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Abstract 
For a positive integer 𝑛, let [𝑛] = {1, 2, 3, … , 𝑛}, consider the semigroup 𝐶𝑂𝑃𝑛 consisting of 
all partial transformations 𝛼 from [𝑛] to [𝑛] such that 𝛼 preserves both a natural partial order 

≤ (if 𝑥 ≤ 𝑦 then 𝑥𝛼 ≤ 𝑦𝛼) and contraction (|𝑥𝛼 − 𝑦𝛼| ≤ |𝑥 − 𝑦|). In this paper, we 
give a characterization of maximal and minimal elements of 𝐶𝑂𝑃𝑛 with respect to its natural 
partial order.   
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1. Introduction and Preliminaries  
     For an arbitrary nonempty set 𝑋, let 𝑃𝑇𝑋 denotes the set of all partial transformations 
of 𝑋, that is, all mappings 𝛼 whose domain, 𝑑𝑜𝑚 𝛼, and range 𝛼, 𝑟𝑎𝑛 𝛼, are subsets of 𝑋. 
The empty transformation which is a partial transformation of 𝑋 with empty domain is denoted 
by ∅. Then 𝑃𝑇𝑋  becomes a semigroup under composition of mappings, that is, for every 
𝛼, 𝛽 ∈ 𝑃𝑇𝑋, 𝛼𝛽 ∈ 𝑃𝑇𝑋 is defined by  

𝑥(𝛼𝛽) = (𝑥𝛼)𝛽   for all 𝑥 ∈ 𝑑𝑜𝑚 𝛼𝛽. 
We also have  𝑑𝑜𝑚 𝛼𝛽 = (𝑟𝑎𝑛 𝛼 ∩ 𝑑𝑜𝑚 𝛽)𝛼−1 and 𝑟𝑎𝑛 𝛼𝛽 = (𝑟𝑎𝑛 𝛼 ∩ 𝑑𝑜𝑚 𝛽)𝛽.  
      Let [𝑛] = {1, 2, 3, … , 𝑛} for a positive integer 𝑛.  We will use the notation 𝑃𝑇𝑛 in 
place of 𝑃𝑇[𝑛] to highlight that the set [𝑛] has cardinal 𝑛 and has ordered in the standard way. 
Then 𝑃𝑇𝑛 is a semigroup of all partial transformations of [𝑛]. For 𝛼 ∈ 𝑃𝑇𝑛, 𝛼 is called an 
order-preserving mapping if for every 𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝛼, 𝑥 ≤ 𝑦 implies 𝑥𝛼 ≤ 𝑦𝛼, whereas 𝛼 is 
called a contraction if for every 𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝛼 , |𝑥𝛼 − 𝑦𝛼| ≤ |𝑥 − 𝑦|. Let 𝑂𝑃𝑛  be the 
semigroup of all partial order-preserving transformations of [𝑛] and 𝐶𝑂𝑃𝑛 be the subsemigroup 
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of 𝑂𝑃𝑛  consisting of all contraction transformations on [𝑛]. The semigroup 𝐶𝑂𝑃𝑛  was first 
studied by Zhao and Yang in 2012 which is called the semigroup of partial transformation that 
preserving order and contraction on [𝑛]. They also described Green’s relations on 𝐶𝑂𝑃𝑛  and 
investigated regularity of elements in 𝐶𝑂𝑃𝑛.  

In 1986, Mitsch (1986) gave a characterization of the natural partial order on any 
semigroup 𝑆 as follows:  

𝑎 ≤ 𝑏   if and only if   𝑎 = 𝑥𝑏 = 𝑏𝑦  and 𝑎 = 𝑎𝑦 for some 𝑥, 𝑦 ∈ 𝑆1         
where 𝑆1 is a monoid obtained from 𝑆 by adjoining an identity if necessary. The natural partial 
order on various special subsemigroups of partial transformation semigroups have been studied 
by many researchers examples are (Kowol, &  Mitsch, 1986), (Marques-Smith, & Sullivan, 2003), 
(Sun, Pei, & Cheng, 2008), (Sun, Deng, & Pei, 2011), (Sangkhanan, & Sanwong, 2012), (Sun, & Sun, 
2013), (Sun, & Wang, 2013), (Sun, & Sun, 2016), (Han, & Sun, 2018) and (Sangkhanan, 2021).  

Next, we introduce some definitions and notations that will be used in the sequel.  
      Let (𝑋, ≤) be a partially ordered set. An element 𝑎 ∈ 𝑋 is called maximal (minimal) 

if 𝑎 ≤ 𝑥  (𝑥 ≤ 𝑎) and 𝑥 ∈ 𝑋 implies 𝑎 = 𝑥 , and 𝑏 ∈ 𝑋 is called maximum (minimum) if 
𝑥 ≤ 𝑏 (𝑏 ≤ 𝑥) for all 𝑏 ∈ 𝑋 . We let max 𝑋  (min 𝑋) denote the maximum (minimum) 
element of 𝑋.  

