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Abstract

For a positive integer n, let [n] = {1, 2, 3, ..., n}, consider the semigroup COP,, consisting of
all partial transformations & from [n] to [n] such that & preserves both a natural partial order
< (if x < y then xa < ya) and contraction (|xa — ya| < |x — y|). In this paper, we
give a characterization of maximal and minimal elements of COP, with respect to its natural

partial order.
Keywords: partial order, maximal (minimal) elements, transformation semigroup

1. Introduction and Preliminaries

For an arbitrary nonempty set X, let PTy denotes the set of all partial transformations
of X, that is, all mappings @ whose domain, dom «a, and range @, ran a, are subsets of X.
The empty transformation which is a partial transformation of X with empty domain is denoted
by @. Then PTx becomes a semigroup under composition of mappings, that is, for every
a,f € PTy, aff € PTy is defined by

x(aB) = (xa)B foral x € dom ap.

We also have dom af = (ran a N dom B)a™! and ran af = (ran a N dom B)p.

Let [n] ={1,2,3,...,n} for a positive integer n. We will use the notation PT}, in
place of PT[n] to highlight that the set [1n] has cardinal n and has ordered in the standard way.
Then PT,, is a semigroup of all partial transformations of [n]. For &« € PTy, a is called an
order-preserving mapping if for every x,y € dom a, x < y implies xa < ya, whereas & is
called a contraction if for every x,y € dom a, |xa — ya| < |x — y|. Let OB, be the

semigroup of all partial order-preserving transformations of [1] and COP, be the subsemigroup
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of OB, consisting of all contraction transformations on [n]. The semigroup COP,, was first
studied by Zhao and Yang in 2012 which is called the semigroup of partial transformation that
preserving order and contraction on [n]. They also described Green’s relations on COP,, and
investigated regularity of elements in COP,.

In 1986, Mitsch (1986) gave a characterization of the natural partial order on any
semigroup S as follows:

a<b ifandonlyif a=xb=hby anda = ay for some x,y € St

where St is a monoid obtained from S by adjoining an identity if necessary. The natural partial
order on various special subsemigroups of partial transformation semigroups have been studied
by many researchers examples are (Kowol, & Mitsch, 1986), (Marques-Smith, & Sullivan, 2003),
(Sun, Pei, & Cheng, 2008), (Sun, Deng, & Pei, 2011), (Sangkhanan, & Sanwong, 2012), (Sun, & Sun,
2013), (Sun, & Wang, 2013), (Sun, & Sun, 2016), (Han, & Sun, 2018) and (Sangkhanan, 2021).

Next, we introduce some definitions and notations that will be used in the sequel.

Let (X, <) be a partially ordered set. An element a € X is called maximal (minimal)
ifa<x(x<a)andx € X impliesa = x, and b € X is called maximum (minimum) if
x<b (b<x)foralb€X. Welet maxX (minX) denote the maximum (minimum)
element of X.

A subset C of [n] is said to be convex if C has the form [i,i +t] = {x € [n] | i <
x<i+t}forsomei€[n] and0 <t <n-—1.

Let A and B be any two subsets of [1]. We say that A is less than B and wiite A <
B,ifa<bforalla € Ab € B.

Fora, B € PT,, let

af~' ={(x,y) € [n] X [n] | xa = yB}.
For & € COP,, we expressed as

(A1 A, .. AS)
a =

a; a, .. 0

where doma=A;UA,U---UAgrana ={ay,a,, .., as},a; < a, <--<as,

A1 <A2 < .- <AS’

a; — aj_; <min4; —maxA4;_;fori =2,3,..,sandqa"t = A; fori = 1,2, ..., 5.

In this introductory section, we present a number of Theorems most of which will be

indispensable for our research.
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Propostion 1. (Kemprasite, & Changphas, 2000) Let &« € OP,, and X,y € ran « be such that
x <.
Then xa™! < ya™1,
Theorem 2. (Marques-Smith, & Sullivan, 2003) Let &, f € PT,,. Then @ < f§ on PT,, if and
only if

(i) doma € dom f

(i) rana S ran

(i) af™! € aa™? and

) BB~ N (dom B X dom a) € aa™1.

A
Theorem 3. (Namnak, & Sawatraksa, 2015) Let @, § € COP,, be such that @ = <a1). Then
1

a < B ifand only if
(i) Ay S domp
(i) ai Eran f
(i) af™! € aa™?! and

(v) BB~ N (dom B X dom a) € aa™t.

