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Abstract 
This research paper proves the strong convergence theorems of the Ishikawa iterative 

process to the set of attractive points for generalized hybrid mappings ( ),  in CAT( ) space 
with 0.   

 
Keywords:  Attractive point; CAT( ) space, Ishikawa iterative process 

 

Introduction 
Let X  be a metric space and C  be a nonempty subset of .X  Let T  be a mapping 

from C  into .X  A point y X  is called an attractive point of T  if for each ,x C  

( , ) ( , )Tx y x y  . 

Let ( )A T  be the set of all attractive points of T . Then 

 ( ) : ( , ) ( , ),A T z X z Ty z y y C =     . 

A mapping :T C C→  is called nonexpansive if 

( , ) ( , )Tx Ty x y  ,  , .x y C   

In 2008, Kohsaka and Takahashi (Kohsaka et al., 2008), introduced the class of 
nonspreading mappings in a Hilbert space .H  A mapping :T C H→  is called nonspreading if 

2 2 22 ( , ) ( , ) ( , ) ,Tx Ty x Ty Tx y   +   .x, y C   
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In 2010, Takahashi (Takahashi, 2010) and Kocourek, Takahashi and Yao (Kocourek et 
al., 2010), introduced wider classes of nonspreading mappings in Hilbert spaces as follows: A 
mapping :T C H→  is called hybrid (Takahashi, 2010) if  

2 2 2 23 ( , ) ( , ) ( , ) ( , ),Tx Ty x Ty Tx y x y    + +   .x, y C     

A mapping :T C X→  is called ( ),  -generalized hybrid (Kocourek et al., 2010) if 
there exist ,    such that  

2 2 2 2( , ) (1 ) ( , ) ( , ) (1 ) ( , ),Tx Ty x Ty Tx y x y     + −  + −   .x, y C   

We can see that (0,1) , (2,1)  and 3 1
,

2 2

 
 
 

-generalized hybrid mappings are nonexpansive 

mappings, nonspreading mappings and hybrid mappings, respectively. 

In 2015, Zheng (Zheng, 2015) proved the following result. 

Theorem 1.1 (Zheng, 2015) Let C  be a nonempty closed and convex subset of a uniformly 
convex Banach space X  and let CCT →:  be an ( ),  -generalized hybrid mapping with 

( )A T    and satisfies Condition I.  Suppose that the sequence  nx  is defined by the 
Ishikawa iteration 




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−+=
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nnnn
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where  n  and  n  are sequences in (0,1)  such that 

( )( )liminf 1 1 0.n n n
n

  
→

− −   

Then the sequence  nx  converges strongly to an attractive point z  of .T  

  In this paper, motivated by Zheng (Zheng, 2015), we consider the concept of attractive 
points in CAT( ) spaces with 0  and prove strong convergence theorems of the Ishikawa 
iteration for ( ),  -generalized hybrid mappings in such spaces.  
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Preliminaries 

Let ( ),X  be a metric space. A  geodesic path joining Xx  to y  X  (or, 
morebriefly, a geodesic from x  to y ) is a map  : 0,c l X →  such that 

( )0 , ( )c x c l y= =  and ( )( ), ( ) | |c p c q p q = −  for all  , 0, .p q l  In particular, c  is an 

isometry and ( ), .x y l =  The image of a geodesic path  is called a geodesic segment. This 

geodesic segment is denoted by  yx,  if it is unique. We write that  ,w x y  if and only if 

there exists  0,1   such that ( ) ( ) ( ), 1 ,x w x y  = −  and ( ) ( ), , .y w x y =   

In this case, we will write ( )1w x y =  −  for simplicity. Let D  be a positive 
constant. A metric space ( ),X  is said to be a geodesic space ( D -geodesic space) if every 
two points of X  (every two points of distance smaller than D ) are joined by a geodesic, and 
X  is said to be a uniquely geodesic ( D -uniquely geodesic) if there is exactly one geodesic 
joining x  and y  for each Xyx , (for Xyx ,  with ( ),x y D  ). 

