NINTIVINMTIMemansuazmalulad Winedeswdguasassa 112

S IYENLE

A== U4 14 aiufi 20 nsngia - funau 2565

Regularity of Variants of Semigroups of Full Transformations

with Restriction on Fixed set is Bijective

Piyaporn Tantong, Nares Sawatraksa

Division of Mathematics and Statistics, Faculty of Science and Technology,

Nakhon Sawan Rajabhat University, Thailand

Abstract
The variant of a semigroup S with respect to an element a € S, is the semigroup with underlying
set S and a new operation * defined by x *y = xay for x,y € S. Let T(X) be the full

transformation semigroup of the nonempty set X and let
PGy(X) ={a €eTX):aly € G(Y)}
where Y € X and G(Y) is the permutation group on Y. In this paper, we investigate regular,

left regular and right regular elements for the variant of the semigroup PGy (X).
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1. Introduction

Let S be a semigroup and a belong to §. We define a new binary operation * on S by
putting x = y = xay. The operation * is clearly associative. Hence (S,*) is a semigroup and it is
called a variant of S. We usually write (S, a) rather than (S,*) to make the element an explicit.

Variants of abstract semigroups were first studied by Hickey (Hickey, 1983). Although
variants of concrete semigroups of relations had earlier been considered by Magill (Magill,1967).
The study of semigroup variants goes back to the 1960 monograph of Lyapin (Lyapin, 1960) and
a 1967 paper of Magill (Magill, 1978) that considers semigroups of functions X — Y under an
operation defined by f - g = f o8 o g, where 8 is some fixed function ¥ = X. In the case that
X =Y, this provides an alternative product on the full transformation semigroup T(X)
(consisting of all functions X — X).

For an element a of a semigroup S, a is called regular if there exists x € S such that
a =axa. We call that a semigroup S is regular if every element of S is regular. Regular
semigroups were introduced by Green (Green, 1951) in his influential 1951 paper “On the

structure of semigroups”. The concept of regularity in a semigroup which was adapted from an
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analogous condition for rings, already considered by Neumann (Neumann, 1936). It was Green's
study of regular semigroups which led him to define his celebrated relations. According to a
footnote in Green 1951, the suggestion that the notion of regularity be applied to semigroups
was first made by Rees (Rees, 1940-41). This property of regular elements was first observed by
Thierrin (Thierrin, 1952) in 1952.

Another important kind of the regularity was introduced by Clifford (Clifford, 1941) in
1941, who studied elements a of a semigroup S having the property that there exists x € §
such that a = axa and ax = xa, which we call now a completely regular element, and
semigroups whose any element is completely regular, are called completely regular
semigroups. The complete regularity was also investigated by Croisot (Croisot, 1953) in 1953,
who also studied elements a of a semigroup S for which a € Sa? (resp. a € a?S), called left
regular (resp. right regular) elements, and semigroups whose every element is left regular (resp.
right regular), called left regular (resp. right regular) semigroups.

In this paper, we focus the subsemigroup of T(X) defined by

PGy(X) ={a €T(X):aly € G(Y)}

where Y is a nonempty subset of X and G(Y) is the permutation group on Y. In 2016, Laysirikul
(Laysirikul, 2016) proved that PGy (X) is a regular semigroup and it is an inverse semigroup if and
only if |X] <2 or Y = X. Moreover, he also described characterizations of left regularity, right
regularity, and completely regularity of elements of PGy (X).

For a fixed element 8 € PGy(X), the variant semigroup of PGy (X) with the sandwich
function 6 will be denoted by PGy (X,0). The aim of this paper is to characterize the left
regular, the right regular and the completely regular for elements of PGy (X, 0).

2. Main Results
In this section, we let X be an arbitrary set and ¥ a nonempty subset of X. Define a
subset of T(X) as follows:
PGy(X) ={a e T(X):aly € G(Y)}

where G (Y) is the permutation group on Y. For a semigroup S, we denote

Reg(S) ={x € S: xis regular}

LReg(S) = {x € S: xis left regular}

RReg(S) = {x € S : x is right regular}

CReg(S) = {x € S: x is completely regular}.
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We investigate the condition under which an element in PGy (X, 8) is left regular, right regular
and completely regular, respectively. Throughout of the section, the symbol m(a) will denote
the partition of X induced by a € T(X) namely,

m(a) ={ya~l:y € Xa}.
Then (a) = X/ker(a) where ker(a) = {(x,y) € X X X : xa = ya}.

Theorem 1. Let a € PGy (X, 6). Then a € Reg(PGy (X, 8)) if and only if ker(a) = ker(a8) and
X0ab = Xab.
Proof. Assume that @ € Reg(PGy(X,80)). Then @ = a * f * « where B € PGy(X,0) andso a =

afBba. Clearly, ker(a) < ker(af). On the other hand, let x,y € X be such that xaf = ya#.
Then xa = xaff6a = yabB0a = ya. Hence ker(a) = ker(af). It is clear that X6af < Xab
and noting that Xaf = Xa8B6ab < X0ab, therefore X0a8 = Xab.

