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Abstract 
We consider the set 𝑆 defined as {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) where [𝑎, 𝑏] be the set of all integers 𝑥 
such that 𝑎 ≤ 𝑥 ≤ 𝑏 and [𝑐, ∞) be the set of integers 𝑦 such that 𝑐 ≤ 𝑦 when 𝑎, 𝑏, and 𝑐 are 
positive integers satisfying 2 ≤ 𝑎 ≤ 𝑏 < 𝑐 − 1. It is known that 𝑆 is a numerical semigroup if and 
only if 𝑐 ≤ 2𝑎. This research aims to characterize the minimal system of generators for numerical 
semigroups 𝑆 and determine the count of numerical semigroups {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) that share 
the same embedding dimension. 
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1. Introduction 

Ferdinand Georg Frobenius (1849-1917) made significant contributions during the 19th 

century by introducing the Frobenius problem. This problem revolves around determining the 

largest positive integer that cannot be expressed as a solution to a linear equation with non-

negative coefficients. Referred to as the Frobenius number, this value holds great importance 

in the field. Another concept related to this problem is the genus number, which represents 

the count of positive integers that cannot be expressed as a linear combination under the 

specified constraints. 

In the case of two variables, Sylvester (Sylvester, 1884) proposed exact formulas for the 

Frobenius number and genus number. However, for three or more variables, Curtis (Curtis, 1990) 

proved that there is no formula in polynomial form for computing the Frobenius number. 

In the 1950, the concept of numerical semigroups gained attention, particularly due to 

its applications in algebraic geometry. The Frobenius problem can be related to the coin 

problem, where the aim is to determine the largest amount of money that cannot be obtained 
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using specific coins. This concept aligns with numerical semigroups, where every achievable 

number using the given coins belongs to a numerical semigroup. 

A non-empty subset 𝑆 of the set of non-negative integers ℕ is referred to as a numerical 

semigroup if it satisfies the following conditions: it includes 0, it forms a semigroup under usual 

addition, and the complement set ℕ\𝑆 is finite. For a numerical semigroup 𝑆, a system of 

generators 𝐴 is a finite subset of positive integers such that the linear combinations of the 

elements in 𝐴 generate 𝑆, denoted as ⟨𝐴⟩ = 𝑆. Moreover, if for each 𝑎 ∈ 𝐴 implies 𝑎 ∉ ⟨𝐴 ∖ {𝑎}⟩, 

then 𝐴 is considered the minimal system of generators for 𝑆. In this case, the cardinality of 𝐴 

represents the embedding dimension of 𝑆 and denoted by dim(𝑆). Rosales and Garcia-Sanchez 

(Rosales & Garcia-Sanchez, 2009) demonstrated that every numerical semigroup possesses a 

unique minimal system of generators. 

The Frobenius number and genus number of a numerical semigroup 𝑆 are denoted by 

𝐹(𝑆) and 𝑔(𝑆), respectively. 𝐹(𝑆) represents the largest element in the complement set ℕ\𝑆, 

while 𝑔(𝑆) corresponds to the cardinality of ℕ\𝑆. The Frobenius problem can be formulated as 

finding the Frobenius number of a numerical semigroup ⟨𝐴⟩ with gcd(𝐴) = 1. 

In the case of embedding dimension two, Sylvester (Sylvester, 1884) provided a simple 

exact formula for the Frobenius number and genus number. However, it took nearly a century 

to develop methods and algorithms for finding the exact solution of the Frobenius number in 

case of embedding dimension three. Various formulas and techniques have been proposed, 

such as those by (Sylvester, 1884), (Rosales & Garcia-Sanchez, 2009), (Davison, 1994), and more 

recently, (Tripathi, 2017). 

