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บทคัดย่อ  
ในงานวิจัยนี้ได้น าแนวคิดของอตานาสซอฟ (Atanassov, 1986) และนาดาแบน (Nadaban, 2016) มาสร้างนิยามของ

วิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีและน าเสนอตัวอย่างต่าง ๆ พร้อมท้ังศึกษาสมบัติเชิงทอพอโลยี

ต่าง ๆ เช่น บอลเปิด เซตเปิด การลู่เข้าของล าดับ ล าดับโคชี เป็นต้น 

 
ค าส าคัญ:  วิภัชนัยบนปริภูมิอิงระยะทางแบบบี  วิภัชนัยบนปริภูมิอิงระยะทาง  ปริภูมิอิงระยะทางแบบบี 

 
Abstract  
In this paper, we use the ideas of Atanassov (Atanassov, 1986) and Nadaban (Nadaban, 2016) to define 
the definition of intuitionistic fuzzy b-metric spaces and present some examples. After that we 
study some topological properties such as open balls, open sets, convergent series, Cauchy 
sequences, etc. 

 
Keywords:  Intuitionistic fuzzy b-metric spaces, Intuitionistic fuzzy metric spaces, b-metric spaces 
 
1. บทน า  
 ในปีค.ศ. 1965 ซาเดห์ (Zadeh, 1965) ได้ริเริ่มแนวคิดเซตวิภัชนัย (Fuzzy set) และน าไปสู่การ

วิวัฒนาการของคณิตศาสตร์เชิงวิภัชนัย ในเวลาต่อมาคราโมซิลและมิคาเลค (Kramosil & Michálek 1975) 

น าเสนอเกี่ยวกับ ความน่าจะเป็นบนปริภูมิอิงระยะทางโดยใช้หลักการของระยะทางเชิงวิภัชนัยซึ่งได้รับความ

สนใจเป็นจ านวนมากจากนักคณิตศาสตร์ เช่น จอร์จและวีรามานี  (George & Veeramani, 1994) นิยาม

ความหมายของเฮาส์ดร์อฟ ทอพอโลยีบนวิภัชนัยบนปริภูมิอิงระยะทางโดยปรับเปลี่ยนนิยามของระยะทางเชิง



วารสารวิชาการวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์                              66 
                       ปีที่ 13 ฉบับที ่17 มกราคม - มิถุนายน 2564 

วิภัชนัยเล็กน้อย ซึ่งริเริ่มโดยคราโมซิลและมิคาเลค นอกจากนี้อตานาสซอฟ (Atanassov, 1986) ได้เสนอแนวคิด

เกี่ยวกับวิภัชนัยอินทิวชันนิสติกบนเซต (Intuitionistic fuzzy set) ซึ่งได้พัฒนาต่อมาจนกลายเป็นแนวคิดใหม่ ๆ 

มากมาย เช่น วิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง (Intuitionistic fuzzy metric spaces) (Park, 

2004) วิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงทอพอโลยี (Intuitionistic fuzzy topology spaces) (Saadati & 

Park, 2006) วิภัชนัยอินทิวชันนิสติกบนปริภูมินอร์ม (Intuitionistic fuzzy normed spaces) (Karakus, 

Demirci & Duman, 2008) วิภัชนัยอินทิวชันนิสติก บน 2-ปริภูมินอร์ม (Intuitionistic fuzzy 2-normed 

spaces) (Mursaleen & Lohani, 2009) เป็นต้น จนกระทั่งในปี ค.ศ. 2016 โซลิน นาดาแบน (Nadaban, 

2016) ได้ขยายแนวคิดเกี่ยวกับปริภูมิอิงระยะทางแบบบีด้วยการน าเสนอวิภัชนัยบนปริภูมิอิงระยะทางแบบบี 

 ในงานวิจัยนี้ได้น าแนวคิดของอตานาสซอฟและนาดาแบนมาสร้างนิยามของวิภัชนัยอินทิวชัน                    

นิสติกบนปริภูมิอิงระยะทางแบบบี พร้อมท้ังศึกษาสมบัติพื้นฐานเพื่อให้ได้ข้อสรุปเป็นองค์ความรู้ใหม่เกี่ยวกับวิภัช

นัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี (Intuitionistic fuzzy b-metric spaces) และสมบัติพื้นฐาน

ต่าง ๆ 

 

2. เอกสารและงานวิจัยที่เกี่ยวข้อง 

บทนิยาม 1  (Park, 2004) ก าหนดให้    เป็นการด า เนินการทวิภาคจาก [0,1]×[0,1]  ไปยั ง  [0,1]                    

จะเรียกการด าเนินการ   ว่ามีความต่อเนื่องแบบนอร์มที (Continuous t-norm) เมื่อ 

 (1)    มีสมบัติเปลี่ยนหมู่และสลับท่ี 

 (2)    เป็นฟังก์ชันต่อเนื่อง 

 (3)  ส าหรับแต่ละ ๆ 0 1   จะได้ 1     

 (4)  ส าหรับแต่ละ ๆ  , , , 0,1      ถ้า    และ    แล้ว        

 ถ้าให้   เป็นการด าเนินการทวิภาคจาก [0,1] [0,1]  ไปยัง [0,1] จะเรียกการด าเนินการ   ว่ามี

ความต่อเนื่องแบบโคนอร์มที (Continuous t-conorm) เมื่อ   มีสมบัติ (1), (2), (4) และ (3) ส าหรับแต่ละ  

0 1   จะได้    0     

 

บทนิยาม 2 (Park, 2004) ก าหนดให้   เป็นเซตซึ่ง   ไม่เป็นเซตว่าง 1  การด าเนินการ    มีความ
ต่อเนื่องแบบนอร์มที   มีความต่อเนื่องแบบโคนอร์มทีและ ,  เป็นความสัมพันธ์แบบวิภัชนัยบน (Fuzzy 
set) (0,   )  โดยที่ ,   มีสมบัติดังนี้ ส าหรับแต่ละ ,  ,     และ ,  0s t  

 (1)     , , , , 1t t        
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 (2)  ถ้า    จะได้  , , 0t        

 (3)   , , 1t  
 ก็ต่อเมื่อ    

 (4)     , , , ,t t       

 (5)       , , , , , ,  t s s t           

 (6)       , , : 0, 0 ,1     มีความต่อเนื่อง 

 (7)  ถ้า    จะได้  , , 1t    

 (8)   , , 0t    ก็ต่อเมื่อ    

 (9)     , , , ,t t       

 (10)      , ,   , ,   , ,t s s t           

 (11)      , , : 0, 0 ,1      มีความต่อเนื่อง 

 เราจะกล่าวว่า  ,   เป็นระยะทางเชิงวิภัชนัยอินทิวชันนิสติกบน   และเขียนแทนโดย 

 ,   
 

ตัวอย่าง 3 (Park, 2004) ก าหนดให้ ( , ) เป็นปริภูมิอิงระยะทาง (Metric space) ให้ , [0,1]a b , 
,    และ 0t   จะนิยาม , , ,     โดย 

 min{ , },a b a b   
 max{ , },a b a b   

 ( , , ) ,
( , )

t
t

t
 

 
 

