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Abstract

We consider the set S defined as {0} U [a, b] U [c, ) where [a, b] be the set of all integers x
such that a < x < b and [c, ®) be the set of integers y such that ¢ <y when a,b, and ¢ are
positive integers satisfying 2 < a < b < ¢ — 1. It is known that S is a numerical semigroup if and
only if ¢ < 2a. This research aims to characterize the minimal system of generators for numerical
semigroups S and determine the count of numerical semigroups {0} U [a, b] U [c, o0) that share

the same embedding dimension.
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1. Introduction

Ferdinand Georg Frobenius (1849-1917) made significant contributions during the 19th
century by introducing the Frobenius problem. This problem revolves around determining the
largest positive integer that cannot be expressed as a solution to a linear equation with non-
negative coefficients. Referred to as the Frobenius number, this value holds great importance
in the field. Another concept related to this problem is the genus number, which represents
the count of positive integers that cannot be expressed as a linear combination under the
specified constraints.

In the case of two variables, Sylvester (Sylvester, 1884) proposed exact formulas for the
Frobenius number and genus number. However, for three or more variables, Curtis (Curtis, 1990)
proved that there is no formula in polynomial form for computing the Frobenius number.

In the 1950, the concept of numerical semigroups gained attention, particularly due to
its applications in algebraic geometry. The Frobenius problem can be related to the coin

problem, where the aim is to determine the largest amount of money that cannot be obtained

* Corresponding author : ekkachail@nu.ac.th

Received: 23 W.A. 66; Revised: 16 #.A. 66; Accepted: 1 §.A. 66



NINTIVINMTIMEIMansuazmalulad iIne1des1viuATEITIa 124
s IENLE o o o
N Y4 15 atufl 22 nsngnau - Suaau 2566

using specific coins. This concept aligns with numerical semigroups, where every achievable
number using the given coins belongs to a numerical semigroup.

A non-empty subset S of the set of non-negative integers N is referred to as a numerical
semigroup if it satisfies the following conditions: it includes 0, it forms a semigroup under usual
addition, and the complement set N\S is finite. For a numerical semigroup S, a system of
generators A is a finite subset of positive integers such that the linear combinations of the
elements in A generate S, denoted as (4) = S. Moreover, if for each a € A implies a & (4 \ {a}),
then A is considered the minimal system of generators for S. In this case, the cardinality of A
represents the embedding dimension of S and denoted by dim(S). Rosales and Garcia-Sanchez
(Rosales & Garcia-Sanchez, 2009) demonstrated that every numerical semigroup possesses a
unique minimal system of generators.

The Frobenius number and genus number of a numerical semigroup S are denoted by
F(S) and g(S), respectively. F(S) represents the largest element in the complement set N\S,
while g(§) corresponds to the cardinality of N\S. The Frobenius problem can be formulated as
finding the Frobenius number of a numerical semigroup (4) with gcd(4) = 1.

In the case of embedding dimension two, Sylvester (Sylvester, 1884) provided a simple
exact formula for the Frobenius number and genus number. However, it took nearly a century
to develop methods and algorithms for finding the exact solution of the Frobenius number in
case of embedding dimension three. Various formulas and techniques have been proposed,
such as those by (Sylvester, 1884), (Rosales & Garcia-Sanchez, 2009), (Davison, 1994), and more
recently, (Tripathi, 2017).

A few years ago, Chommi (Chommi, 2020) introduced a novel numerical semigroup,
where the set S is defined as {0} U [a, b] U [c, ). Here, [a, b] represents the set of all integers
x such that a < x < b, and [c, ®) represents the set of integer values y such that ¢ < y. The
author proved that a set S becomes a numerical semigroup if and only if ¢ < 2a, with a, b and
¢ being positive integers satisfying 2<a <bh <c—1. The author also explored the

characterization of irreducible numerical semigroups {0} U [a, b] U [c, o).
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In the same year, Phosri (Phosri, 2020) conducted a study on the enumeration of
numerical semigroups {0} U [a, b] U [c,0) that share the same Frobenius number. The
researcher also counted the number of k-symmetric numerical semigroup that share the same
Frobenius number for k values of 3,4 and 5. Likewise, Kosasirisin (Kosasirisin, 2020) focused on
k-symmetric numerical semigroups {0} U [a, b] U [¢, ) sharing the same Frobenius number,
considering k = 3. Additionally, the author determined the count of 3-symmetric numerical
semigroups {0} U [a, b] U [c, ©) with the same genus number.