A subset 𝐶 of [𝑛] is said to be convex if 𝐶 has the form [𝑖, 𝑖 + 𝑡] = {𝑥 ∈ [𝑛] | 𝑖 ≤

𝑥 ≤ 𝑖 + 𝑡} for some 𝑖 ∈ [𝑛]  and 0 ≤ 𝑡 ≤ 𝑛 − 1.   
Let 𝐴 and 𝐵 be any two subsets of [𝑛]. We say that 𝐴 is less than 𝐵 and write 𝐴 <

𝐵, if 𝑎 < 𝑏 for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵. 
For 𝛼, 𝛽 ∈ 𝑃𝑇𝑛, let  

𝛼𝛽−1 = {(𝑥, 𝑦) ∈ [𝑛] × [𝑛] | 𝑥𝛼 = 𝑦𝛽}. 
For 𝛼 ∈ 𝐶𝑂𝑃𝑛, we expressed as 

𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
)  

where 𝑑𝑜𝑚 𝛼 = 𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑠, 𝑟𝑎𝑛 𝛼 = {𝑎1, 𝑎2, … , 𝑎𝑠}, 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑠, 
𝐴1 < 𝐴2 < ⋯ < 𝐴𝑠,  
𝑎𝑖 − 𝑎𝑖−1 ≤ min 𝐴𝑖 − max 𝐴𝑖−1 for 𝑖 = 2, 3, … , 𝑠 and 𝑎𝑖𝛼−1 = 𝐴𝑖 for 𝑖 = 1, 2, … , 𝑠. 

 In this introductory section, we present a number of Theorems most of which will be 
indispensable for our research.  
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Propostion 1. (Kemprasite, & Changphas, 2000) Let 𝛼 ∈ 𝑂𝑃𝑛 and 𝑥, 𝑦 ∈ 𝑟𝑎𝑛 𝛼 be such that 
𝑥 < 𝑦.  
Then 𝑥𝛼−1 < 𝑦𝛼−1. 

Theorem 2 . (Marques-Smith, & Sullivan, 2003) Let 𝛼, 𝛽 ∈ 𝑃𝑇𝑛. Then 𝛼 ≤ 𝛽 on 𝑃𝑇𝑛 if and 
only if  

(i)  𝑑𝑜𝑚 𝛼 ⊆ 𝑑𝑜𝑚 𝛽 
(ii)  𝑟𝑎𝑛 𝛼 ⊆ 𝑟𝑎𝑛 𝛽 
(iii)  𝛼𝛽−1 ⊆ 𝛼𝛼−1  and  
(iv)  𝛽𝛽−1 ∩ (𝑑𝑜𝑚 𝛽 × 𝑑𝑜𝑚 𝛼) ⊆ 𝛼𝛼−1. 

Theorem 3 . (Namnak, & Sawatraksa, 2015) Let 𝛼, 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 𝛼 = (
𝐴1

𝑎1
). Then 

𝛼 ≤ 𝛽 if and only if  
(i)  𝐴1 ⊆ 𝑑𝑜𝑚 𝛽 
(ii)  𝑎1 ∈ 𝑟𝑎𝑛 𝛽 
(iii)  𝛼𝛽−1 ⊆ 𝛼𝛼−1  and  
(iv)  𝛽𝛽−1 ∩ (𝑑𝑜𝑚 𝛽 × 𝑑𝑜𝑚 𝛼) ⊆ 𝛼𝛼−1. 

Theorem 4. (Namnak, & Sawatraksa, 2015) Let 𝛼, 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
). 

Then 𝛼 ≤ 𝛽 if and only if  
(i)  𝑑𝑜𝑚 𝛼 ⊆ 𝑑𝑜𝑚 𝛽 
(ii)  𝑟𝑎𝑛 𝛼 ⊆ 𝑟𝑎𝑛 𝛽 
(iii)  for every 𝑖 ∈ {1, 2} and  𝑦 ∈ 𝑟𝑎𝑛 𝛽, if 𝑦𝛽−1 ∩ 𝐴𝑖 ≠ ∅, then 𝑦𝛽−1 ⊆ 𝐴𝑖 and  
(iv)  (max 𝐴1)𝛽 = 𝑎1 and (min 𝐴2)𝛽 = 𝑎2 . 

Theorem 5 . (Namnak, & Sawatraksa, 2015) Let 𝛼, 𝛽 ∈ 𝐶𝑂𝑃𝑛  be such that 𝛼 =

 (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) where 𝑠 ≥ 3. Then 𝛼 ≤ 𝛽 if and only if  

(i)  𝑑𝑜𝑚 𝛼 ⊆ 𝑑𝑜𝑚 𝛽 
(ii)  𝑟𝑎𝑛 𝛼 ⊆ 𝑟𝑎𝑛 𝛽 
(iii)  𝑎𝑖𝛽

−1 = 𝐴𝑖  for all 𝑖 ∈ [2, 𝑠 − 1] 
(iv)  for every 𝑖 ∈ {1, 𝑠} and  𝑦 ∈ 𝑟𝑎𝑛 𝛽, if 𝑦𝛽−1 ∩ 𝐴𝑖 ≠ ∅, then 𝑦𝛽−1 ⊆ 𝐴𝑖 and  
(v)  (max 𝐴1)𝛽 = 𝑎1 and (min 𝐴𝑠)𝛽 = 𝑎𝑠 . 
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The purpose of this article is to investigate the conditions under which elements in 
𝐶𝑂𝑃𝑛 are maximal and minimal with respect to the natural partial order. 
 