 
For a real number ,  let 2M  denote the following metric spaces: 

(i) if 0, =  then 2M  is the Euclidean space 2 ; 
(ii) if 0,   then 2M  is obtained from the spherical space 2  by multiplying the distance 

function by the constant 1/  ; 

      (iii)  if 0,   then 2M  is obtained from the hyperbolic space  2  by multiplying the 

distance function by the constant 1/ .−  
 
 The diameter of 2M  is denoted by .D  Thus D =   if 0   and  /D  =  
if 0.   A geodesic triangle ( )zyx ,,  in a geodesic space ( ),X  consists of three points 

zyx ,,  in X ( the vertices of  ) and three geodesic segments between each pair of vertices 
(the edges of  ).  

A comparison triangle for a geodesic triangle ( )zyx ,,  in ( ),X  is a triangle 
 ( ,x ,y )z  in 2M  such that ( ) 2, ( , )

M
x y x y



 = ,  ( ) 2, ( , )
M

y z y z


 =  and 

( ) 2, ( , ).
M

z x z x


 =  If 0,   then such a triangle exists whenever 

( ) ( ) ( ) ,2,,,  Dxzzyyx ++  where . =D  A point [ , ]p x y  is called a 

comparison point for  yxp ,  if ( ) 2, ( , ).
M

x p x p


 =  
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A geodesic triangle ( ), ,x y z  in X  is said to satisfy the CAT( ) inequality if for any 

( )zyxqp ,,,   and for their comparison points , ( , , ),p q x y z  we have 

( ) 2, ( , ).
M

p q p q


   Given ,0  a metric space X  is called a CAT( ) space if X  is 

D -geodesic and all geodesic triangles in X  of perimeter less than 2D  satisfy the CAT( ) 
inequality. For example, the n -dimensional unit sphere n  is a CAT (1)  space. 

 
Lemma 2. 3 (Ohta, 2007) Let 0  and ( ),X  be a CAT(  )  space with 



 −


2
diam(X)  for some ( )0, 2 .   Then for any three points , ,x y z X  and 

[0,1],   we have 

( )( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 1 1 , , 1 , ,
2

K
x y z x y x z y z        −   − + − −  

where ( 2 ) tan( ).K   = −   
 
Lemma 2.4 (Bridson and Haeiger, 1999) Let 0  and ( ),X  be a complete CAT( ) space 
with 



 −


2
diam(X)  for some ( )0, 2 .   Then   

( )( ) ( ) ( ) ( ),,1,1, zxyxzyx  −+−  
for all , ,x y z X  and  0,1 .   
 
Main Results 

We begin this section by proving the following lemmas. 

Lemma 3.1 Let 0  and ( ),X  be a complete CAT( ) space with 


 −


2
diam(X)  

for some ( )0, 2 .   Let C  be a nonempty closed convex subset of .X  Let CCT →:  
be an ( ) , -generalized hybrid mapping with ( ) .A T    Define a sequence  nx  in C  by 
 

( )

( )



−=

−=

+ ,1

,1

1 nnnnn

nnnnn

Tyxx

Txxy




 

 
where  n  and  n  are real sequences in (0,1) . Then ( )lim ,n

n
x z

→
 exists for each 

( ).z A T  
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Proof. Let ( ).z A T  Then 
 ( ) ( )( )zTyxzx nnnnn ,1,1  −=+  

    ( ) ( ) ( )zTyzx nnnn ,1,  −+  
    ( ) ( ) ( )zyzx nnnn ,1,  −+  
    ( ) ( ) ( )( )zTxxzx nnnnnnn ,11,  −−+  

       ( ) ( )( )( ) ( )zxnnnnn ,11  −+−+  
    ( )zxn , . 
 

This implies that ( ) zxn ,  is bounded below and nonincreasing for all ( ).z A T  Hence 

( )lim ,n
n

x z
→

 exists.   