Motivated by the aforementioned works (Chommi, 2020), (Phosri, 2020), and (Kosasirisin,
2020), this research is inspired to investigate the set § = {0} U [a, b] U [c, ). Our objectives are
twofold: first, we aim to identify the minimal system of generators for S, and secondly, we
endeavor to determine the count of numerical semigroups {0} U [a, b] U [c, ) sharing the same

embedding dimension.

2. Main Results

In this research, we consider the set § = {0} U [a, b] U [c, ©) where a, b, ¢ are positive
integers satisfying 2 < a < b < c—1. It is noteworthy that S is a numerical semigroup if and
only if ¢ < 2a. Our investigation begins with a characterization of the minimal system of
generators for S. Additionally, we quantify the number of numerical semigroups {0} U [a, b] U

[c, o0) that share the same embedding dimension.

Theorem 1. Let § = {0} U [a, b] U [c, ) be a numerical semigroup. Then S is generated by the
setA =[a,b]U[c,c+a)\[2a,2b]

Proof. Clearly, 0 =0 - a € (A). We let x € S be such that 0 < x and x & A. Thus x € [a, b] and
x & [c,c +a) \ [2a,2b]. From x € S, we get ¢ < x. There are 2 cases to consider.

Case 1:x € [2a,2b]. Thena < ’Z—CS b. By the division algorithm, there exist k,r € N such that
x=2k+rand 0<r<1. If r=0,then x =2k and a<k <b. That is x € (4). Now, we
suppose that r = 1. Since a < z < b, weobtana<k<b.Sok+1<bandhencek+1E€A.
Thus x =2k+1=(k+ 1) + k € (4).

Case 2 : x & [2a,2b]. Since x & [c,c + a), we get ¢ + a < x. We note from x & [2a, 2b] that
x < 2aor2b <x. If x <2a,then ¢+ a < x < 2a. This means that ¢ < a which is impossible.

Hence 2b < x. From ¢ + a < x, we have a £ x — c. By the division algorithm,
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x—c =ak+r
where k,r e Nand 0 < r < a. Since x —c = a, we have 1 < k. Note that x = ak + ¢ + r and

c<c+r<c+a.Soc+rejcc+a)lfc+reE][2a2b],thenc+r & A From Case 1, we get
c+re(A).Hencex =ak+c+re{A)lfc+r¢[2a2b],thenc+7r€[c,c+a)\[2a2b]
A.Thatisx = ak + c+r € (4).

It follows from 2 cases that S < (A4). Clearly, A € S which implies (4) € S. Therefore,
S = (A). [

Theorem 2. Let S={0}U[a,b]U[c,0) be a numerical semigroup and A = [a,b]U
[c,c +a)\ [2a,2b]. Then 4 is the minimal system of generators for S.
Proof. It follows from Theorem 1 that § = (A4). To prove the minimality of A, we suppose that
there exists B € A such that (B) = S. Then we choose x € A\ B. It is clear that x € (B). So
there exist by, by,...,b, € B € A and ny,n,,...,n; € N\ {0} such that
x =n,;by +nyb, + -+ 1y by
Note that x # b;, foralli = 1,..., k. From b; € A, we obtain that a < b; foralli = 1,.., k. There
are 2 cases to consider.
Case 1 : x€[ab]. If 1<k, then 2a < b; + b, < nby + nyb, + -+ ny b, = x which is a
contradiction with x < b < ¢ < 2a. Hence k =1 that means x = n,b;. If 2 < nq, then 2a <
nya < nyb; = x. Itis also impossible. Therefore, we conclude that n; = 1 and then x = b; € B.
This contradicts the initial assumption, indicating that this case cannot occur.
Case 2:x € [c,c+ a) \ [2a,2b].
Subcase 2.1 : k =1. Then x = n;b;. It follows that n; # 1 and so 2 < ny. If b; € [c,c + a),
then
a+c<b +b =2b<x<c+a,
which is a contradiction. Thus b; € [a, b]. If n; = 2, then x = 2b; € [2a, 2b], this is impossible.
Thus 3 < n,. Consider
c+ta<s2a+as<nas<nb =x<c+a.
It is a contradiction.

