap® (2, TX)+(1-a) p* (2, TX) < Bp* (z.X)+(1- B) p*(z.X),
and hence
p(z,Tx) < p(z,%)
forall XeC. So ze A(T) and r|1i_r)[10,0(Xn, Z) = 0. The proof is completed.

A mapping T:C —>C is said to be demicompact (Petryshyn, 1966) provided
whenever a sequence {XH}CC is bounded and lim p(Xn,TXn)=0, then there is a
nN—o0

subsequence {an} which strongly converges.
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As a consequence of Theorem 4.1, we obtain the following.

Corollary 4.2 Let (X , p) be a complete CAT(0) space and C be a nonempty bounded closed
convex subset of X . Let T:C—>C be an (a,ﬂ)-generalized hybrid mapping with
A(T) # O and satisfying Condition I. Define a sequence {Xn} in C by

Ys :ﬁnxn @(1_ﬁn)TXn’
X1 = XX, ®(1_an )Tyn’

where {(xn} and {ﬂn} are real sequences in (0,1) such that
liminf 8, (1-«,)(1-,)>0.

Then the sequence {Xn} converges strongly to an attractive point Z of T.

Theorem 4.3 Let ¥ >0 and (X , p) be a complete CAT( K ) space with

. n)2—¢
diam(X) < /— for some & € (0,7[/2). Let C be a nonempty closed convex subset of

Ji
X.Let T:C—>C bean (a,ﬁ)-generalized hybrid and demicompact with A(T) # .
Define a sequence {X, } in C by

Ys :ﬁnxn @(1_ﬁn)TXn’
X1 = XX, ®(1_an )Tyn’

where {an} and {ﬂn} are real sequences in (0,1) such that
liminf g, (1-«,)(1-4,)>0.

Then the sequence {Xn} converges strongly to an attractive point Z of T.

Proof. By Lemma 3.2, we have

limp(x,,Tx,)=0. (4.6)
n—o0

By the demicompactness of T, there is a subsequence {an} of {Xn} and Z € C such that
Iimp(xn_,z):o. (4.7)
joo i

By (4.6), we get that lim p(TXnA ,Z) =0. It follows from the definition of (a,ﬂ)-generalized
J—>®© ]

hybrid mapping that for all X € C,
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ap’ (Tx, ,Tx)+(1—oz),oz(xnj TX)< fp? (Tx,, . X) + (1—ﬂ)p2(xnj ,X). 4.8)
Let ] — o0 in (4.8). Then
ap®(2,Tx)+(1-a)p*(2,Tx) < fp*(z,)+ (1~ B)p*(z,x)

and hence

p(z,Tx)< p(z,x)
forall X€C. So ze A(T). Since lim p(Xn, Z) exists for each z € A(T) by Lemma 3.1,
n—w

then we have lim p(Xn, Z) =0. The proof is completed.
n—oo

By Theorem 4.3, we have the following corollary.

Corollary 4.4 Let (X , p) be a complete CAT(0) space and C be a nonempty bounded closed
convex subset of X. Let T:C —> C be an (a,ﬂ)-generalized hybrid and demicompact with
A(T) # . Define a sequence {Xn} in C by

Ys :ﬁnxn @(1_ﬁn)TXn’
Xpaa = XX, ®(1_an )Tyn’

where {an} and {ﬂn} are real sequences in (0,1) such that
liminf g, (1-«,)(1-4,)>0.

Then the sequence {Xn} converges strongly to an attractive point Z of T.
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