 
 

 
( , )

( , , )
( , )

t
t

 
 

 


 

 
 

จะได้ว่า ( , , , , )     เป็นวิภัชนัยอินทิวชันนิสติกบนปริภมูิอิงระยะทาง 
 

บทนิยาม 4 (Park, 2004) ก าหนดให้  , , , ,      เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง 

(Intuitionistic fuzzy metric spaces) และให้  0,1r   0t   และ    เราจะเรียกเซต  

   , ,   , , 1  B r t t r        และ   , , t r   ว่าเป็นบอลเปิด (Open ball) ที่มีจุดศูนย์กลาง 
ที ่ และรัศมี r  ณ จุด t  
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บทนิยาม 5 (Park, 2004) ก าหนดให้  , , , ,      เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง จะ

เ รี ยก เซตที่ นิ ย าม โดย  ( , )
X

M N
    ส าหรั บทุ ก  ๆ     จะมี  0t  ,  0,1r  โ ดยที่  

 , , }B r t    ว่าเป็นทอพอโลยีบน  , , , ,      
 

บทนิยาม 6 (Park, 2004) ก าหนดให้  , , , ,      เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง ดังนั้น
เซต U    จะกล่าวว่าเป็นเซตเปิด (Open set) ถ้าส าหรับทุก ๆ U   เป็นจุดศูนย์กลางของบอลเปิด
ส าหรับบางบอลเปิดที่ เป็นเซตย่อยของ U  เซตเปิดในวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง 

 , , , ,       
 

บทนิยาม 7 (Park, 2004) ก าหนดให้  , , , ,      เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง และ
ให้     จะเรียก   ว่ามีขอบเขตแบบวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง เมื่อมี 0t  และ 

 0,1r   โดยทีส่ าหรับแต่ละ ,    จะได้  , , 1t r     และ  , , t r     
 

บทนิยาม 8 (Park, 2004) ก าหนดให้  , , , , ,    เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง และ 

 n  เป็นล าดับใน   ล าดับ  n  ลู่ เข้าสู่    บน  ,    เมื่อส าหรับทุก ๆ  0,1r   และ 

0t   จะมี 0 n  โดยที่ ส าหรับทุก ๆ 
0

n n  แล้ว  ,  ,n B r t   กล่าวคือ  ,  , 1t rn     

และ  ,  ,n t r    ในที่น้ีจะใช้สัญลักษณ์แทนคือ lim nn
 


หรือ 

 ,
n 

 
  

 

บทนิยาม 9 (Park, 2004) ก าหนดให ้  , , , , ,    เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางและ 

 n  เป็นล าดับใน   ดังนั้น  n  เป็นล าดับโคชี (Cauchy sequence) ก็ต่อเมื่อส าหรับทุก ๆ        0,1r   

แ ล ะ  0t  จ ะ มี  0
n   โ ด ย ที่ ส า ห รั บ ทุ ก  , 

0
m n n  จ ะ ไ ด้   ,  , 1t rnm     แ ล ะ 

 ,  , tm rn    นอกจากนี้วิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางซึ่งทุก ๆ ล าดับโคชีเป็นล าดับลู่เข้า
จะเป็นปริภูมิบริบูรณ์ (Complete space) 

บทนิยาม 10 (Park, 2004)  ก าหนดให้  , , , ,      เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง 

ล าดับ  n  ใน   จะกล่าวว่าลู่เข้าสู่ L  บนวิภัชนัยอินทิวชันนิสติกเมตริก  ,   ถ้าส าหรับทุก ๆ 

0r   และ 0t   จะมี 0 n  โดยที่  , , 1n L t r    และ  , ,n L t r   ทุก ๆ 0n n  

และเขียนแทนโดย ( , ) N

n L  ขณะที่ n  
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บทนิ ย าม  1 1 (Park, 2004) ก าหนด ให้   , , , ,      เ ป็ น วิ ภั ชนั ย อิ นทิ ว ชั นนิ ส ติ ก บน ป ริ ภู มิ                                

อิงระยะทาง จะกล่าวว่า  , , , ,      เป็นปริภูมิบริบูรณ์ ถ้าทุก ๆ ล าดับโคชีเป็นล าดับลู่เข้าบน 
( , )   

 
บทนิยาม 12  (Nadaban, 2016) ก าหนดให้   เป็นเซตซึ่ง   ไม่เป็นเซตว่าง 1   การด าเนินการ   มี
ความต่อเนื่องแบบนอร์มที   มีความต่อเนื่องแบบโคนอร์มทีและ   เป็นความสัมพันธ์แบบวิภัชนัยบน 

(0,   )   โดยที่  มีสมบัติดังนี้ ส าหรับแต่ละ ,  ,     และ , 0s t   

 (bM1)  , , 0 0    

 (bM2)  , , 1t    ก็ต่อเมื่อ    

 (bM3)    , , , ,t t       

 (bM4)       , , , , , ,  s t t s           

 (bM5)      , , : 0, 0,1     มีความต่อเนื่องทางซ้าย และ  lim , , 1t
t

  


 

 จะกล่าวว่า  , , ,     เป็นวิภัชนัยบนปริภูมิอิงระยะทางแบบบี (fuzzy b-metric spaces) 
 
ตัวอย่าง 13 (Nadaban, 2016) สมมติให ้ ( , )   เป็นปริภมูิอิงระยะทางแบบบี (b-metric spaces) นิยาม
ส าหรับทุก ๆ ,    และ 0t   จะนิยาม , , ,     โดย 

 
, 0γ( , , ) ( , )

0, 0

t
t

t t

t

   


   








 

จะได้ว่า ( , , )t   เป็นวิภัชนัยบนปรภิูมิอิงระยะทางแบบบี ส าหรับทุก ๆ γ   
 
บทนิยาม 14 (Nadaban, 2016) ให้ 1   และ f เป็นฟังก์ชันจาก  ไปยัง  จะกล่าวว่าเป็นฟังก์ชันไม่

ลดแบบ   เมื่อส าหรับแต่ละ t s  จะได้ว่า    f t f s   

บทนิยาม 15 (Nadaban, 2016) ก าหนดให้  , , ,     เป็นวิภัชนัยบนปริภูมิอิงระยะทาง ล าดับ  n   ใน 

  จะกล่าวว่าลู่เข้า เมื่อ มี   โดยที่ ส าหรับทุก ๆ 0t   จะได้  , , 1tn    ในกรณีนี้ เราจะ