2. Main Results 

      Note that, if 𝑛 = 1, we get 𝐶𝑂𝑃1 = {∅, (
{1}
1

)} and then ({1}
1

) is the maximum 

element of 𝐶𝑂𝑃1. If 𝑛 = 2, then 𝐶𝑂𝑃2 =

{∅, (
{1}
1

) , (
{1}
2

) , (
{2}
1

) , (
{2}
2

) , (
{1, 2}

1
) , (

{1, 2}
2

) , (
{1} {2}
1 2

)}. It is easily verified 

that {(
{1}
1

) , (
{1}
2

) , (
{2}
1

) , (
{2}
2

) , (
{1} {2}
1 2

)} is the set of all maximal elements of 

𝐶𝑂𝑃2.  

       In order to prove our main results, the following lemmas will be needed later. 
       

Lemma 6 . Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) ∈ 𝐶𝑂𝑃𝑛. If 𝛼 is maximal, then 𝑟𝑎𝑛 𝛼 is a convex 

subset of [𝑛].  

Proof. If 𝑠 = 1 is trivial. Assume that 𝑠 ≥ 2, suppose that 𝑟𝑎𝑛 𝛼 is not convex. Then there 
exists an element 𝑦 ∈ [𝑎1, 𝑎𝑠]  where 𝑦 ∉  𝑟𝑎𝑛 𝛼 . Thus, 𝑎𝑖−1 < 𝑦 < 𝑎𝑖  for some 𝑖 ∈

[2, 𝑠]. Hence, 𝑎𝑖 − 𝑎𝑖−1 > 1. By contraction of 𝛼, we get min 𝐴𝑖 − max 𝐴𝑖−1 > 1.   
  Let  𝑘 = 𝑦 − 𝑎𝑖−1  and 𝑙 = 𝑎𝑖 − 𝑦 . Then  𝑘 + 𝑙 = 𝑎𝑖 − 𝑎𝑖−1 ≤ min 𝐴𝑖 −

max 𝐴𝑖−1. 
Let  𝑧 ∈ [max 𝐴𝑖−1 + 𝑘, min 𝐴𝑖 − 𝑙]. Then max 𝐴𝑖−1 < 𝑧 < min 𝐴𝑖 . Define 

𝛽 ∈ 𝑂𝑃𝑛 by  

𝛽 =  (
𝐴1 𝐴2

𝑎1 𝑎2
   

… 𝐴𝑖−1

… 𝑎𝑖−1
   

{𝑧} 𝐴𝑖

𝑦 𝑎𝑖
   

… 𝐴𝑠

… 𝑎𝑠
). 

Obviously, 𝛼 ≠ 𝛽. If 𝑥 ∈ 𝐴𝑖−1, then 
|𝑥𝛽 − 𝑧𝛽| = |𝑎𝑖−1 − 𝑦| = 𝑦 − 𝑎𝑖−1 = 𝑘 = (max 𝐴𝑖−1 + 𝑘) − max 𝐴𝑖−1 ≤ 𝑧 −

max 𝐴𝑖−1 ≤ |𝑥 − 𝑧|. 
If 𝑥 ∈ 𝐴𝑖 , then 

|𝑥𝛽 − 𝑧𝛽| = |𝑎𝑖 − 𝑦| = 𝑎𝑖 − 𝑦 = 𝑙 = min 𝐴𝑖 − (min 𝐴𝑖 − 𝑙) ≤ min 𝐴𝑖 − 𝑧 ≤
|𝑥 − 𝑧|. 
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We deduce that 𝛽 ∈ 𝐶𝑂𝑃𝑛 . It can be easily checked that 𝛼 ≤ 𝛽 from Theorem 4 or 5. This 

proves that 𝛼 is not maximal. This completes the proof.                   

 

Lemma 7 . Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) ∈ 𝐶𝑂𝑃𝑛 . If 𝛼 is maximal and 𝑛 ∈ 𝑟𝑎𝑛 𝛼, then 

𝐴1 = {1}.  

Proof. Let 𝛼 be a maximal element of 𝐶𝑂𝑃𝑛 and 𝑛 ∈ 𝑟𝑎𝑛 𝛼. Then 𝑎𝑠 = 𝑛. Suppose that 
𝐴1 ≠ {1}. Then 𝐴1 ∖ {1} ≠ ∅. If 𝑎1 = 1, choose 𝑥 ∈ 𝐴1 ∖ {1}. Hence, 𝑥 > 1 and 𝑥𝛼 =

1. By contraction of 𝛼, we have  
𝑛 − 1 = |min 𝐴𝑠𝛼 − 𝑥𝛼| ≤ min 𝐴𝑠 − 𝑥 ≤ 𝑛 − 𝑥 

which is impossible. Thus, 𝑎1 > 1. Define 𝛽 ∈ 𝑂𝑃𝑛 by  

𝛽 =  (
{1} 𝐴1 ∖ {1}

𝑎1 − 1 𝑎1
    

𝐴2

𝑎2
    

… 𝐴𝑠

… 𝑛
). 