Subcase 2.2 : k # 1. If there exists i € N such that b; € [c,c + a). Then
at+c<b +b<nmb +-+nb,=x<c+a
which is a contradiction. Thus by, ..., by € [a, b]. Assume that k = 2. Then x = n;b; + n,b,. Note

from x & [2a, 2b] that n; # 1 or n, # 1. This means that 2a < n,b; or 2a < n,b,. Hence 2a +
a < n.by +nyb,. Then c+a <2a+a<nb +n,b, =x <c+a, which is impossible and

hence 3 < k. Thus
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cta<s2a+a=3a<b +b,+b3<x<c+a.
It is a contradiction.
It follows from 2 cases that there is no proper subset B of A which can generate S.

Therefore, A is the minimal system of generators. |

Theorem 3. Let S = {0} U [a,a + n] U [c, ) be a numerical semigroup. Then ¢ < a + 2n + 2
if and only if S = ([a, a + n] U [c, 2a)).

Proof. Suppose that ¢ < a + 2n + 2. We note from Theorem 2 that the minimal system of
generators for S is A = [a,a+n] U [c,c + a) \ [2a,2(a + n)]. It is enough to prove that A =
[a,a +n] U [c,2a). Clearly, [a,a + n] U [c,2a) € A. Let x € A be such that x € [a,a + n]. Then
x €[c,c+a)\[2a,2(a+n)]. To show x € [c,2a), we suppose x & [c,2a). Since ¢ < x, we
have 2a < x. From x & [2a,2(a + n)], we get 2(a +n) < x. It follows that 2a+2n+1 <x
and x < c+a. Then a+ 2n+ 2 < ¢, which is a contradiction. Therefore, x € [c,2a) and then
A C [a,a+n]U]c 2a). Hence A = [a,a + n] U [c, 2a).

Conversely, assume that ¢ = a + 2n + 2. Let b = a + n, then we will show that 2b +
1€Aand 2b+1 ¢ [a,a +n]U|c 2a). Note that ¢ < 2a < 2b < 2b + 1. By our assumption,
weobtain2a+2n+2<c+a.50,2b+1<2a+2n+2<c+a.Hencec<2b+1<c+a.
Note that 2b+1 € [2a,2b]. Then 2b+1€ A. Since 2b+1>2a, we obtain 2b+1¢
[a,a +n] U [c,2a). Therefore, it follows from the minimality of A that

S #([a,a+n]V[c, 2a)). |

The following corollary is the consequence of Theorems 2 and Theorem 3 in the case

where each interval is not empty.

Corollary 4. Let S = {0} U [a,a + n] U [c, ) be a numerical semigroup. Then a +2n+2 < ¢

if and only if § = {[a,a + n] U [¢,2a) U (2a + 2n, ¢ + a)).

Proof. Suppose that a + 2n+ 2 < ¢. From Theorem 2 we note that the minimal system of
generators for § is A=[a,a+n]U][c,c+a)\[2a 2(a+n)]. By assumption, we obtain
2(a+n)+2=2a+2n+2< c+a. This implies that [2a,2(a +n)] is a proper subset of

[c,c + a). It follows that
A=la,a+n]Ulc,c+a)\[2a,2(a+n)] =[a,a+n]Ulc2a) VU (a+2n,c+a).
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Conversely, assume that S =([a,a+n]VU[c,2a) U (2a + 2n,c + a)). Then there

exists x € (2a + 2n,c + a). This means that 2a+2b <x <c+a and hence 2a+2b+1<

x<c+a-—1. Therefore,a+2n+2 < c. |

The formulation of the embedding dimension can be derived directly from Theorem

3 and Corollary 4 as follows:

Theorem 5. Let S ={0} U [a,a +n] U [c,®) be a numerical semigroup. Then the following
statements are true:

() fec<a+2n+2,thendim(S) =2a+n—c+1.

(idfc=a+2n+ 2, then dim(S) =a —n.

Theorem 6. Let S ={0} U [a,a +n] U [c,®) be such that dim(S) =d and 1 <n. Then a €
[d+1,2d —1].

Proof. If ¢ = a + 2n + 2, then from Theorem 5, d = a — n. It follows that 1 + d < a. Since S is
a numerical semigroup, we have ¢ < 2a = 2d + 2n. By assumption, a + 2n + 2 < 2d + 2n.

Thus

d+1<a<a+1<2d-1.
Thatisa € [d + 1,2d — 1].