กล่าวว่า ล าดับ  n  ลู่เข้าสู่    เขียนแทนโดย lim
n

n 


  หรือ  n  

 

บทนิยาม 16 (Nadaban, 2016) ก าหนดให้  , , ,     เป็นวิภัชนัยบนปริภูมิอิงระยะทางแบบบีและ  n  

เป็นล าดับใน   ล าดับ  n  ใน   จะกล่าวว่า ล าดับ  n  เป็นล าดับโคชี ถ้าส าหรับทุก ๆ 0r   และ

ทุก ๆ 0t  จะมี 0 n โดยที่  , , 1n m t r     ทุก ๆ 0, n m n  
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บทนิยาม 17 ก าหนดให้   เป็นปริภูมิเชิงทอพอโลยี (Topology spaces) จะกล่าวว่า   เป็นปริภูมิเฮาส์ดอร์ฟ 

(Hausdorff spaces) ก็ต่อเมื่อ ส าหรับทุก ๆ ,    โดยที่    จะมีเซตเปิด 1  และ 2 โดยที่ 

1   และ  2   และ 1 2     

 

 บทนิยาม 18 ก าหนดให้   เป็นปริภูมิเชิงทอพอโลยี เซตปกเปิด (Open cover) ของ   คือ วงศ์ของเซตเปิด 

{ | } i i I  โ ด ย ที่  
i

i
I

    เ ซ ต ป ก ย่ อ ย ข อ ง เ ซ ต ป ก เ ปิ ด  { | } i i I  คื อ เ ซ ต ป ก เ ปิ ด

{ | } j j J  โดยที่ J  เป็นเซตย่อยของ I   

 

 บทนิยาม 19 ก าหนดให้   เป็นปริภูมิเชิงทอพอโลยี จะกล่าวว่า   เป็นเซตกระชับ (Compact set) เมื่อ

ส าหรับทุก ๆ เซตปกเปิดของ   จะมีเซตปกย่อยที่เป็นจ ากัด 

 

3. วัตถุประสงค์การวิจัย  

1. สร้างนิยามวภิัชนัยอินิวชันนิสตกิบนปริภูมิอิงระยะทางแบบบ ี

2. สร้างนิยามทอพอโลยีบนวิภัชนยัอินิวชันนิสติกบนปรภิูมิอิงระยะทางแบบบี 

3. ศึกษาสมบัตติ่าง ๆ ของทอพอโลยีบนวิภัชนัยอินิวชันนิสติกบนปรภิูมิอิงระยะทางแบบบ ี

 

4. วิธีด าเนินการวิจัย  

 ในการนิยามวิภัชนัยอินิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี เพื่อใช้ในการศึกษานั้นผู้วิจัยได้

ด าเนินการตามขั้นตอนดังน้ี 

 1.  ศึกษางานวิจัยท่ีเกี่ยวข้อง 

 ในการวิจัยครั้งนี้ ผู้วิจัยได้ศึกษาจากเอกสารและงานวิจัยต่าง ๆ ซึ่งได้อ้างอิงให้เห็นบางส่วน 

 1. Intuitionistic fuzzy set ของ Atanassov (1986) 

 2. Intuitionistic fuzzy metric space ของ Park (2004)  

 3. Baire’s and Cantor’s theorems in intuitionistic fuzzy metric space ของ Mursaleen 

& Lohani (2009) 

 4. Fuzzy b-metric spaces ของ Nadaban (2016) 

 งานวิจัยในหัวข้อนี้ ผู้วิจัยจะใช้ในการศึกษา วิภัชนัยอินทิวชันนิสติกบนเซต วิภัชนัยบน                   ปริภูมิ

อิงระยะทางแบบบี วิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง และศึกษาสมบัติต่าง ๆ ของ                  วิภัช

นัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง รวมทั้งศึกษาแนวทางในการพิสูจน์ทั้งนี้เพื่อผู้วิจัยจะใช้เป็นข้อคาดเดา

ในการศึกษาบนวิภัชนัยอินทิวชันนิสติกบนปริภูมอิงระยะทางแบบบีต่อไป 
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 2. สร้างนิยามวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีและนิยามทอพอโลยีบนวิภัชนัย
อินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี  

จากการศึกษางานวิจัยเกี่ยวกับวิภัชนัยบนปริภูมอิงระยะทางแบบบีและวิภัชนัยอินทิวชัน                   
นิสติกบนปริภูมิอิงระยะทาง แล้วพบว่าผู้วิจัยสามารถนิยามวิภัชนัยอินทิวชันนิสติกบนระยะทางแบบบีและทอ
พอโลยีบนวิภัชนัยอินทิวชันนิสติกบนระยะทางแบบบีได้ นอกจากนั้นยังได้ตัวอย่างนิยามของวิภัชนัยอินทิวชันนิ
สติกบนปริภูมิอิงระยะทางแบบบี 

3. ศึกษาสมบัติเบื้องต้นต่าง ๆ ของปริภูมิทอพอโลยีบนวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง
แบบบ ี

ในการศึกษาสมบัติเบื้องต้นต่าง ๆ ของปริภูมิทอพอโลยีบนวิภัชนัยอินทิวชันนิสติกบนปริภูมิระยะทาง
แบบบี ผู้วิจัยจะเริ่มพิจารณาจากสมบัติต่าง ๆ เช่น เซตเปิด ล าดับลู่เข้า ล าดับโคชี การมีขอบเขตแบบวิภัชนัยอิน
ทิวชันนิสติกบนปริภูมิระยะทางแบบบี เป็นต้น 

  
5. ผลการวิจัย  
 1. บทนิยามของวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 
บทนิยาม 20 (Park, 2004) ก าหนดให้   เป็นการด าเนินการทวิภาคจาก [0,1] [0,1]  ไปยัง [0,1]   จะเรียก
การด าเนินการ   ว่ามีความต่อเนื่องแบบนอร์มที เมื่อ 
 (1)    มีสมบัติเปลี่ยนหมู่และสลับท่ี 
 (2)    เป็นฟังก์ชันต่อเนื่อง 
 (3)  ส าหรับแต่ละ ๆ 0 1   จะได้ 1     
 (4)  ส าหรับแต่ละ ๆ , , , [0,1]      ถ้า    และ    แล้ว         
 
บทนิยาม 21 (Park, 2004) ก าหนดให้   เป็นการด าเนินการทวิภาคจาก [0,1] [0,1]  ไปยัง [0,1]  จะเรียก
การด าเนินการ   ว่ามีความต่อเนื่องแบบโคนอร์มที เมื่อ 
 (1)    มีสมบัติเปลี่ยนหมู่และสลับท่ี 
 (2)    เป็นฟังก์ชันต่อเนื่อง 
 (3)  ส าหรับแต่ละ ๆ 0 1   จะได้    0     
 (4)  ส าหรับแต่ละ ๆ , , , [0,1]      ถ้า    และ    แล้ว         