A few years ago, Chommi (Chommi, 2020) introduced a novel numerical semigroup, 

where the set 𝑆 is defined as {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞). Here, [𝑎, 𝑏] represents the set of all integers 

𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏, and [𝑐, ∞) represents the set of integer values 𝑦 such that 𝑐 ≤ 𝑦. The 

author proved that a set 𝑆 becomes a numerical semigroup if and only if 𝑐 ≤ 2𝑎, with 𝑎, 𝑏 and 

𝑐 being positive integers satisfying 2 ≤ 𝑎 ≤ 𝑏 < 𝑐 − 1. The author also explored the 

characterization of irreducible numerical semigroups {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞). 
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In the same year, Phosri (Phosri, 2020) conducted a study on the enumeration of 

numerical semigroups {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) that share the same Frobenius number. The 

researcher also counted the number of 𝑘-symmetric numerical semigroup that share the same 

Frobenius number for 𝑘 values of 3, 4 and 5. Likewise, Kosasirisin (Kosasirisin, 2020) focused on 

𝑘-symmetric numerical semigroups {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) sharing the same Frobenius number, 

considering 𝑘 ≥ 3. Additionally, the author determined the count of 3-symmetric numerical 

semigroups {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) with the same genus number. 

Motivated by the aforementioned works (Chommi, 2020), (Phosri, 2020), and (Kosasirisin, 

2020), this research is inspired to investigate the set 𝑆 = {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞). Our objectives are 

twofold: first, we aim to identify the minimal system of generators for 𝑆, and secondly, we 

endeavor to determine the count of numerical semigroups {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) sharing the same 

embedding dimension. 

 
2. Main Results 
 In this research, we consider the set 𝑆 = {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) where 𝑎, 𝑏, 𝑐 are positive 
integers satisfying 2 ≤ 𝑎 ≤ 𝑏 < 𝑐 − 1. It is noteworthy that 𝑆 is a numerical semigroup if and 
only if 𝑐 ≤ 2𝑎 . Our investigation begins with a characterization of the minimal system of 
generators for 𝑆. Additionally, we quantify the number of numerical semigroups {0} ∪ [𝑎, 𝑏] ∪

[𝑐, ∞) that share the same embedding dimension. 

Theorem 1. Let 𝑆 = {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) be a numerical semigroup. Then 𝑆 is generated by the 
set 𝐴 = [𝑎, 𝑏] ∪ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2𝑏]. 
Proof. Clearly, 0 = 0 ⋅ 𝑎 ∈ ⟨𝐴⟩. We let 𝑥 ∈ 𝑆 be such that 0 < 𝑥 and 𝑥 ∉ 𝐴. Thus 𝑥 ∉ [𝑎, 𝑏] and 
𝑥 ∉ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2𝑏]. From 𝑥 ∈ 𝑆, we get 𝑐 ≤ 𝑥. There are 2 cases to consider. 
Case 1 : 𝑥 ∈ [2𝑎, 2𝑏]. Then 𝑎 ≤  

𝑥

2
≤ 𝑏. By the division algorithm, there exist 𝑘, 𝑟 ∈ ℕ such that 

𝑥 = 2𝑘 + 𝑟 and 0 ≤ 𝑟 ≤ 1. If 𝑟 = 0, then 𝑥 = 2𝑘 and 𝑎 ≤ 𝑘 ≤ 𝑏. That is 𝑥 ∈ ⟨𝐴⟩. Now, we 
suppose that 𝑟 = 1. Since 𝑎 ≤  

𝑥

2
≤ 𝑏, we obtain 𝑎 ≤ 𝑘 < 𝑏. So 𝑘 + 1 ≤ 𝑏 and hence 𝑘 + 1 ∈ 𝐴. 

Thus 𝑥 = 2𝑘 + 1 = (𝑘 + 1) + 𝑘 ∈ ⟨𝐴⟩. 
Case 2 : 𝑥 ∉ [2𝑎, 2𝑏]. Since 𝑥 ∉ [𝑐, 𝑐 + 𝑎), we get 𝑐 + 𝑎 ≤ 𝑥. We note from 𝑥 ∉ [2𝑎, 2𝑏] that 
𝑥 < 2𝑎 or 2𝑏 < 𝑥. If 𝑥 < 2𝑎, then 𝑐 + 𝑎 ≤ 𝑥 < 2𝑎. This means that 𝑐 < 𝑎 which is impossible. 
Hence 2𝑏 <  𝑥. From 𝑐 + 𝑎 ≤ 𝑥, we have 𝑎 ≤  𝑥 − 𝑐. By the division algorithm, 
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𝑥 − 𝑐 =  𝑎𝑘 + 𝑟 