For each 𝑥 ∈ 𝐴1 ∖ {1}, 
|𝑥𝛽 − 1𝛽| = 𝑎1 − (𝑎1 − 1) = 1 ≤ 𝑥 − 1 = |𝑥 − 1|, 

 

so 𝛽 ∈ 𝐶𝑂𝑃𝑛 . It can be easily checked that 𝛼 ≤ 𝛽 from Theorem 4 or 5. By property of 𝛼, 
we have 𝛼 = 𝛽 which is a contradiction. Hence, 𝐴1 = {1}.                                            

Lemma 8 . Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) ∈ 𝐶𝑂𝑃𝑛 . If 𝛼 is maximal and 𝑛 ∉ 𝑟𝑎𝑛 𝛼, then 

𝐴𝑠 = {𝑛}.  

Proof. Let 𝛼 be a maximal element of 𝐶𝑂𝑃𝑛 and 𝑛 ∉ 𝑟𝑎𝑛 𝛼. Suppose that 𝐴𝑠 ≠ {𝑛}. Then 
𝐴𝑠 ∖ {𝑛} ≠ ∅. Since 𝑛 ∉ 𝑟𝑎𝑛 𝛼, it follows that 𝑎𝑠 < 𝑛. Define 𝛽 ∈ 𝑂𝑃𝑛 by  

𝛽 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

…
…    

𝐴𝑠 ∖ {𝑛} {𝑛}
𝑎𝑠 𝑎𝑠 + 1

). 

For each 𝑥 ∈ 𝐴𝑠 ∖ {𝑛}, 
|𝑥𝛽 − 𝑛𝛽| = |𝑎𝑠 − (𝑎𝑠 + 1)| = 1 ≤ |𝑥 − 𝑛|, 

 

thus 𝛽 ∈ 𝐶𝑂𝑃𝑛 . It can be easily checked that 𝛼 ≤ 𝛽 from Theorem 4 or 5. By property of 𝛼, 
we have 𝛼 = 𝛽 which is a contradiction. Hence, 𝐴𝑆 = {𝑛}.                                        
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Lemma 9 . Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) ∈ 𝐶𝑂𝑃𝑛 . If 𝛼  is maximal, then 1 ∈ 𝑟𝑎𝑛 𝛼  or 

𝐴1 = {1}.  
Proof. Suppose that 1 ∉ 𝑟𝑎𝑛 𝛼  and 𝐴1 ≠ {1} . Then 𝑎1 ≠ 1 and 𝐴1 ∖ {1} ≠ ∅ . Define 

𝛽 ∈ 𝑂𝑃𝑛 by  

𝛽 =  (
{1} 𝐴1 ∖ {1}

𝑎1 − 1 𝑎1
    

𝐴2

𝑎2
     

…
…  

𝐴𝑠

𝑎𝑠
  ). 

For each 𝑥 ∈ 𝐴1 ∖ {1},  
|1𝛽 − 𝑥𝛽| = |𝑎1 − (𝑎1 + 1)| = 1 ≤ 𝑥 − 1, 

 

so, 𝛽 ∈ 𝐶𝑂𝑃𝑛. It can be easily checked that 𝛼 ≤ 𝛽 from Theorem 4 or 5. Thus 𝛼 is not a 
maximal element of 𝐶𝑂𝑃𝑛.                            

Lemma 10. Let 𝛼, 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 𝛼 ≤ 𝛽. If 𝑥 ∈ 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼, then 𝑥𝛽 ∉

𝑟𝑎𝑛 𝛼.  

Proof.  Let 𝑥 ∈ 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼. Suppose that 𝑥𝛽 ∈ 𝑟𝑎𝑛 𝛼. Then there exists 𝑧 ∈

𝑑𝑜𝑚 𝛼 such that 𝑧𝛼 = 𝑥𝛽. Hence, (𝑧, 𝑥) ∈ 𝛼𝛽−1. Since 𝛼 ≤ 𝛽, 𝛼𝛽−1 ⊆ 𝛼𝛼−1 by 
Theorem 2(iii). This implies that (𝑧, 𝑥) ∈ 𝛼𝛼−1, so 𝑥𝛼 = 𝑧𝛼  which contradicts to 𝑥 ∉

𝑑𝑜𝑚 𝛼. Therefore, 𝑥𝛽 ∉ 𝑟𝑎𝑛 𝛼.                            

Lemma 11. Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) , 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 𝛼 ≤ 𝛽. If 𝑑𝑜𝑚 𝛼 =

𝑑𝑜𝑚 𝛽, 𝐴1 = {1} and  𝑎𝑠 = 𝑛, then 𝛼 = 𝛽.  