            

Lemma 3.2 Let 0  and ( ),X  be a complete CAT( ) space with 


 −


2
diam(X)  

for some ( )0, 2 .   Let C  be a nonempty closed convex subset of X  and CCT →:  
be an ( ) , -generalized hybrid mapping with ( ) .A T    Define a sequence  nx  in C  by 
 

( )

( )



−=

−=

+ ,1

,1

1 nnnnn

nnnnn

Tyxx

Txxy




 

 
where  n  and  n  are real sequences in (0,1)  such that 

( )( )liminf 1 1 0.n n n
n

  
→

− −   

Then ( )lim , 0.n n
n

x Tx
→

=  

 
Proof. Let ( ).z A T  Then by Lemma 3.1, we have ( )lim ,n

n
x z

→
 exists. From Lemma 2.3, 

we obtain 
         ( ) ( )( )zTxxzy nnnnn ,1, 22  −=  

( ) ( ) ( ) ( ) ( )nnnnnnnn Txx
K

zTxzx ,1
2

,1, 222  −−−+  

( ) ( ) ( ) ( ) ( )nnnnnnnn Txx
K

zxzx ,1
2

,1, 222  −−−+  

              ( ) ( ) ( )nnnnn Txx
K

zx ,1
2

, 22  −−  
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and 
      ( ) ( )( )zTyxzx nnnnn ,1, 2

1

2  −=+  

           ( ) ( ) ( ) ( ) ( )nnnnnnnn Tyx
K

zTyzx ,1
2

,1, 222  −−−+  

           ( ) ( ) ( )zTyzx nnnn ,1, 22  −+  
           ( ) ( ) ( )zyzx nnnn ,1, 22  −+  

           ( ) ( ) ( ) ( ) ( )







−−−+ nnnnnnnn Txx

K
zxzx ,1

2
,1, 222   

           ( ) ( ) ( ) ( ) ( ) ( )2 2 2, 1 , 1 1 , .
2

n n n n n n n n n

K
x z x z x Tx        + − − − −  

Hence 

( ) ( ) ( ) ( ) ( )2 2 2

11 1 , , , .
2

n n n n n n n

K
x Tx x z x z      +− −  −  

By taking →n  in the above inequality, we obtain that ( )lim , 0.n n
n

x Tx
→

=            

    
Strong Convergent Theorems 
 Let C  be a nonempty closed convex subset of a metric space .X  A mapping 

CCT →:  is said to satisfy Condition I (Senter et al., 1974) if there is a nondecreasing function 
:[0, ) [0, )f  →   with 0)(,0)0( = rff  for (0, )r   such that 

( )( )( , ) , ( )x Tx f x A T  for all ,x C  where ( ) ( ) , ( ) inf , : ( ) .x A T x y y A T =   
 
Theorem 4.1 Let 0  and ( ),X  be a complete CAT( ) space with 



 −


2
diam(X)  for some ( )0, 2 .   Let C  be a nonempty closed convex subset of 

.X  Let CCT →:  be an ( ) , -generalized hybrid mapping with ( )A T    and satisfying 
Condition I. Define a sequence  nx  in C  by 
 

( )

( )



−=

−=

+ ,1

,1

1 nnnnn

nnnnn

Tyxx

Txxy




 

 
where  n  and  n  are real sequences in (0,1)  such that 

( )( )liminf 1 1 0.n n n
n

  
→

− −   

Then the sequence  nx  converges strongly to an attractive point z  of .T  
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Proof. Let ( ).p A T  It follows from Lemma 3.1 that the sequence  nx  is bounded and 

( ) ( )1, ,n nx p x p +   for each ( ).p A T                                   (4.1) 
By Lemma 3.2, we have  

( )lim , 0.n n
n

x Tx
→

=                                                      (4.2) 

By condition I, we obtain that ( )( )( )lim , 0n
n

f x A T
→

=  and hence  

( )lim , ( ) 0.n
n

x A T
→

=                                                  (4.3) 

Next we show that the sequence  nx  is a Cauchy sequence of .C  In fact, for any 
,n m  

without loss of generality, we may set .nm   Then ( ) ( )pxpx nm ,,    for each ( )p A T  
by (4.1), and so 

( ) ( ) ( ) ( ), , , 2 , .n m n m nx x x p p x x p    +                                 (4.4) 
Since p  is arbitrary, then we may take the infimum for p  in above, 

( ) ( )  ( ), 2inf , : ( ) 2 , ( )n m n nx x x p p A T x A T    = . 

From (4.3), it follows that ( )lim , 0,n m
n

x x
→

=  which means that  nx  is a Cauchy sequence. 