where 𝑘, 𝑟 ∈ ℕ and 0 ≤  𝑟 < 𝑎. Since  𝑥 − 𝑐 ≥ 𝑎, we have 1 ≤ 𝑘. Note that 𝑥 = 𝑎𝑘 + 𝑐 + 𝑟 and 
𝑐 ≤ 𝑐 + 𝑟 < 𝑐 + 𝑎. So 𝑐 + 𝑟 ∈ [𝑐, 𝑐 + 𝑎). If 𝑐 + 𝑟 ∈ [2𝑎, 2𝑏], then 𝑐 + 𝑟 ∉ 𝐴. From Case 1, we get 
𝑐 + 𝑟 ∈ ⟨𝐴⟩. Hence 𝑥 = 𝑎𝑘 + 𝑐 + 𝑟 ∈ ⟨𝐴⟩. If 𝑐 + 𝑟 ∉ [2𝑎, 2𝑏], then 𝑐 + 𝑟 ∈ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2𝑏] ⊆

𝐴. That is 𝑥 = 𝑎𝑘 + 𝑐 + 𝑟 ∈ ⟨𝐴⟩.  
  It follows from 2 cases that 𝑆 ⊆ ⟨𝐴⟩. Clearly, 𝐴 ⊆ 𝑆 which implies ⟨𝐴⟩ ⊆ 𝑆. Therefore, 

𝑆 = ⟨𝐴⟩.  ∎ 

Theorem 2. Let 𝑆 = {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) be a numerical semigroup and 𝐴 = [𝑎, 𝑏] ∪

 [𝑐, 𝑐 + 𝑎 ) ∖ [2𝑎, 2𝑏]. Then 𝐴 is the minimal system of generators for 𝑆. 
Proof. It follows from Theorem 1 that 𝑆 = ⟨𝐴⟩. To prove the minimality of 𝐴, we suppose that 
there exists 𝐵 ⊊  𝐴 such that ⟨𝐵⟩ = 𝑆. Then we choose 𝑥 ∈ 𝐴 ∖ 𝐵. It is clear that 𝑥 ∈ ⟨𝐵⟩. So 
there exist 𝑏1, 𝑏2, . . . , 𝑏𝑘 ∈ 𝐵 ⊆ 𝐴 and 𝑛1, 𝑛2, . . . , 𝑛𝑘 ∈ ℕ ∖ {0} such that 

𝑥 = 𝑛1𝑏1 + 𝑛2𝑏2 + ⋯ + 𝑛𝑘𝑏𝑘. 
Note that 𝑥 ≠ 𝑏𝑖 , for all 𝑖 = 1, . . . , 𝑘. From 𝑏𝑖 ∈ 𝐴, we obtain that 𝑎 ≤ 𝑏𝑖 for all 𝑖 = 1, . . , 𝑘. There 
are 2 cases to consider. 
Case 1 : 𝑥 ∈ [𝑎, 𝑏]. If 1 < 𝑘, then 2𝑎 ≤  𝑏1 + 𝑏2 ≤  𝑛1𝑏1 + 𝑛2𝑏2 + ⋯ + 𝑛𝑘𝑏𝑘 = 𝑥 which is a 
contradiction with 𝑥 ≤  𝑏 < 𝑐 ≤ 2𝑎. Hence 𝑘 = 1 that means 𝑥 = 𝑛1𝑏1. If 2 ≤ 𝑛1, then 2𝑎 ≤

𝑛1𝑎 ≤ 𝑛1𝑏1 = 𝑥. It is also impossible. Therefore, we conclude that 𝑛1 = 1 and then 𝑥 = 𝑏1 ∈ 𝐵. 
This contradicts the initial assumption, indicating that this case cannot occur. 
Case 2 : 𝑥 ∈ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2𝑏].  
Subcase 2.1 :  𝑘 = 1. Then 𝑥 = 𝑛1𝑏1. It follows that 𝑛1 ≠ 1 and so 2 ≤ 𝑛1. If 𝑏1 ∈ [𝑐, 𝑐 + 𝑎), 
then  