Now, we assume that ¢ < a + 2n+ 2. From Theorem 5, d =2a+n—c+ 1. If a <
d+1,then a<2a+n—c+2, thatis c < a+n+ 2. Recalled the condition of construction
of Sthat2<a<a+n<c—1.Thusc<a+n+1<cwhichisimpossible. Henced + 1 < a.
We will show that a < 2d — 1. Suppose that 2d —1 < a. Thus 2d < a and then 4a + 2n —
2c+2<a Thismeansthat 2a+2n<2c—a—2.Wenotefromc<a+2n+2thatc+a—
2<2a+2nHencec+a—-1<2a+2n<2c—a—-—2andsoc+a—-—1<2c—a—2.Since§
is a numerical semigroup, we obtain ¢ < 2a. This means that 2a < ¢ —1 < 2a, which is a

contradiction. Thus a < 2d — 1. |

In the remainder of this paper, we aim to determine the count of numerical
semigroups of the form {0} U [a, a + n] U [c, ») that share the same embedding dimension. We

denote the class of these numerical semigroups with embedding dimension d as A, i.e.,
A={S:5S={0}uU[a,a+n]u|[c, »)is anumerical semigroup and dim(S) = d}.
Furthermore, we divide the elements within class A into two distinct subclasses, as follows:
B={SeA:5={0}U[a,a+n]U[c,»),1<nandc<a+2n+2}and
C={SeA:S={0}U[a,a+n]U]c,0),1<nandc =a+2n+ 2}.
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The following remark arises as a consequence of Theorem 5.
Remark 7. Let S € A be such that S = {0} U [a,a] U [c,). Thena =d and ¢ € [d + 2, 2d].
We now provide a characterization of subclasses B and € in Theorems 8 and 9, respectively.

Theorem 8. B={{0}U[aq,a+n]u[2a+n+1—-d,o):n€la—d,d—1], a€[d+1,2d -
1]}.
Proof. Let S€ B. Then S ={0}U [a,a+n]U|[c,©) where c <a+2n+2 and 1 <n. From
Theorem 5 (i), we obtain d = dim(S) =2a+n—c+ 1. We note from2a+n+1—-d=c<
a+2n+2 that a—d <n. From Theorem 6, we get a € [d + 1,2d — 1]. Since ¢ < 2a, we
obtain2a+n+1—-d<2a Thusn<d-—1.
Conversely, let S={0}uU[a,a+n]u[2a+n+1—-d, o) when n€[a—d,d—1]
anda€[d+1,2d —1].Clearly, 1 <n.Weletc=2a+n+1-d. From a —d < n, we obtain
c=2a+n+l—-d=a+n+@—-d)+1<a+n+n+1<a+2n+2.

It follows from Theorem 5 (i) thatdim(S) =2a+n—c+1=d.Hence S € B. |

Theorem 9. C = {{0}u [d + n,d + 2n] U [c,0) : n € [1,d — 2],c € [d + 3n + 2,2d + 2n]}.
Proof. Let S€ C. Then S ={0}U [a,a+n] U [c,®),1 <nanda+ 2n+ 2 < c. From Theorem
5 (ii), we have d=dim(S)=a—mn, that is a=d+n. Clearly, c € [a+ 2n+2,2a] =
[d+3n+2,2d + 2n]. Since a+2n+ 2 < ¢ < 2a, we then have 2n+2 < a =d + n. That is
n<d-2.

For the converse, let S = {0} U [d + n,d + 2n] U [c,») wheren € [1,d — 2] and ¢ €
[d+3n+2,2d + 2n]. Let d = a —n. From Theorem 5 (ii) and a + 2n+ 2 < ¢, we obtain
dim(S) = d. Hence S € C. |

Theorem 10. Let d € N be such that 2 < d. Then the number of numerical semigroups of the
form {0} U [a, b] U [c, ) with an embedding dimension of d is given by d(d — 1).
Proof. We will prove that the number of all elements in class A is equal to d(d — 1). Firstly,
we consider cardinality of subclasses B and €. Clearly, B N C = @. From Theorem 8, we have
2d-1
1
IBl = l{(a,n) :a€[d+12d —1]andn € [a—d,d — 1]}| = Z (2d —a) =2d(d - 1).
a=d+1
Similarly, by Theorem 9, we obtain
a-2
ICl=|{(n,c):n€e[l,d—2],ce[d+3n+22(d+n)]} = Z(d —-n—1)

n=1

_(@d-2d-1)
==
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It follows from Remark 7 that |A| = (d — 1) + |B| + |C| = d(d — 1). | |
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