Proof. Let 𝑑𝑜𝑚 𝛼 = 𝑑𝑜𝑚 𝛽, 𝐴1 = {1}  and  𝑎𝑠 = 𝑛 . We show that 𝛼 = 𝛽 , let 𝑥 ∈

𝑑𝑜𝑚 𝛼 . We consider three possible cases.  
Case 1: 𝑠 = 1. Then 𝑑𝑜𝑚 𝛼 = {1} and hence 𝑥 = 1 and 𝑥𝛼 = 𝑎1 . Since 𝛼 ≤ 𝛽 , 𝑎1 ∈

𝑟𝑎𝑛 𝛽 by Theorem 3(ii). By assumption, we have 𝑑𝑜𝑚 𝛽 = {1}, it then follows that 𝑥𝛽 =

1𝛽 = 𝑎1 = 𝑥𝛼.   
Case 2: 𝑠 = 2. Then 𝑑𝑜𝑚 𝛼 = 𝐴1 ∪ 𝐴2 = {1} ∪ 𝐴2, and 𝑎2 = 𝑛.  

If 𝑥 ∈ 𝐴1, then 𝑥𝛼 = 𝑎1. By Theorem 4(iv), 𝑥𝛼 = 𝑎1 = (max 𝐴1)𝛽 = 1𝛽 = 𝑥𝛽. 
If 𝑥 ∈ 𝐴2 , then 𝑥𝛼 = 𝑛 and min 𝐴2 ≤ 𝑥 . Since 𝛽 ∈ 𝑂𝑃𝑛 , (min 𝐴2)𝛽 ≤ 𝑥𝛽. By 

Theorem 4(iv),  
(min 𝐴2)𝛽 = 𝑎2 = 𝑛. This implies that 𝑥𝛽 = 𝑥𝛼.  
Case 3: 𝑠 ≥ 3. Then 𝑑𝑜𝑚 𝛼 = 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑠 and 𝑎𝑠 = 𝑛.  
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  If 𝑥 ∈ 𝐴1 = {1}, then 𝑥𝛼 = 𝑎1 = (max 𝐴1)𝛽 = 1𝛽 = 𝑥𝛽 by Theorem 5(v). 
  If 𝑥 ∈ 𝐴𝑖  for some 𝑖 ∈ [2, 𝑠 − 1], then 𝑥𝛼 = 𝑎𝑖 . By Theorem 5(iii), we have that 
𝑥 ∈ 𝑎𝑖𝛽

−1 which implies that 𝑥𝛽 = 𝑎𝑖 . Thus, 𝑥𝛽 = 𝑥𝛼.  
  If 𝑥 ∈ 𝐴𝑠, then 𝑥𝛼 = 𝑛 and min 𝐴𝑠 ≤ 𝑥. Since 𝛽 ∈ 𝑂𝑃𝑛 and by Theorem 5(v), we 
have 𝑛 = (min 𝐴𝑠)𝛽 ≤ 𝑥𝛽. This implies that 𝑥𝛽 = 𝑛 = 𝑥𝛼. 

From above three cases we obtain 𝛼 =  𝛽, as required.            

Lemma 12 . Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) , 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 𝛼 ≤ 𝛽. If 𝑑𝑜𝑚 𝛼 =

𝑑𝑜𝑚 𝛽, 1 ∈ 𝑟𝑎𝑛 𝛼 and  𝐴𝑠 = {𝑛}, then 𝛼 = 𝛽.  
Proof. Let 𝑑𝑜𝑚 𝛼 = 𝑑𝑜𝑚 𝛽, 1 ∈ 𝑟𝑎𝑛 𝛼 and  𝐴𝑠 = {𝑛}. Then 𝑎1 = 1. To show that 𝛼 =

𝛽, we consider three possible cases. 
Case 1: 𝑠 = 1. Clearly, 𝑛𝛼 = 1 = 𝑛𝛽.   
Case 2: 𝑠 = 2. Then 𝑑𝑜𝑚 𝛼 = 𝐴1 ∪ {𝑛}.  

If 𝑥 = 𝑛, then 𝑥𝛼 = 𝑎2. By Theorem 2(iv), 𝑛𝛽 = (min 𝐴2)𝛽 = 𝑎2. Hence, 𝑥𝛼 =

𝑥𝛽. 
  If 𝑥 ∈ 𝐴1 , then 𝑥𝛼 = 1. By Theorem 2(iv), (max 𝐴1)𝛽 = 1. Since 𝑥 ≤ max 𝐴1 
and 𝛽 ∈ 𝑂𝑃𝑛 , 𝑥𝛽 ≤ (max 𝐴1)𝛽. This implies that 𝑥𝛽 = 1, hence, 𝑥𝛼 = 𝑥𝛽.  
Case 3: 𝑠 ≥ 3. Then 𝑑𝑜𝑚 𝛼 = 𝐴1 ∪ 𝐴2 ∪ … ∪ {𝑛}.  
  If 𝑥 ∈ 𝐴1, then 𝑥𝛼 = 1. By Theorem 2(iv), 𝑎1 = (max 𝐴1)𝛽. Since 𝛽 ∈ 𝑂𝑃𝑛 and 
𝑥 ≤ max 𝐴1, we obtain 𝑥𝛽 ≤ (max 𝐴1)𝛽.  It follows that 𝑥𝛽 = 1. Thus, 𝑥𝛼 = 𝑥𝛽. 
  If 𝑥 ∈ 𝐴𝑖  for some 𝑖 ∈ [2, 𝑠 − 1], then 𝑥𝛼 = 𝑎𝑖 . By Theorem 2(iv) we have that 
𝑥 ∈ 𝑎𝑖𝛽