𝑎 + 𝑐 ≤ 𝑏1 + 𝑏1 = 2𝑏1 ≤ 𝑥 < 𝑐 + 𝑎, 
which is a contradiction. Thus 𝑏1 ∈ [𝑎, 𝑏]. If 𝑛1 = 2, then 𝑥 = 2𝑏1 ∈ [2𝑎, 2𝑏], this is impossible. 
Thus 3 ≤ 𝑛1. Consider  

𝑐 + 𝑎 ≤ 2𝑎 + 𝑎 ≤ 𝑛1𝑎 ≤ 𝑛1𝑏1 = 𝑥 < 𝑐 + 𝑎. 
It is a contradiction. 
Subcase 2.2 :  𝑘 ≠ 1. If there exists 𝑖 ∈ ℕ such that 𝑏𝑖 ∈ [𝑐, 𝑐 + 𝑎). Then  

𝑎 + 𝑐 ≤ 𝑏1 + 𝑏𝑖 ≤ 𝑛1𝑏1 + ⋯ + 𝑛𝑘𝑏𝑘 = 𝑥 < 𝑐 + 𝑎 
which is a contradiction. Thus 𝑏1, . . . , 𝑏𝑘 ∈ [𝑎, 𝑏]. Assume that 𝑘 = 2. Then 𝑥 = 𝑛1𝑏1 + 𝑛2𝑏2. Note 
from 𝑥 ∉ [2𝑎, 2𝑏] that 𝑛1 ≠ 1 or 𝑛2 ≠ 1. This means that 2𝑎 ≤ 𝑛1𝑏1 or 2𝑎 ≤ 𝑛2𝑏2. Hence 2𝑎 +

𝑎 ≤ 𝑛1𝑏1 + 𝑛2𝑏2. Then 𝑐 + 𝑎 ≤ 2𝑎 + 𝑎 ≤ 𝑛1𝑏1 + 𝑛2𝑏2 = 𝑥 < 𝑐 + 𝑎, which is impossible and 
hence 3 ≤ 𝑘. Thus  
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𝑐 + 𝑎 ≤ 2𝑎 + 𝑎 = 3𝑎 ≤ 𝑏1 + 𝑏2 + 𝑏3 ≤ 𝑥 < 𝑐 + 𝑎. 
It is a contradiction.  
 It follows from 2 cases that there is no proper subset 𝐵 of 𝐴 which can generate 𝑆. 

Therefore, 𝐴 is the minimal system of generators.  ∎ 

Theorem 3. Let 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) be a numerical semigroup. Then 𝑐 < 𝑎 + 2𝑛 + 2 
if and only if 𝑆 = ⟨[𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎)⟩. 
Proof. Suppose that 𝑐 < 𝑎 + 2𝑛 + 2. We note from Theorem 2 that the minimal system of 
generators for 𝑆 is 𝐴 = [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2(𝑎 + 𝑛)]. It is enough to prove that 𝐴 =

[𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎). Clearly, [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎) ⊆ 𝐴. Let 𝑥 ∈ 𝐴 be such that 𝑥 ∉ [𝑎, 𝑎 + 𝑛]. Then 
𝑥 ∈ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2(𝑎 + 𝑛)]. To show 𝑥 ∈ [𝑐, 2𝑎), we suppose 𝑥 ∉ [𝑐, 2𝑎). Since 𝑐 ≤ 𝑥, we 
have 2𝑎 ≤ 𝑥. From 𝑥 ∉ [2𝑎, 2(𝑎 + 𝑛)], we get 2(𝑎 + 𝑛) < 𝑥. It follows that 2𝑎 + 2𝑛 + 1 ≤ 𝑥 
and 𝑥 < 𝑐 + 𝑎. Then 𝑎 + 2𝑛 + 2 ≤ 𝑐, which is a contradiction. Therefore, 𝑥 ∈ [𝑐, 2𝑎) and then 
𝐴 ⊆ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎). Hence 𝐴 = [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎). 
 Conversely, assume that 𝑐 ≥ 𝑎 + 2𝑛 + 2. Let 𝑏 = 𝑎 + 𝑛, then we will show that 2𝑏 +