Conversely, suppose that ker(a) = ker(af) and X0af = Xaf. We obtain via a, 8 €
PGy (X,0) that X0a8 =Y U (X0ab \ Y). For any y €Y, there exists only one y' € Y such that
y = y'0af since (Bab)l|y is bijective. For any x € X0af \ Y, we choose and fix x" € X such that

x = x'0af. Define B: X - X by
_(x" ifx € X0ab,
*B = {x otherwise.
It is obviously, Bly € G(Y), that is B € PGy(X,0). It remains to verify that a*f*xa =a.
If x € X, then xaf € Xab = X0ab and xabf6a = (xaf)'6a with (xaf)'6ab = xab . Thus
((xaB)'0,x) € ker(af) = ker(a). This implies that xaff0a = (xaf)'6a = xa and therefore

a =ax*f *a. Hence a is regular in PGy (X, 9). |

Theorem 2. Let a € PGy(X,8). Then a € LReg(PGy(X,0)) if and only if Xa = X(6a)?.

Proof. Assume that a € LReg(PGy(X,0)). Then a =B xax*a for some B € PGy(X,0),
sothat ¢ = BBaba. Let y € Xa. Then there exists x € X such that y = xa = xf0afa € X6aba.
On the other hand, it is clear that X8af8a S Xa. Hence Xa = X(0a)?.

Conversely, assume that Xa = X(8a)?. We note that (8a8)|y is a bijection. Thus, for
any y €Y, there exists a unique y' € Y such that y = y'6af and so ya = y'0afa. Let x € X \
Y. Then by hypothesis, we choose x' € X such that xa = x'8afa. Define B : X - X by xB = x'
for all x € X. We will show that YB =Y. It is clear that YB € Y, by the definition of . For the
inverse inclusion, let y €Y. Since YBaf =Y, we obtain yfab = x for some x € Y, which is
yOaba = xa. Noting that xB = x" where xa = x'8afa. It follows by the uniqueness of x' that

y=x"=xB € XB and hence YB =Y. Let x,y € Y be such that xf = yB. Then x’ = y', which
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implies x = x'a = y'a = y. Therefore Bly is injective. Hence B € PGy (X, 0). Finally, for all
x € X, by the definition of x', we get that x(8 * a * a) = xfOaba = x'0aba = xa. So, we have

the complete proof. |

Next, we give a characterization of right regular elements in PGy (X, ).

Theorem 3. Let a € PGy (X, 0). Then a € RReg(PGy(X,0)) if and only if (8a8)|x, is an
injection.
Proof. Suppose that @ € RReg(PGy(X,6)). Then there exists B € PGy(X,6) such that a = a *
axf and so a = ababf. Let x,y € Xa be such that x = x'a and y = y'a where x',y’ € X.
If xBaf =y6al, then x=x'a=x'abaldf =x0abp =ybabf =y'abalf =y'a=y. It
follows that (Baf)|y, is an injection.

Conversely, assume that (8af)|x, is an injection. For any x € Xafa#, there exists a
unique element x’ € Xa such that x = x'8a# by the condition (68a8)|x, is injective. Define B :

X - X by

!

w= o oo

By the uniqueness of x’, we get that S|y is an injection. Next, we will show that Y8 =Y, let
y €Y. Since abaf € PGy (X,0), Xabah =Y U (Xabab \Y). Then by the assumption of y',
we get that yB=y" €Y. On the other hand, let y€eY . Since Y =YafBab =Y0ab ,
we obtain that y = x0a0 for some x € Y. By the definition of 8, we get xf = x' where x =
x'6af. This implies that x" = y by the uniqueness of x'. Consequently, § € PGy (X, 0).

Finally, to show that @ = a8a6p, let x € X, so xaBab € Xabaf. By the definition of
B, xababp = (xabab)' where (xabaf)'0ab = xabab = (xa)fab. Since (xabaB)' is unique,
we get that (xa8af)’ = xa. Thus xafaff = (xabal)’ = xa. Therefore @ = a * a * . Hence

a € RReg(PGy (X, 0)), as asserted. [ |

Corollary 4. Let a € RReg(PGY(X, 9)). If PN Xa # @ for some P € m(Bah), then |P N Xa| =
1.

Proof. Let P € m(6af) be such that |P N Xa| > 1. Then there exist two distinct elements x and
yin P NnXa.Thus x8aB = yOah. By Theorem 3, we get that x = y. This is a contradiction, hence
[P N Xa| =1. |
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Final of this section, we give a characterization of completely regular elements in
PGy (X, 0). Recall that, an element a of a semigroup S is completely regular if and only if a is
both left and right regular (Petrich, 1999). Hence, as an immediate consequence of Theorem 2

and Theorem 3, we have the following.

Theorem 5. Let a € PGy (X, 6). Then a € CReg(PGy(X,0)) if and only if Xa = X(6a)? and

(0a0)|xq is an injection.
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