 
ข้อสังเกต 22 (Park, 2004) 
 ( 1 )  ถ้ า ใ ห้  1 2,  (0,1  )    แ ล ะ  1 2   แ ล้ ว จ ะ ไ ด้ ว่ า มี  3 4,  (0,1  )    โ ด ย ที่  

1 3 2     และ 1 4 2     
 ( 2 )   ถ้ า ให้  5 (0,1  )   แล้ ว จ ะ ไ ด้ ว่ า มี  6 7,  (0,1)    โ ด ยที่  6 6 5     แล ะ 

7 7 5     
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ตัวอย่าง 23 ก าหนดให้ ][0,1] [ ], : 10,1 [0,    โดยที่      และ  min ,1      เมื่อ 

 , 0,1    จะได้ว่า    มีความต่อเนื่องแบบนอร์มที และ   มีความต่อเนื่องแบบโคนอร์มที 
 พิจารณาการด าเนินการ   จะเห็นได้ชัดว่า   มีสมบัติ (1), (3) และ (4) ล าดับต่อไปก าหนดให้ 

:f   แ ล ะ ให้  :g   นิ ย า ม โ ดย   f    แ ล ะ   g    เ มื่ อ  ,    ดั ง นั้ น 

:    ซึ่งนิยามโดย    f g        เป็นฟังก์ชันต่อเนื่อง เนื่องจาก [0,1]  เป็น
ปริภูมิย่อย ของ  จะได้ว่า : [0,1] [0 ][,1] 0,1   เป็นฟังก์ชันต่อเนื่อง ดังนั้น : [0,1] [0 ][,1] 0,1     
มีความต่อเนื่องแบบนอร์มที  
           พิจารณาการด าเนินการ   จะเห็นได้ชัดว่า   มีสมบัติ (1) และ (3) ล าดับต่อไปพิจารณา      
จะพบว่าถ้า 1    จะได้ 1    นั่นคือ   เป็นฟังก์ชันค่าคงที่ ดังนั้น   เป็นฟังก์ชันต่อเนื่องที่ทุก ๆ 
จุด  ,  ที่ 1    ถ้า 1    จะได้       เนื่องจากการบวกมีความต่อเนื่องบน 2

ดังนั้น   เป็นฟังก์ชันต่อเนื่องที่ทุก ๆ จุด  ,  ที่ 1    ถ้า 1    ให้ 0   และ         
เ ป็ น บ อ ล เ ปิ ด ที่ จุ ด   ,   รั ศ มี  / 2 ใ ห้   ,     จ ะ ไ ด้ ว่ า  / 2    แ ล ะ 

/ 2     กรณี 1     จะได้ ( , ) ( , ) 0           กรณี 1     จะได้ 

( , ) ( , )                    ดังนั้น   เป็นฟังก์ชันต่อเนื่องที่ทุก ๆ จุด  ,  ที่
1    สรุปว่า  เป็นฟังก์ชันต่อเนื่องบน 2  เนื่องจาก [0,1]  เป็นปริภูมิย่อยของ  จะได้ว่า 

: [0,1] [0 ][,1] 0,1   เป็นฟังก์ชันต่อเนื่อง 
 ถ้ า ให้  , [0,1]    โ ด ยที่     แล ะ     จ ะ ไ ด้   min ,1     และ 

 min ,1      
 ถ้า 1    จะได้ 1        ดังนั้น 1       
 ถ้า       จะได้ 1     
   ถ้า 1    จะได้ 1        
   ถ้า        จาก        จะได้        
 ดังนั้น : [0,1] [0 ][,1] 0,1   มีความต่อเนื่องแบบนอร์มที  
 
บทนิยาม 24 (Nadaban, 2016) ให้   ไม่เป็นเซตว่างและ 1   จะได้ว่า ฟังก์ชัน :    
เป็นระยะทางแบบบ ี(b-metric) บน   ก็ต่อเมื่อส าหรับแตล่ะ ,  ,      

 (
1b )  , 0  

 ก็ต่อเมื่อ    

 (
2b )    , ,      

 (
3b )    , ( , ) ( , )          

จะเรียก  ,   ว่าเป็นปริภูมิอิงระยะทางแบบบี  
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ตัวอย่าง 25 (Nadaban, 2016) ให้    และ    
2

,b       เป็นระยะทางแบบบี โดยที่ 2   

จะได้ว่า  , b  เป็นปริภูมิอิงระยะทางแบบบี 

 

บทนิยาม 26 (Nadaban, 2016) ก าหนดให้   เป็นเซตซึ่ง   ไม่เป็นเซตว่าง 1     มีความต่อเนื่อง

แบบนอร์มที     มีความต่อ เนื่ องแบบโคนอร์มที  และ ,  เป็นความสัมพันธ์แบบวิภัชนัยบน 

(0,   )   โดยที่ ,   มีสมบัติดังนี้ ส าหรับแต่ละ ,  ,     และ ,  0s t   

 1( )IFbM  ( , , ) ( , , ) 1t t        

 2( )IFbM  ( , , 0) 0    
 3( )IFbM  ( , , ) 1t    ก็ต่อเมื่อ    

 4( )IFbM  ( , , ) ( , , )t t        

 5( )IFbM   , ,   ( , , ) ( , ,( ) )         t s t s  

 6( )IFbM  ( , ,  ) :[0, ) [0,1]      มีความต่อเนื่องทางซ้ายและ lim ( , , ) 1 


 
t

t  

 7( )IFbM  ( , ,0) 1    

 8( )IFbM  ( , , ) 0  t  ก็ต่อเมื่อ    

 9( )IFbM     , , , ,  t t       

 10( )IFbM    , ,   ( , , ) ( , , )t s t s           

 11( )IFbM  ( ,  , ) :[0, ) [0,1]      มีความต่อเนื่องทางขวาและ  lim , , 0 


 
t

t  

จะเรียก  , 
b

   ว่าระยะทางเชิงวิภัชนัยอินทิวชันนิสติกแบบบี (Intuitionistic fuzzy b-metric) บน   และ

เรียก  , , , , ,   ว่าวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี (Intuitionistic fuzzy b-

metric)  

 

ตัวอย่าง 27 ให้  ,   เป็นปริภูมิอิงระยะทางแบบบี 1   การด าเนินงานทวิภาค   และ   นิยามโดย 

ส าหรับแต่ละ , [0,1]    จะได้      และ  min ,1       และให้ b และ 

b  เป็นความสัมพันธ์วิภัชนัยบน  0,   โดยที่  

 ,
)

,
,(

b

t
t

t
 

 






 และ  

( , )
, ,

( , )
b t

t

 
 

 
 