1 ∈ 𝐴 and 2𝑏 + 1 ∉ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎). Note that 𝑐 ≤ 2𝑎 ≤ 2𝑏 < 2𝑏 + 1. By our assumption, 
we obtain 2𝑎 + 2𝑛 + 2 ≤ 𝑐 + 𝑎. So, 2𝑏 + 1 < 2𝑎 + 2𝑛 + 2 ≤ 𝑐 + 𝑎. Hence 𝑐 < 2𝑏 + 1 < 𝑐 + 𝑎. 
Note that 2𝑏 + 1 ∉ [2𝑎, 2𝑏]. Then 2𝑏 + 1 ∈ 𝐴. Since 2𝑏 + 1 > 2𝑎, we obtain 2𝑏 + 1 ∉

[𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎). Therefore, it follows from the minimality of 𝐴 that  

𝑆 ≠ ⟨[𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎)⟩.  ∎ 

  The following corollary is the consequence of Theorems 2 and Theorem 3 in the case 
where each interval is not empty. 

Corollary 4. Let 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) be a numerical semigroup. Then 𝑎 + 2𝑛 + 2 ≤  𝑐 
if and only if 𝑆 = ⟨[𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎) ∪ (2𝑎 + 2𝑛, 𝑐 + 𝑎)⟩. 

Proof. Suppose that 𝑎 + 2𝑛 + 2 ≤  𝑐. From Theorem 2 we note that the minimal system of 
generators for 𝑆 is 𝐴 = [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2(𝑎 + 𝑛)]. By assumption, we obtain 
2(𝑎 + 𝑛) + 2 = 2𝑎 + 2𝑛 + 2 ≤  𝑐 + 𝑎. This implies that [2𝑎, 2(𝑎 + 𝑛)] is a proper subset of 
[𝑐, 𝑐 + 𝑎). It follows that   

𝐴 = [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 𝑐 + 𝑎) ∖ [2𝑎, 2(𝑎 + 𝑛)] = [𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎) ∪ (2𝑎 + 2𝑛, 𝑐 + 𝑎). 
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 Conversely, assume that 𝑆 = ⟨[𝑎, 𝑎 + 𝑛] ∪ [𝑐, 2𝑎) ∪ (2𝑎 + 2𝑛, 𝑐 + 𝑎)⟩. Then there 
exists 𝑥 ∈ (2𝑎 + 2𝑛, 𝑐 + 𝑎). This means that 2𝑎 + 2𝑏 < 𝑥 < 𝑐 + 𝑎 and hence 2𝑎 + 2𝑏 + 1 ≤

𝑥 ≤ 𝑐 + 𝑎 − 1. Therefore, 𝑎 + 2𝑛 + 2 ≤  𝑐.  ∎ 

  The formulation of the embedding dimension can be derived directly from Theorem 
3 and Corollary 4 as follows: 

Theorem 5. Let 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) be a numerical semigroup. Then the following 
statements are true: 
  (𝑖) If 𝑐 < 𝑎 + 2𝑛 + 2, then dim (𝑆) = 2𝑎 + 𝑛 − 𝑐 + 1. 
  (𝑖𝑖) If 𝑐 ≥ 𝑎 + 2𝑛 + 2, then dim(𝑆) = 𝑎 − 𝑛. 

Theorem 6. Let 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) be such that dim (𝑆) = 𝑑 and 1 ≤ 𝑛. Then 𝑎 ∈

[𝑑 + 1, 2𝑑 − 1]. 
Proof. If 𝑐 ≥ 𝑎 + 2𝑛 + 2, then from Theorem 5, 𝑑 = 𝑎 − 𝑛. It follows that 1 + 𝑑 ≤ 𝑎. Since 𝑆 is 
a numerical semigroup, we have 𝑐 ≤ 2𝑎 = 2𝑑 + 2𝑛. By assumption, 𝑎 + 2𝑛 + 2 ≤ 2𝑑 + 2𝑛. 
Thus  

𝑑 + 1 ≤ 𝑎 < 𝑎 + 1 ≤ 2𝑑 − 1. 