Theorem 4. (Namnak, & Sawatraksa, 2015) Let &, B € COP, be such that @ = <1;1i ﬁj)
Then a < [ if and only if

(i) doma € dom f

(i) rana S ran

(i) forevery i € {1,2}and y €Eran B,y 1 N A; # @, then yB~1 € A; and

(iv) (maxA4;)B = a; and (min4,)B = a,.

Theorem 5 . (Namnak, & Sawatraksa, 2015) Let a,f8 € COP, be such that a =
A A, .. Ag

<a1 a, .. dg
(i) doma € dom f

) where s = 3. Then a < [ if and only if

(i) rana S ran

(i) a;f7r = A; foralli € [2,5 — 1]

(iv) foreveryi € {1,s}and y € ran B,if yB 1 N A; # @, then yB~1 C A; and
(v) (maxA,)B = a; and (min A;)B = a,.
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The purpose of this article is to investigate the conditions under which elements in

COP, are maximal and minimal with respect to the natural partial order.

2. Main Results

Note that,if n = 1, we get COP; = {0@, ({1})} and then ({1}) is the maximum
element of COP;. If n = 2, then COP, =

{@, ({1}1) ’ ({;}1) , ({i}z) ’ ({3}2) ’ ({1’112}) ) (2{1’22}) , ({1} {é})} It is easily verified
that {({1}) , ({2}) , ({1}) , ({2}) , ({1} {2})} is the set of all maximal elements of
COP,.

In order to prove our main results, the following lemmas will be needed later.

A Ay .. A

) € COP,. If a is maximal, then ran « is a convex
a, Qa; .. Gag

Lemma 6. Llet @ = (

subset of [n].

Proof. If s = 1 s trivial. Assume that § = 2, suppose that ran « is not convex. Then there
exists an element y € [ay,as] where y € ran a. Thus, a;_q <y < a; for some i €
[2, s]. Hence, a; — a;_; > 1. By contraction of @&, we get min A; — max4;_; > 1.

let k=y—aj_;andl=a;—y. Then k+l=a;—a;_1 <min4; —
maxA4;_1.

let z € [maxA;_; +k,minA; —1]. Then maxA4;_; < z < min 4;. Define
B € OP, by

g = (Al A, .. A4 {z} A .. As).
a, Q; .. QG4 Y A .. G
Obviously, @ # B.If x € A;_4, then
IxB —zBl =laiy —yl=y—a;-1 =k =(maxA;_; + k) —max4; ; <z—
max4; 1 < |x —z|.
If x € A;, then
xB —zB| =|a;—y|=a;—y=1=minA4; — (minA4; — ) < min4; —z <
|x — z|.
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We deduce that § € COP,. It can be easily checked that @ < [ from Theorem 4 or 5. This

proves that & is not maximal. This completes the proof. d

A Ay .. A

Lemma 7. Let @ = (a ) € COP,. If a is maximal and n € ran a, then

1 Ay .. Qg
A, = {1}
Proof. Let & be a maximal element of COP, and n € ran a. Then ag = n. Suppose that
Ay # {1} Then A; \ {1} # @. fa; = 1, choose x € A; \ {1}. Hence, x > 1 and xa =
1. By contraction of &, we have
n—1=|mindsa —xa| <mind; —x <n-—x
which is impossible. Thus, a; > 1. Define f € OP, by
g = ( {13 A\{1} 4, .. AS)'
a, —1 aq a .. n
Foreach x € A; \ {1},
lxg -1l =a;— (- 1D =1<x-1=[x—-1],

so B € COP,. It can be easily checked that @ < [§ from Theorem 4 or 5. By property of @,

we have @ = 8 which is a contradiction. Hence, A4; = {1}. a

A Ay .. A

) € COP,. If @ is maximal and n € ran «, then
a, Qa; .. ag

Lemma 8. Let a = (
Ag = {n}.
Proof. Let & be a maximal element of COP, and n & ran a. Suppose that Ag # {n}. Then

Ag \ {n} # @. Since n & ran a, it follows that ag < n. Define § € OB, by

po (B e ANOY )y

a, ap - as as+1
For each x € A \ {n},
IXB —npl =las—(as + | =1<|x—n|,

thus f € COP,. It can be easily checked that @ < 8 from Theorem 4 or 5. By property of @,

we have @ = [ which is a contradiction. Hence, Ag = {n}. Q
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A Ay .. A

) € COP,. If a is maximal, then 1 € ran a or
a, Qa; .. Qg

Lemma 9. Let a = (

Proof. Suppose that 1 € ran a and A; # {1}. Then a; # 1 and A; \ {1} # @. Define
B € OB, by
po (1 ND A -

a; — 1 aq a, g
Foreach x € A; \ {1},

118 —xBl=la; —(a; + D[ =1=<x-1,

so, f € COP,. It can be easily checked that @ < 8 from Theorem 4 or 5. Thus @ is not a
maximal element of COP,. Q

Lemma 10. Let @, § € COP, be such that @ < . 1f x € dom 8 \ dom «, then xB &

ran .