So there exists Cz  such that 

→n
lim ( ), 0.nx z =  

By (4.2), we have 

→n
lim ( ), 0.nTx z =  

Now, we prove ( ).z A T  In fact, it follows from the definition of ( ) , -generalized 
hybrid mapping that for all ,Cx  we get 

 
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 1 , , 1 ,n n n nTx Tx x Tx Tx x x x     + −  + − .                  (4.5) 

Let →n  in (4.5). Then 
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, 1 , , 1 ,z Tx z Tx z x z x     + −  + − , 

and hence 
( ) ( ), ,z Tx z x   

for all .Cx  So ( )z A T  and ( )lim , 0.n
n

x z
→

=  The proof is completed.  

    
A mapping CCT →:  is said to be demicompact (Petryshyn, 1966) provided 

whenever a sequence   Cxn   is bounded and ( )lim , 0,n n
n

x Tx
→

=  then there is a 

subsequence }{
jnx  which strongly converges. 
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As a consequence of Theorem 4.1, we obtain the following. 
 

Corollary 4.2 Let ( ),X  be a complete CAT(0) space and C  be a nonempty bounded closed 
convex subset of X . Let CCT →:  be an ( ) , -generalized hybrid mapping with 

( )A T    and satisfying Condition I.  Define a sequence   nx  in C  by 
 

( )

( )



−=

−=

+ ,1

,1

1 nnnnn

nnnnn

Tyxx

Txxy




 

 
where  n  and  n  are real sequences in (0,1)  such that 

( )( )liminf 1 1 0.n n n
n

  
→

− −   

Then the sequence  nx  converges strongly to an attractive point z  of .T  
 
Theorem 4.3 Let 0  and ( ),X  be a complete CAT( ) space with 



 −


2
diam(X)  for some ( ).2,0    Let C  be a nonempty closed convex subset of 

.X  Let CCT →:  be an ( ) , -generalized hybrid and demicompact with ( ) .A T     
Define a sequence  nx  in C  by 
 

( )

( )



−=

−=

+ ,1

,1

1 nnnnn

nnnnn

Tyxx

Txxy




  

 
where  n  and  n  are real sequences in (0,1)  such that 

( )( )liminf 1 1 0.n n n
n

  
→

− −   

Then the sequence  nx  converges strongly to an attractive point z  of .T  
 
Proof. By Lemma 3.2, we have  

( )lim , 0.n n
n

x Tx
→

=                                                  (4.6) 

By the demicompactness of ,T  there is a subsequence }{
jnx  of  nx  and Cz  such that  

( )lim , 0.
jn

j
x z

→
=                                                   (4.7) 

By (4.6) , we get that lim ( , ) 0.
jn

j
Tx z

→
=  It follows from the definition of ( ) , -generalized 

hybrid mapping that for all ,Cx  
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( ) ( )2 2 2 2( , ) 1 ( , ) ( , ) 1 ( , ).
j j j jn n n nTx Tx x Tx Tx x x x     + −  + −               (4.8) 

Let →j  in (4.8). Then 
( ) ( ) ( ) ( ) ( ) ( )xzxzTxzTxz ,1,,1, 2222  −+−+  

and hence 
( ) ( )xzTxz ,,    

for all .x C  So ( ).z A T  Since ( )lim ,n
n

x z
→

 exists for each ( )z A T  by Lemma 3.1, 

then we have  ( )lim , 0.n
n

x z
→

=  The proof is completed.      

 By Theorem 4.3, we have the following corollary. 
 
Corollary 4.4 Let ( ),X  be a complete CAT(0) space and C  be a nonempty bounded closed 
convex subset of .X  Let CCT →:  be an ( ) , -generalized hybrid and demicompact with 

( ) .A T    Define a sequence  nx  in C  by 
 

( )

( )



−=

−=

+ ,1

,1

1 nnnnn

nnnnn

Tyxx

Txxy




 

 
where  n  and  n  are real sequences in (0,1)  such that 

( )( )liminf 1 1 0.n n n
n

  
→

− −    

Then the sequence  nx  converges strongly to an attractive point z  of .T  
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