−1 which implies that 𝑥𝛽 = 𝑎𝑖 . Thus, 𝑥𝛽 = 𝑥𝛼.  
  If 𝑥 ∈ 𝐴𝑠 = {𝑛}, then 𝑥 = 𝑛 and 𝑥𝛼 = 𝑎𝑠. By Theorem 2(iv), 𝑎𝑠 =

(min 𝐴𝑠)𝛽 = 𝑛𝛽 = 𝑥𝛽. Hence, 𝑥𝛼 = 𝑥𝛽. 
From above three cases we obtain 𝛼 =  𝛽, as required.           

Lemma 13. Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) , 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 𝛼 ≤ 𝛽. If 𝑑𝑜𝑚 𝛼 =

𝑑𝑜𝑚 𝛽, 𝐴1 = {1} and  𝐴𝑠 = {𝑛}, then 𝛼 = 𝛽.  

Proof. Let 𝑑𝑜𝑚 𝛼 = 𝑑𝑜𝑚 𝛽, 𝐴1 = {1} and 𝐴𝑠 = {𝑛}. To show that 𝛼 = 𝛽, we consider 
three possible cases. 
Case 1: 𝑠 = 1. Obviously, 1𝛼 = 1𝛽.    
Case 2: 𝑠 = 2. Then 𝐴2 = {𝑛}, hence  𝑑𝑜𝑚 𝛼 = {1, 𝑛}. By Theorem 4(iv),   
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1𝛼 = 𝑎1 = (max 𝐴1)𝛽 = 1𝛽 and 𝑛𝛼 = 𝑎2 = (min 𝐴2)𝛽 = 𝑛𝛽.  
Case 3: 𝑠 ≥ 3. Let 𝑥 ∈ 𝑑𝑜𝑚 𝛼.  

If 𝑥 ∈ 𝐴1 = {1}, then 𝑥 = 1 and hence 𝑥𝛼 = 𝑎1 = (max 𝐴1)𝛽 = 1𝛽 = 𝑥𝛽. 
  If 𝑥 ∈ 𝐴𝑖 for some 𝑖 ∈ [2, 𝑠 − 1], then 𝑥𝛼 = 𝑎𝑖 . By Theorem 2(iv), we have that 
𝑥 ∈ 𝑎𝑖𝛽

−1 which implies that 𝑥𝛽 = 𝑎𝑖 . Thus, 𝑥𝛽 = 𝑥𝛼.  
If 𝑥 ∈ 𝐴𝑠 = {𝑛}, then 𝑥 = 𝑛. By Theorem 2(iv), we have 𝑥𝛽 = 𝑛𝛽 =

(min 𝐴𝑠)𝛽 = 𝑎𝑠 = 𝑥𝛼.  
From above three cases we obtain 𝛼 =  𝛽, as required.            
Next, we give necessary and sufficient conditions for elements of 𝐶𝑂𝑃𝑛 to be maximal 

when 𝑛 ≥ 3. 

Theorem 1 4 . Let 𝛼 =  (
𝐴1 𝐴2

𝑎1 𝑎2
    

… 𝐴𝑠

… 𝑎𝑠
) ∈ 𝐶𝑂𝑃𝑛 . Then 𝛼  is maximal if and only if 

𝑟𝑎𝑛 𝛼 is a convex subset of [𝑛] and either one of the following conditions holds: 

(i)  if 𝑛 ∈ 𝑟𝑎𝑛 𝛼, then 𝐴1 = {1} or  
(ii)  if 𝑛 ∉ 𝑟𝑎𝑛 𝛼, then 𝐴𝑠 = {𝑛} and (1 ∈ 𝑟𝑎𝑛 𝛼  or 𝐴1 = {1}).  

Proof.   Necessity. It follows from Lemma 6, 7, 8 and 9.  
Sufficiency. We must prove that 𝛼 is maximal of 𝐶𝑂𝑃𝑛. Let 𝛽 ∈ 𝐶𝑂𝑃𝑛 be such that 

𝛼 ≤ 𝛽. By Theorem 2, 𝑑𝑜𝑚 𝛼 ⊆ 𝑑𝑜𝑚 𝛽, 𝑟𝑎𝑛 𝛼 ⊆ 𝑟𝑎𝑛 𝛽 and 𝛼𝛽−1 ⊆ 𝛼𝛼−1. To prove 

that 𝛼 = 𝛽, let’s divide it into two cases.  