 เมื่อ 0t   และ ,    

ดังนั้น  , , , , ,b b    เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 

พิสูจน์      ในที่น้ี จะพิสูจน์เพียง 5( )IFbM  และ 10( )IFbM  เพราะว่าข้ออ่ืน ๆ เป็นการพิสูจน์ขั้นพ้ืนฐาน 
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 ให้ ,  ,     และ ,  0s t  

 และสมมติให้            , ,, ,b bt s       

 ดั้งนั้น                 
),(,( )

t s

t s   


  
  

 นั้นคือ                    ( , ) ( , )     t s  

 พิจารณา   , ,b t s    

  ),(

t s

t s  

 


 
 

                     

   ( ) ( ), ,

t s

t s



     




   
 

                     

   ,( ),) (



   




    

t s

t s
 

                       
( ) ( ), ,

t s

t s    




  
 

 ต่อไปจะแสดงว่า 
( ) ( ) ( ), , ,

t s t

t s t       




   
 

 จาก                           ,( ) ), (    s t  

                   2 2( ) ( ) ( ) ( ,, , ),               t st t s t st t t  

                                   ( ) ( ), ( , ),t s t t t s               

                                   
( ) ( ) ( ), , ,

t s t

t s t       




   
 

 ดังนั้น                      , ,
( ),

b

t
t s

t
 

 



 


 

                                 
,( ) ( , )

t s

t s   

  
   

   
  

            ( , , ) ( , , )     b bt s  

 ในท านองเดียวกันจะได้   , , ( , , ) ( , , )         t s t s  

 ดังนั้น  , , , , ,b b    เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี    
 

บทนิยาม 28 (Nadaban, 2016) ให้ 1   และ f เป็นฟังก์ชันจาก  ไปยัง  จะกล่าวว่าเป็นฟังก์ชันไม่

ลดแบบ  เมื่อส าหรับแต่ละ t s  จะได้ว่า ( ) ( )f t f s  และฟังก์ชัน g เป็นฟังก์ชันจาก ไปยัง 

จะกล่าวว่าเป็นฟังก์ชันไม่เพิ่มแบบ  เมื่อส าหรับแต่ละ t s  จะได้ว่า ( ) ( )g t g s   
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บทแทรก 29 ส าหรับแต่ละ ,     ฟังก์ชัน ( ,  ,  )    เป็นฟังก์ชันไม่ลดแบบ  จาก [0, )  ไปยัง 
[0,1]  และ ( ,  ,  )    เป็นฟังก์ชันไม่เพิ่มแบบ  จาก [0, )  ไปยัง [0,1]  
พิสูจน ์ ก าหนดให้ ,    และ 0 t s    

 จะได้              ,  , s     ,  , s t t      

                  ,  , ,  ,s t t        

                1 ,  ,  t    

                ,  , t     
 นั่นคือ ( ,  ,  )    เป็นฟังก์ชันไม่ลดแบบ    

 ในท านองเดียวกัน         ,  , s     ,  , s t t      

                  ,  , ,  ,s t u t       

                0 ,  , t    

                  ,  , t     

 นั่นคือ  ,  ,     เป็นฟังก์ชันไม่เพิ่มแบบ                           

 
2. ทอพอโลยีบนวิภัชนัยอินทิวชนันิสตกิบนปริภมูิอิงระยะทางแบบบี 

บทนิยาม 30 ให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี ส าหรับแต่ละ  
r , 0t   และ    จะเรียกเซต       , ,   , , 1 , , ,           B r t t r t r

ว่าเป็นบอลเปิด (Open ball) ที่มีจุดศูนย์กลางที่  รัศมี r  ณ จุดเวลา t  
 

ตัวอย่าง 31 ให้  , , , , , 2b b    เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี ซึ่งก าหนดโดย

ระยะทางเชิงวิภัชนัยอินทิวชันนิสติกแบบบี b  โดยนิยาม b  เหมือนกับ ตัวอย่าง 4.6 และให้ 1

2
r  , 1t   

และ 0  จะได้ 

   
1 1 1

0, ,1 0, ,1 , 0, ,1  
2 2 2b b bd d dB   

   
       

   
 

 จาก  
 
1 1

0, ,1
1 0, 2bd

b







 


 และ  
 

 

0, 1
0, ,1

1 0, 2b

b

d

b





 







  

 จะได้  0, 1b     

 เนื่องจากเรานิยาม b  เหมือนกับตัวอย่าง 4.6 จะได้   2 20, (0 ) 1b        

 ดังนั้น  21
0, ,1 1

2bdB  
 

   
 
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ทฤษฎีบท 32  ให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี และให้  

      ,
, 0, 0,1 , , ;t r B r t 


              

จะได้  , 
  เป็นทอพอโลยีบน  , , , , ,   

พิสูจน ์ (1) เห็นได้ชัดว่า   และ   เป็นสมาชกิใน  , 
  

 (2) ให้    i ,


 
  และ i

i I

 


  

 เราจะแสดงว่า  ,


 
  ถ้าให้    จะได้ว่ามี 0 i I  โดยที่ 

0i
   

 เนื่องจาก  0 ,i  
  จะได้ว่ามี 0t   และ  0,1r  โดยที่  

0
, , iB r t   

 นั่นคือ  , ,
i

i

I

B r t  


    

 (3) ให้  1 2 ,
, 

 
  จะได้ 1 2,     และได้ว่า 1 2     

 ให้ 1 2    จากนิยามทอพอโลยี  ,M N
  จะมี 1 2, 0t t  และมี  1 2, 0,1r r   ที่ซึ่ง  

  1 1 1,,B r t   และ  2 2 2, ,B r t   ดังนั้น    

    1 1 2 2 1 2, , , ,B r t B r t       

 ล าดับต่อไปต้องการแสดงว่า    1 1 2 2, , , ,B r t B r t   เป็นเซตเปดิ  

 สมมติให้  1 2min ,r r r , 1 2min ,
 

 
  

 

t t
t  และ  , ,B r t   

 จะได้       1
1, , , ,

t
t 


   

 
   






 


  

              , , t    

             1 r   
             11  r  

 และ       1
1, , , ,

t
t    



  
    

  
  

              , , t     

              r  
             1 r  

 เพราะฉะนั้น  1 1, ,B r t    
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 ในท านองเดียวกันจะได้  2 2, , 1t r     และ  2 2, , t r      

 เพราะฉะนั้น  2 2, ,B r t   และได้อีกว่า    1 1 2 2, , , ,B r t B r t                         

 และ      1 1 2 2, , , , , ,B r t B r t B r t     

 นั่นคือ    1 1 2 2, , , ,B r t B r t   เป็นเซตเปดิ และได้อีกว่า  1 2 ,
 

 
   

 ดังนั้น  , 
  เป็นทอพอโลยีบน  , , , , ,              

 