That is 𝑎 ∈ [𝑑 + 1, 2𝑑 − 1]. 
 Now, we assume that 𝑐 < 𝑎 + 2𝑛 + 2. From Theorem 5, 𝑑 = 2𝑎 + 𝑛 − 𝑐 + 1. If 𝑎 <

𝑑 + 1, then 𝑎 < 2𝑎 + 𝑛 − 𝑐 + 2, that is 𝑐 < 𝑎 + 𝑛 + 2. Recalled the condition of construction 
of 𝑆 that 2 ≤ 𝑎 ≤ 𝑎 + 𝑛 < 𝑐 − 1. Thus 𝑐 ≤ 𝑎 + 𝑛 + 1 < 𝑐 which is impossible. Hence 𝑑 + 1 ≤ 𝑎. 
We will show that 𝑎 ≤ 2𝑑 − 1. Suppose that 2𝑑 − 1 < 𝑎. Thus 2𝑑 ≤ 𝑎 and then 4𝑎 + 2𝑛 −

2𝑐 + 2 ≤ 𝑎. This means that 2𝑎 + 2𝑛 ≤ 2𝑐 − 𝑎 − 2. We note from 𝑐 < 𝑎 + 2𝑛 + 2 that 𝑐 + 𝑎 −

2 < 2𝑎 + 2𝑛. Hence 𝑐 + 𝑎 − 1 ≤ 2𝑎 + 2𝑛 ≤ 2𝑐 − 𝑎 − 2 and so 𝑐 + 𝑎 − 1 ≤ 2𝑐 − 𝑎 − 2. Since 𝑆 
is a numerical semigroup, we obtain 𝑐 ≤ 2𝑎. This means that 2𝑎 ≤ 𝑐 − 1 < 2𝑎, which is a 

contradiction. Thus 𝑎 ≤ 2𝑑 − 1.  ∎ 

  In the remainder of this paper, we aim to determine the count of numerical 
semigroups of the form {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) that share the same embedding dimension. We 
denote the class of these numerical semigroups with embedding dimension 𝑑 as 𝒜, i.e., 

𝒜 = {𝑆 ∶ 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) is a numerical semigroup and dim(𝑆) = 𝑑}. 
 Furthermore, we divide the elements within class 𝒜 into two distinct subclasses, as follows: 
  ℬ = {𝑆 ∈ 𝒜 ∶ 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞), 1 ≤ 𝑛 and 𝑐 < 𝑎 + 2𝑛 + 2} and 

  𝒞 = {𝑆 ∈ 𝒜 ∶ 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞), 1 ≤ 𝑛 and 𝑐 ≥ 𝑎 + 2𝑛 + 2}. 
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The following remark arises as a consequence of Theorem 5. 

Remark 7. Let 𝑆 ∈ 𝒜 be such that 𝑆 = {0} ∪ [𝑎, 𝑎] ∪ [𝑐, ∞). Then 𝑎 = 𝑑 and 𝑐 ∈ [𝑑 + 2, 2𝑑].  

We now provide a characterization of subclasses ℬ and 𝒞 in Theorems 8 and 9, respectively. 

Theorem 8. ℬ = {{0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [2𝑎 + 𝑛 + 1 − 𝑑, ∞) ∶ 𝑛 ∈ [𝑎 − 𝑑, 𝑑 − 1], 𝑎 ∈ [𝑑 + 1, 2𝑑 −

1]}. 
Proof. Let 𝑆 ∈ ℬ. Then 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞) where 𝑐 < 𝑎 + 2𝑛 + 2 and 1 ≤ 𝑛. From 
Theorem 5 (𝑖), we obtain 𝑑 = dim(𝑆) = 2𝑎 + 𝑛 − 𝑐 + 1. We note from 2𝑎 + 𝑛 + 1 − 𝑑 = 𝑐 <

𝑎 + 2𝑛 + 2 that 𝑎 − 𝑑 ≤ 𝑛. From Theorem 6, we get 𝑎 ∈ [𝑑 + 1, 2𝑑 − 1]. Since 𝑐 ≤ 2𝑎, we 
obtain 2𝑎 + 𝑛 + 1 − 𝑑 ≤ 2𝑎. Thus 𝑛 ≤ 𝑑 − 1. 
 Conversely, let 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [2𝑎 + 𝑛 + 1 − 𝑑, ∞) when 𝑛 ∈ [𝑎 − 𝑑, 𝑑 − 1] 
and 𝑎 ∈ [𝑑 + 1, 2𝑑 − 1]. Clearly, 1 ≤ 𝑛. We let 𝑐 = 2𝑎 + 𝑛 + 1 − 𝑑. From 𝑎 − 𝑑 ≤ 𝑛, we obtain 

𝑐 = 2𝑎 + 𝑛 + 1 − 𝑑 = 𝑎 + 𝑛 + (𝑎 − 𝑑) + 1 ≤  𝑎 + 𝑛 + 𝑛 + 1 < 𝑎 + 2𝑛 + 2. 