Case 1: 𝑛 ∈ 𝑟𝑎𝑛 𝛼. By (i), we have 𝐴1 = {1}. Suppose that 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼 ≠ ∅. Then 
there is an element 𝑥 ∈ 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼. Then 𝑥 > 1 and 𝑥𝛽 = 𝑦 for some 𝑦 ∈ 𝑟𝑎𝑛 𝛽. 
By Lemma 10, 𝑦 ∉ 𝑟𝑎𝑛 𝛼. Since 𝑟𝑎𝑛 𝛼 is convex, 𝐴1 = {1} and 𝑛 ∈ 𝑟𝑎𝑛 𝛼, we obtain that 
1𝛼 = 𝑎1 and 𝑟𝑎𝑛 𝛼 = [𝑎1, 𝑛]. This implies 𝑦 < 𝑎1 . Since 𝑎1 ∈ 𝑟𝑎𝑛 𝛼 ⊆ 𝑟𝑎𝑛 𝛽 , there 
exists 𝑎′ ∈ [𝑛] such that 𝑎′𝛽 = 𝑎1. Hence, (1, 𝑎′) ∈ 𝛼𝛽−1 ⊆ 𝛼𝛼−1 and so 𝑎′𝛼 = 1𝛼 =

𝑎1 . Since 𝐴1 = {1}, it follows that 𝑎′ = 1 and hence 1𝛽 = 𝑎1. Since 𝛽 ∈ 𝑂𝑃𝑛  and 𝑦 <

𝑎1, 𝑦𝛽−1 < 𝑎1𝛽−1 by Proposition 1 and hence, 𝑥 < 1 which is a contradiction. This proves 
that 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼 = ∅ . Hence, 𝑑𝑜𝑚 𝛼 = 𝑑𝑜𝑚 𝛽  comes directly from 𝑑𝑜𝑚 𝛼 ⊆

𝑑𝑜𝑚 𝛽. By Lemma 11, 𝛼 =  𝛽. 
Case 2: 𝑛 ∉ 𝑟𝑎𝑛 𝛼. By (ii), we have 𝐴𝑠 = {𝑛} and (1 ∈ 𝑟𝑎𝑛 𝛼 or 𝐴1 = {1}). Consider two 
subcases. 
       Subcase 2.1: 1 ∈ 𝑟𝑎𝑛 𝛼 . Suppose that 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼 ≠ ∅. Then there exists 
𝑥 ∈ 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼 . Then 𝑥𝛽 = 𝑦  for some 𝑦 ∈ 𝑟𝑎𝑛 𝛽 . By Lemma 10, 𝑦 ∉ 𝑟𝑎𝑛 𝛼 . 
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Since 𝑟𝑎𝑛 𝛼 is convex, 1 ∈ 𝑟𝑎𝑛 𝛼 and 𝐴𝑠 = {𝑛}, we obtain 𝑟𝑎𝑛 𝛼 = [1, 𝑎𝑠]  and 𝑛𝛼 =

𝑎𝑠. This implies 𝑎𝑠 < 𝑦. Since 𝑎𝑠 ∈ 𝑟𝑎𝑛 𝛼 ⊆ 𝑟𝑎𝑛 𝛽, there exists 𝑎′ ∈ [𝑛] such that 𝑎′𝛽 =

𝑎𝑠. Hence, (𝑛, 𝑎′) ∈ 𝛼𝛽−1 ⊆ 𝛼𝛼−1 and thus, 𝑎′𝛼 = 𝑛𝛼. It follows that 𝑎′ = 𝑛 and 𝑛𝛽 =

𝑎𝑠 . Since 𝛽 ∈ 𝑂𝑃𝑛  and 𝑎𝑠 < 𝑦 by Proposition 1, we obtain 𝑎𝑠𝛽−1 < 𝑦𝛽−1 , and hence, 
𝑛 < 𝑥. This is a contradiction which means that  𝑑𝑜𝑚 𝛼 = 𝑑𝑜𝑚 𝛽. By Lemma 12, 𝛼 =  𝛽. 

Subcase 2.2: 𝐴1 = {1}. Suppose that 𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼 ≠ ∅. Then there exists 𝑥 ∈

𝑑𝑜𝑚 𝛽 ∖ 𝑑𝑜𝑚 𝛼 . Then 𝑥𝛽 = 𝑦 for some 𝑦 ∈ 𝑟𝑎𝑛 𝛽 . By Lemma 10, 𝑦 ∉ 𝑟𝑎𝑛 𝛼 . Since 
𝑟𝑎𝑛 𝛼 is convex,  𝑟𝑎𝑛 𝛼 = [𝑎1, 𝑎𝑠], 1𝛼 = 𝑎1 and 𝑛𝛼 = 𝑎𝑠. These imply that 𝑦 < 𝑎1 or 
𝑎𝑠 < 𝑦. Since 𝛽 ∈ 𝑂𝑃𝑛 , 𝑦𝛽−1 < 𝑎1𝛽−1 or 𝑎𝑠𝛽−1 < 𝑦𝛽−1 by Proposition 1. Hence, 𝑥 <

1 or 𝑛 < 𝑦. This is a contradiction. Therefore, 𝑑𝑜𝑚 𝛼 = 𝑑𝑜𝑚 𝛽. By Lemma 13, 𝛼 =  𝛽. 
Considering the above two cases, we can conclude that 𝛼 is a maximal element of 

𝐶𝑂𝑃𝑛.                                                                                                           
 
 
Let us, illustrate this theorem. For 𝑛 = 8, let   

𝛼1 =  (
{1} {3, 5}
6 7

   
{6,7}

8
), 𝛼2 =  (

{2} {3, 5, 7}
1 2

   
{8}
3

), 𝛼3 =

 (
{1} {3, 5, 7}
3 4

   
{8}
5

), 

and  𝛼4 =  (
{1} {2, 3, 4}
5 6

  
{5, 6} {7, 8}

7 8
 ). 