ข้อสังเกต 33 ส าหรับทุก ๆ     0,1r  และ 0t    , ,B r t  เป็นเซตเปดิ 

ทฤษฎีบท 34  ให้ ( , , ,*, , )     เป็นวิภัชนัยอนิทิวชันนิสติกบนปริภมูิอิงระยะทางแบบบีแล้วจะได้ว่า 
( , , ,*, , )     เป็นปริภูมเิฮาส์ดร์อฟ 

พิสูจน ์ ให ้ ,    โดยที่    และ 0t   

 ดังนั้น  0 ,  , 1s     และ  0 ,  , 1s     

 ให้ 1 ( , , )  r t , 2 ( ,  , )  r t  และ  1 2max ,1r r r   จาก ข้อสังเกต 4.3 

 ส าหรับทุก ๆ   0 ,1r r  จะมี 3r  และ 4r  ที่ซึ่ง 3 3 0 r r r  และ    4 4 01 1 1r r r       

 ต่อจากนั้นให้  5 3 4max ,r r r   

 พิจารณา 5,1 ,
2

t
B r



 

 
 

 และ 5,1 ,
2

t
B r



 

 
 

 เห็นได้ชัดว่า   

                  5 5,1 , ,1 ,
2 2

t t
B r B r







   
      

   
 

 สมมติให้ 5 5,1 , ,1 ,
2 2

t t
B r B r







   
      

   
 

 จะได้ว่า    1 , ,r t    

            , ,
2 2


 

 
  

    
  

t t
  

         , , , ,
2 2

   
 

   
     

   

t t
 

            5 51 1 1 1          r r  

         5 5 r r  
         3 3 r r  
         0 r  
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         1 r  

 และ          2 , ,r t     

        , ,
2 2


 

 
  

    
  

t t  

        , , , ,
2 2

t t
   

 

   
     

   
 

           5 51 1r r     

           4 41 1r r     

        01  r  
        2 r   
  นั่นคือ 1 1r r  และ 2 2r r  ซึ่งขัดแย้ง  

  เพราะฉะนั้น  , , , , ,   เป็นปริภมูิเฮาสด์ร์อฟ                       
 

ข้อสังเกต 35 ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี และให้ 

   เป็นเซตย่อยกระชับ (Compact subset) จะได้ว่า   เป็นเซตปิด 
 

บทนิยาม 36 ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี และ 

    จะเรียก   ว่ามีขอบเขตแบบวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี (
bIF -bounded) 

เมื่อมี 0t  ,  0,1r  โดยที่ส าหรับแต่ละ ,    จะได้  , , 1t r     และ  , , t r     

 

ข้อสังเกต 37 ส าหรับทุก ๆ  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีซึ่ง
ก าหนดโดยระยะทางแบบบี   จะได้     มีขอบเขตแบบวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทาง
แบบบีก็ต่อเมื่อ   มีขอบเขตบน ( , )   
 

ทฤษฎีบท 38  ให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี  และให้

    โดยที่   เป็นเซตกระชับ   บน  , , , , ,   จะได้ว่า   มีขอบเขตแบบวิภัชนัยอินทิว
ชันนิสติกบนปริภูมิอิงระยะทางแบบบี 

พิสูจน ์ ให้ 0t   และ  0,1r  จากเซตปกเปิด   ,  ,B r t u   ของ   เนื่องจาก   เป็นเซต

กระชับ จะได้ว่ามี 1 2, , ,   n  โดยที ่  
1

, ,
n

i

i

B r t


   
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สมมติให้ ,    จะได้ว่า ( , , )  iB r t  และ ( , , )  jB r t ส าหรับบาง ,i j   

ดังนั้น ( ,  , ) 1   j t r , ( ,  , )  j t r  , ( ,  , ) 1   j t r  และ 
( ,  , )  j t r

 
 

ถ้าให ้   min , , 1 ,i j t i j n       และ   max , , 1 ,i j t i j n        

ดังนั้น , 0    ตอนนี้เราจะได้  

    , , ( 2 )  t t ( , , ) ( , , 2 )     i it t    
                  ( , , ) ( , , ) ( , , )        i i j jt t t     

                  (1 ) (1 )    r r  
                  11  s  ส าหรับบาง 10 1 s  

 ในท านองเดียวกันจะได้   2, , ( 2 )       t t r r s ส าหรับบาง 20 1 s  

 ให ้  1 2max ,s s s  และ ( 2 )   t t t  จะได ้   

   ( , , ) 1    t s  และ ( , , )   t s  เมื่อ ,     
 ดังนั้น   มีขอบเขตแบบวิภัชนัยอินทิวชันนิสติกบนปริภมูิอิงระยะทางแบบบี                      
 

บทนิยาม 39  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีและ 

 n  เป็นล าดับใน   ล าดับ  n  ลู่เข้าสู่    บน  ,    เมื่อส าหรับทุก ๆ  0,1r  และ 

0t  จ ะ มี  0 n  โ ด ย ที่  ส า ห รั บ ทุ ก  ๆ  0n n  แ ล้ ว   ,  ,n B r t   ก ล่ า ว คื อ 

 ,  , 1n t r     แ ล ะ   ,  ,n t r    ใ น ที่ นี้ จ ะ ใ ช้ สั ญ ลั ก ษ ณ์ แ ท น คื อ  lim 


n
n

 ห รื อ 

 ,

n 
 

  
 

ทฤษฎีบท 40  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี  

 ,  
  เป็นทอพอโลยีบน   ซึ่งก าหนดโดยระยะทางเชิงวิภัชนัยอินทิวชันนิสติกแบบบี  ,    และให้ 

 n  เป็นล าดับใน   จะได้ว่า ล าดับ  n  ลู่เข้าสู่   บน  ,    ก็ต่อเมื่อส าหรับทุก ๆ 0t   

จะได้  lim ,  , 1n
n

t 


   และ  lim ,  , 0n
n

t 


   

พิสูจน์ ให้ 0t  และล าดับ  n  ลู่เข้าสู่   บน  ,    เพราะฉะนั้นส าหรับทุก ๆ  0,1r  

จะมี 0 n โดยที่ส าหรับแต่ละ 0n n จะได้  1 ,  ,n t r   และ   0 ,  ,n t r     

 ดังนั้น  lim ,  , 1n
n

t 


   และ  lim ,  , 0n
n

t 


    
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 ก าหนดให ้  lim ,  , 1n
n

t 


   และ  lim ,  , 0n
n

t 


   ส าหรับทุก ๆ 0t    

 ถ้า  ,


 
  โดยที่    จะมี 0t   และ  0,1r  โดยที่  ,  ,B r t    

 จากสมมติฐานจะได้ว่าส าหรับแตล่ะ 0n n จะได ้ 

 1 ,  ,n t r    และ  0 ,  ,n t r    

 นั่นคือ    ,  ,n B r t    ส าหรับทุก ๆ  0n n   

 นั่นคือ 
 ,

n 
 

                              
 