It follows from Theorem 5 (𝑖) that dim(𝑆) = 2𝑎 + 𝑛 − 𝑐 + 1 = 𝑑. Hence 𝑆 ∈ ℬ.  ∎ 

Theorem 9. 𝒞 = {{0} ∪ [𝑑 + 𝑛, 𝑑 + 2𝑛] ∪ [𝑐, ∞) ∶ 𝑛 ∈ [1, 𝑑 − 2], 𝑐 ∈ [𝑑 + 3𝑛 + 2, 2𝑑 + 2𝑛]}. 
Proof. Let 𝑆 ∈ 𝒞. Then 𝑆 = {0} ∪ [𝑎, 𝑎 + 𝑛] ∪ [𝑐, ∞), 1 ≤ 𝑛 and 𝑎 + 2𝑛 + 2 ≤ 𝑐. From Theorem 
5 (𝑖𝑖), we have 𝑑 = dim(𝑆) = 𝑎 − 𝑛, that is 𝑎 = 𝑑 + 𝑛. Clearly, 𝑐 ∈ [𝑎 + 2𝑛 + 2, 2𝑎] =

[𝑑 + 3𝑛 + 2, 2𝑑 + 2𝑛]. Since 𝑎 + 2𝑛 + 2 ≤ 𝑐 ≤ 2𝑎, we then have 2𝑛 + 2 ≤ 𝑎 = 𝑑 + 𝑛. That is 
𝑛 ≤ 𝑑 − 2.  
 For the converse, let 𝑆 = {0} ∪ [𝑑 + 𝑛, 𝑑 + 2𝑛] ∪ [𝑐, ∞) where 𝑛 ∈ [1, 𝑑 − 2] and 𝑐 ∈

[𝑑 + 3𝑛 + 2, 2𝑑 + 2𝑛]. Let 𝑑 = 𝑎 − 𝑛. From Theorem 5 (𝑖𝑖) and 𝑎 + 2𝑛 + 2 ≤ 𝑐, we obtain 

dim (𝑆) = 𝑑. Hence 𝑆 ∈ 𝒞.  ∎ 

Theorem 10. Let 𝑑 ∈ ℕ be such that 2 ≤ 𝑑. Then the number of numerical semigroups of the 
form {0} ∪ [𝑎, 𝑏] ∪ [𝑐, ∞) with an embedding dimension of 𝑑 is given by 𝑑(𝑑 − 1). 
Proof. We will prove that the number of all elements in class 𝒜 is equal to 𝑑(𝑑 − 1). Firstly, 
we consider cardinality of subclasses ℬ and 𝒞. Clearly, ℬ ∩ 𝒞 = ∅. From Theorem 8, we have  

|ℬ| = |{(𝑎, 𝑛) ∶ 𝑎 ∈ [𝑑 + 1,2𝑑 − 1] and 𝑛 ∈ [𝑎 − 𝑑, 𝑑 − 1]}| = ∑ (2𝑑 − 𝑎)

2𝑑−1

𝑎=𝑑+1

=
1

2
𝑑(𝑑 − 1). 

Similarly, by Theorem 9, we obtain  

|𝒞| = |{(𝑛, 𝑐) ∶ 𝑛 ∈ [1, 𝑑 − 2], 𝑐 ∈ [𝑑 + 3𝑛 + 2, 2(𝑑 + 𝑛)]}| = ∑(𝑑 − 𝑛 − 1)

𝑑−2

𝑛=1

=
(𝑑 − 2)(𝑑 − 1)

2
. 
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It follows from Remark 7 that |𝒜| = (𝑑 − 1) + |ℬ| + |𝒞| = 𝑑(𝑑 − 1).  ∎ 
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