It is easy to check that 𝛼1, 𝛼2, 𝛼3, 𝛼4 ∈ 𝐶𝑂𝑃𝑛. By Theorem 14, all such transformations are 

maximal. 

      It is clear that ∅ is the minimum element of 𝐶𝑂𝑃𝑛. We say 𝛼 ∈ 𝐶𝑂𝑃𝑛 ∖ {∅}  is a 
non-zero minimal element of 𝐶𝑂𝑃𝑛 if 𝛼 is minimal among the non-zero elements of 𝐶𝑂𝑃𝑛. 
Finally, we provide necessary and sufficient condition for non-zero elements in 𝐶𝑂𝑃𝑛 to be 
minimal. 

Theorem 15 . Let 𝛼 be a non-zero element in 𝐶𝑂𝑃𝑛. Then 𝛼 is a non-zero minimal element 

of 𝐶𝑂𝑃𝑛 if and only if 𝛼 is a constant mapping.  

Proof.  Necessity. We will prove the contrapositive. Suppose that 𝛼 be nonconstant. Then  
|𝑟𝑎𝑛 𝛼| > 1. We choose and fix an element 𝑢 ∈ 𝑟𝑎𝑛 𝛼. Define  𝛽 ∈ 𝐶𝑂𝑃𝑛 by  

𝑥𝛽 = 𝑢 for all 𝑥 ∈ 𝑢𝛼−1.  
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It is clearly that ∅ ≠ 𝛽 ≠ 𝛼. It suffices to verify that 𝛽𝛼−1 ⊆ 𝛽𝛽−1 and 𝛼𝛼−1 ∩

(𝑑𝑜𝑚 𝛼 × 𝑑𝑜𝑚 𝛽) ⊆ 𝛽𝛽−1. Let (𝑥, 𝑦) ∈ 𝛽𝛼−1. Then 𝑥𝛽 = 𝑦𝛼. Since 𝑥𝛽 = 𝑢, it 
follows that 𝑦 ∈ 𝑢𝛼−1. This implies 𝑥𝛽 = 𝑦𝛽, and thus,  (𝑥, 𝑦) ∈ 𝛽𝛽−1. Hence, 𝛽𝛼−1 ⊆

𝛽𝛽−1. Next, let (𝑥, 𝑦) ∈ 𝛼𝛼−1 ∩ (𝑑𝑜𝑚 𝛼 × 𝑑𝑜𝑚 𝛽). Then 𝑥𝛼 = 𝑦𝛼 and 𝑦 ∈

𝑑𝑜𝑚 𝛽 = 𝑢𝛼−1. Hence, 𝑦𝛼 = 𝑢, so 𝑥 ∈ 𝑢𝛼−1. By the definition of 𝛽, 𝑥𝛽 = 𝑢. This shows 
that (𝑥, 𝑦) ∈ 𝛽𝛽−1. By Theorem 3, 𝛽 ≤ 𝛼. We proved that 𝛼 is not a non-zero minimal 
element of 𝐶𝑂𝑃𝑛. 
  Sufficiency. Assume that 𝛼 is constant. Then there exists 𝑦 ∈ [𝑛] such that 𝑥𝛼 = 𝑦 
for all 𝑥 ∈ 𝑑𝑜𝑚 𝛼 . Let 𝛾 ∈ 𝐶𝑂𝑃𝑛 ∖ {∅} be such that 𝛾 ≤ 𝛼 . By Theorem 3, 𝑑𝑜𝑚 𝛾 ⊆

𝑑𝑜𝑚 𝛼, 𝑟𝑎𝑛 𝛾 ⊆ 𝑟𝑎𝑛 𝛼 and 𝛾𝛼−1 ⊆ 𝛾𝛾−1. It follows directly that 𝑟𝑎𝑛 𝛾 = {𝑦}. To show 
that 𝑑𝑜𝑚 𝛼 ⊆ 𝑑𝑜𝑚 𝛾 , let 𝑎 ∈ 𝑑𝑜𝑚 𝛼 . Then 𝑎𝛼 = 𝑦 . We choose an element 𝑏 ∈

𝑑𝑜𝑚 𝛾 . Then 𝑏𝛾 = 𝑦  and hence, 𝑎𝛼 = 𝑏𝛾 . This shows that (𝑏, 𝑎) ∈ 𝛾𝛼−1 ⊆ 𝛾𝛾−1 , 
which means that 𝑎 ∈ 𝑑𝑜𝑚 𝛾 . Therefore, 𝑑𝑜𝑚 𝛼 ⊆ 𝑑𝑜𝑚 𝛾 , as required. Consequently, 
𝛼 = 𝛾. This completes the proof.                                     
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