ทฤษฎีบท 41  ก าหนดให ้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีและให้ 

 n  เป็นล าดับใน   จะได้ว่าล าดับ  n  ลู่เข้าสู่    บน  ,    ก็ต่อเมื่อล าดับ  n  ลู่เข้าสู่ 

   บน   , 
,

n
 

 
 
 

พิสูจน์ สมมติให้ล าดับ  n  ลู่เข้าสู่    บน  ,   และ U  เป็นย่านใกล้เคียงของ   จะได้ว่ามี 

 , 


 
  โดยที่ U    จาก  , 


 

  ดังนั้นมี 0t   และ  0,1r  โดยที่   ,  ,B r t   

และจากสมมติฐานจะมี 0 k  โดยที ่ส าหรับทุก ๆ 0k k จะได้  

 ,  ,  1k t r     และ  ,  , k t r    

 พิจารณาบอลเปิด  , ,B r t  จะได้  , ,k B r t   และได้อีกว่า ( , , )    k B r t U

ส าหรับทุก ๆ 0k k  นั่นคือล าดับ  n  ลู่เข้าสู่    บน   , 
,

n
 

    

 ในทางกลับกันสมมติให้ล าดับ  n  ลู่เข้าสู่    บน   , 
,

n
 

   และให้ 0r   และ 

0t    

 เนื่องจาก  , ,B r t
 เป็นย่านใกล้เคียงของ  และ  n จะได้ว่ามี 0 k  โดยที่

ส าหรับแต่ละ 0k k  จะได้    , ,k B r t    

 ดังนั้น  ,  , 1k t r   
 และ ( ,  , )  k t r ส าหรับทุก ๆ 0k k   

 นั่นคือ ล าดับ  n  ลู่เข้าสู่    บน  ,                  
 

ข้อสังเกต 42  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี  

    และให้    เป็น เซตปิด ถ้ า     แล้ วจะมีล าดับ  ( ) n  โดยที่   n บน 

  ,
,

 
   



วารสารวิชาการวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์                              81 
                       ปีที่ 13 ฉบับที ่17 มกราคม - มิถุนายน 2564 

 

บทนิยาม 43  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี และ 

 n  เป็นล าดับใน   ดังนั้น  n  เป็นล าดับโคชี ก็ต่อเมื่อส าหรับทุก ๆ  0,1r  และ 0t   จะมี 

0 n โ ด ยที่ ส า ห รั บทุ ก  ๆ  0,  m n n จะ ไ ด้   ,  , 1nm t r     แล ะ   ,  ,m n t r    
นอกจากนี้วิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีซึ่งทุก ๆ ล าดับโคชีเป็นล าดับลู่เข้าจะเป็นปริภูมิ
บริบูรณ์  
 

ทฤษฎีบท 44  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีและ 

 n  เป็นล าดับใน   ถ้าล าดับ  n  ลู่เข้าสู่   บน  ,    เมื่อ   แล้วล าดับ  n  จะ
เป็นล าดับโคชี 

พิสูจน์ สมมติให้   โดยล าดับ  n  ลู่เข้าสู่   บน  ,    และให้ 0r   และ 0t 

จะมี 1 2,  (0,1)r r  ที่ท าให ้ 1 1(1 ) (1 ) 1    r r r และ 2 2 r r r  ให ้
1 2min{ , } r r r   

 จากสมมติฐาน จะได้ว่ามี 0 n  โดยที่ ส าหรับทุก ๆ 0n n  จะได ้

,  , 1
2

n

t
r 



 
   
 

 และ ,  ,
2

n

t
r 



 
  
 

 

 ถ้าให ้ 0m n  จะได้ , ,  1
2

m

t
r 



 
   
 

 และ , , 
2

m

t
r 



 
  
 

   

 จาก  , ,m n t  , , , ,
2 2

m n

t t
   

 

   
     

   
 

        (1 ) (1 )    r r  
        1 1(1 ) (1 )   r r  

        1 r   

 และ   , ,m n t  , , , ,
2 2

m n

t t


 


 
   

    
   

  

          r r  
        2 2 r r  

         r  
 ดังนั้น  nx  เป็นล าดับโคช ี                                    

ทฤษฎีบท 45  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี และ 

 n  เป็นล าดับโคชีใน   ถ้า  n  มีล าดับย่อยที่ลู่เข้าแล้ว  , , , , ,   เป็นปริภูมิบริบูรณ์ 
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พิสูจน์ สมมติให้   
ni

  เป็นล าดับย่อยของล าดับโคชี   n  โดยที่   
ni

  เป็นล าดับที่ลู่ เข้าสู่  

   จะแสดงว่า ส าหรับทุก ๆ  0,1r  และทุก ๆ 0t   จะมี 
0 n  โดยที่ ส าหรับทุก ๆ 0n n

จะได้  

 ,  , 1n t r     และ   ,  ,n t r    

 ให ้  0,1r  และ 0t   สมมติให้  0,1r  โดยที ่    1 1 1r r r       และ  
  r r r เพราะฉะนั้นจะมี 0 n  โดยที่ส าหรับทุก ๆ 0,  m n n  จะได ้

, ,  1
2

m n

t
r 



 
   
 

 และ , , 
2

m n

t
r 



 
  
 

 

 เนื่องจาก  ,

ni
 

 
  จะมี pi   โดยที ่ 0pi n  และได้ว่า  

, , 1
2pi

t
r 



 
   
 

 และ , ,
2pi

t
r 



 
  
 

 

 ถ้า 0n n  จะได้  

       ,  , n t  ,  ,  , , 
2 2p pi n i

t t
 







   
     

   
 

              (1 ) (1 )    r r  

              1 r    

 และ      ,  , n t  ,  ,  , , 
2 2p pi n i

t t
 







   
     

   
 

                r r   
               r   

 จากนิยามจะได้ 
 ,

n 
 

  ดังนั้น  , , , , ,   เป็นปริภมูิบริบูรณ์          
 

บทนิยาม 46  ให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบีและให้   

เป็นปริภูมิย่อยของ   จะกล่าวว่า  ,     นิยามโดย 

      0,  0, 
,  ,      

      

เป็นระยะทางเชิงวิภัชนัยอินทิวชันนิสติกแบบบีซึ่งถูกจ ากดัโดย   
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ทฤษฎีบท 47  ให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี   เป็นปริภูมิ

ย่อยของ   และให้       0,  0, 
,  ,      

      เป็นระยะทางเชิงวิภัชนัยอินทิวชันนิสติก

แบบบีซึ่งถูกจ ากัดโดย   ดังนั้น  , , , , ,      เป็นปริภูมิย่อยบริบูรณ์ก็ต่อเมื่อ   เป็นเซตปิด 

พิสูจน์ สมมติให้   เป็นเซตย่อยซึ่งเป็นเซตปิดของ   และล าดับ  n  เป็นล าดับโคชีใน    

 เพราะฉะนั้น  n  เป็นล าดับโคชีใน   และยังได้อีกว่ามี    โดยที่  n บน 

 ,  
  ดังนั้น       นั่นคือ  n  ลู่เข้าใน   และได้อีกว่า  , , , , ,      

เป็นปริภูมิย่อยบริบูรณ์     

 สมมติให้  , , , , ,      เป็นปริภมูิย่อยบริบูรณแ์ละให้     

 จะมีล าดับ  n  ใน   โดยที ่ n  บน 
  , 

,
 

   และได้ว่า  n  เป็นล าดบัโคชี

ใน   ให้ 0t   และ (0,1)r  แล้วจะมี 0 n โดยที่ส าหรับทุก ๆ 0,  m n n จะได้  

 ,  , 1n m t r     และ  ,  ,n m t r    
 จาก     นั่นคือส าหรับทุก ๆ 0,  m n n  จะได้  

 , , 1n m t r     และ  , ,n m t r    

 ดังนั้นล าดับ  n  เป็นล าดับโคชีใน    
 เนื่องจาก   เป็นปริภูมยิ่อยบริบรูณ ์ดังนั้น  n  ใน   ส าหรับบาง     

 แต่จาก   เป็นปรภิูมิเฮาสด์ร์อฟ จะได้ว่า      

 นั่นคือ     และเห็นได้ชัดว่า     ดังนั้น                                             
 
6. สรุปและอภิปรายผลการวิจัย 

 ในงานวิจัยนี้ได้ให้นิยามของวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี  และศึกษาสมบัติ
พื้นฐานต่าง ๆ เพื่อให้ได้ข้อสรุปเป็นองค์ความรู้ใหม่เกี่ยวกับวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 
และสมบัติพื้นฐานต่าง ๆ ซึ่งได้ผลการวิจัยเป็นดังนี้ 
 
1.  นิยามของวิภัชนัยอนิทิวชนันสิติกบนปริภมูิอิงระยะทางแบบบี 

 ให้   เป็นเซตซึ่ง   ไม่เป็นเซตว่าง 1     มีความต่อเนื่องแบบนอร์มที   มีความต่อเนื่อง
แบบโคนอร์มทแีละ ,   เป็นความสัมพันธ์แบบวิภัชนัยบน (0,   )   โดยที่ ,   มีสมบัติดังนี้ 
ส าหรับแต่ละ ,  ,     และ ,  0s t   

 ( 1IFbM )    , , , , 1t t       
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 ( 2IFbM )  , ,0 0    

 ( 3IFbM )  , , 1t  
 ก็ต่อเมื่อ    

 ( 4IFbM )    , , , ,  t t        

 ( 5IFbM )   , ,   ( , , ) ( , , )t s t s           

 ( 6IFbM )      , ,   : 0, 0,1      มีความต่อเนื่องทางซ้ายและ 

 lim , , 1
t

t 


   

 ( 7IFbM )  , ,0 1    

 ( 8IFbM )  , , 0t    ก็ต่อเมื่อ    

 ( 9IFbM )    , , , ,  t t       

 ( 10IFbM )   , ,   ( , , ) ( , , )t s t s           

 ( 11IFbM )      ,  ,   : 0, 0,1      มีความต่อเนื่องทางขวาและ 

 lim , , 0
t

t 


   

จะเรียก  , 
b

   ว่าระยะทางเชิงวิภัชนัยอินทิวชันนิสติกแบบบี (Intuitionistic fuzzy b-metric) บน   และ

เรียก  , , , , ,   ว่าวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี (Intuitionistic fuzzy b-
metric)  
 
2. นิยามของทอพอโลยีบนวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 

 ใ ห้   , , , , ,   เ ป็ น วิ ภั ช นั ย อิ น ทิ ว ชั น นิ ส ติ ก บ น ป ริ ภู มิ อิ ง ร ะ ย ะ ท า ง แ บ บ บี                               

เ ซ ต        ,
, 0, 0,1 , , ;t r B r t 


             จ ะ เ ป็ น ท อ พ อ โ ล ยี บ น 

 , , , , ,   
 
3.  สมบัติต่างๆ ของทอพอโลยีบนวิภัชนัยอินทิวชนันสิติกปริภูมิองิระยะทางแบบบี 
 3.1 ทฤษฎีบท 34  ให้ ( , , ,*, , )     เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบ
บีแล้วจะได้ว่า ( , , ,*, , )    เป็นปริภูมิเฮาส์ดร์อฟ 

 3.2 ทฤษฎีบท 38  ให ้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 

และให้    โดยที่   เป็นเซตกระชับ   บน  , , , , ,   จะได้ว่า   มีขอบเขตแบบวิภัชนัย
อินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 
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 3.3 ทฤษฎีบท 40  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิง

ระยะทางแบบบี  ,  
  เป็นทอพอโลยีบน   ซึ่งก าหนดโดยระยะทางเชิงวิภัชนัยอินทิวชันนิสติกแบบบี  

 ,    และให้   n  เป็นล าดับ ใน    จะ ได้ ว่ า  ล าดับ   n  ลู่ เ ข้ า สู่     บน  ,                     

ก็ต่อเมื่อส าหรับทุก ๆ 0t   จะได้  lim ,  , 1n
n

t 


   และ  lim ,  , 0n
n

t 


   

 3.4 ทฤษฎีบท 41  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิง

ระยะทางแบบบีและให้  n  เป็นล าดับใน   จะได้ว่าล าดับ  n  ลู่ เข้าสู่    บน  ,                 

ก็ต่อเมื่อล าดับ  n  ลู่เข้าสู่    บน   , 
,

n
 

 
 
 

 3.5 ทฤษฎีบท 44  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิง

ระยะทางแบบบีและ  n  เป็นล าดับใน   ถ้าล าดับ  n  ลู่เข้าสู่    บน  ,    เมื่อ    

แล้วล าดับ  n  จะเป็นล าดับโคชี 

 3.6 ทฤษฎีบท 45  ก าหนดให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิง

ระยะทางแบบบี และ  n  เป็นล าดับโคชีใน   ถ้า  n  มีล าดับย่อยที่ลู่เข้าแล้ว  , , , , ,   
เป็นปริภูมิบริบูรณ์ 

 3.7 ทฤษฎีบท 47  ให้  , , , , ,   เป็นวิภัชนัยอินทิวชันนิสติกบนปริภูมิอิงระยะทางแบบบี 

  เป็นปริภูมิย่อยของ   และให้       0,  0, 
,  ,      

      เป็นระยะทางเชิงวิภัชนัย

อินทิวชันนิสติกแบบบีซึ่งถูกจ ากัดโดย   ดังนั้น  , , , , ,      เป็นปริภูมิย่อยบริบูรณ์ก็ต่อเมื่อ   
เป็นเซตปิด 
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