Proof. Let x € dom [ \ dom a. Suppose that X € ran a. Then there exists Z €
dom a such that za = xf3. Hence, (z,x) € aff~L.Sincea < B, aff™! € aa™ 1 by

1

Theorem 2(iii). This implies that (z,x) € aa™", so x& = za which contradicts to X &

dom a. Therefore, xf3 & ran a. d

A Ay .. A

< _
a, ay . as),ﬁ € COP, be suchthata < . Ifdom «

Lemma 11. Let @ = (
dom f,A; = {1} and a5 =n,thena = f.
Proof. Let doma =dom f§,A; = {1} and ay =n. We show that & =, let x €
dom a . We consider three possible cases.
Case 1: s = 1. Thendom a = {1} and hence x = 1 and xa@ = a;. Since a < 8, a; €
ran 3 by Theorem 3(ii). By assumption, we have dom ff = {1}, it then follows that xf§ =
18 = a; = xa.
Case 225 = 2. Thendoma = A; UA, = {1} UA,, and a, = n.
If x € Ay, then xa = ay. By Theorem 4(iv), xa& = a; = (maxA,)B = 18 = xp.
If x € Ay, then x& = n and min 4, < x. Since f € OB, (minA4,)f < xf. By
Theorem 4(iv),
(min A,)B = a, = n. This implies that X = xa.
Case 3: s = 3. Thendoma = A; UA, U ...U A5 and ag = n.
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If x € A; = {1}, then xa = a; = (max A4,)B = 1B = xf8 by Theorem 5(v).

If x € A; for some i € [2,5 — 1], then xa = a;. By Theorem 5(iii), we have that
x € a; 371 which implies that X = a;. Thus, X = xa.

If x € Ag, then xa = nand min Ag < x. Since § € OP, and by Theorem 5(v), we
have n = (min A;)B < xf3. This implies that X§ = n = xa.

From above three cases we obtain @ = ,3 as required. d
A A, .. Ag

),ﬂECOPnbesuchthataSﬁ.|fd0ma=
a, a, .. Qg

domf,1 €Eranaand Ag = {n}, thena = B.

Lemma 12. Leta = (

Proof. Letdom &« = dom 3,1 € ran @ and Ag = {n}. Then a; = 1. To show that @ =
B, we consider three possible cases.
Case 1: s = 1. Clearly, na = 1 = npf.
Case 2: s = 2. Thendom a = A; U {n}.

If x = n, then x& = a,. By Theorem 2(iv), nf = (min A,)B = a,. Hence, xa =
xpB.

If x € A, then xa = 1. By Theorem 2(iv), (max A;)B = 1. Since x < max 4,
and € OB, xf3 < (max A,)p. This implies that x8 = 1, hence, xa = x3.
Case 3:5 = 3. Thendoma = A; UA, U ..U {n}.

If x € Ay, then xa = 1. By Theorem 2(iv), a; = (max A4,)p. Since B € OP, and
x < max A,, we obtain xf < (maxA;)f. It follows that x = 1. Thus, xa = xf5.

If x € A; for some i € [2,s — 1], then xa = a;. By Theorem 2(iv) we have that
x € a; 31 which implies that X8 = a;. Thus, X8 = xa.

If x € Ag = {n}, then x = n and xa = a,. By Theorem 2(iv), ay =
(min Ag)B = nf = xB. Hence, xa = xp.

From above three cases we obtain @ = ﬁ as required. a

A Ay .. A

Lemma 13. Llet a = (
al az aS

),ﬁ € COP, besuchthata < f.Ifdoma =
dom ,A; = {1} and A = {n}, thena = B.

Proof. Letdom a = dom 8, A; = {1} and A5 = {n}. To show that @ = B, we consider
three possible cases.

Case 1: s = 1. Obviously, 1a = 1p.

Case 2: S = 2.Then A, = {n}, hence dom a = {1,n}. By Theorem 4(iv),
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la = a; = (maxA4;)B = 18 and na = a, = (minA4,)p = np.
Case 3: S = 3. Lletx Edoma.
If x € Ay = {1}, then x = 1 and hence xa = a; = (max4,)pf = 18 = xp.
If x € A; for some i € [2,5 — 1], then xa = a;. By Theorem 2(iv), we have that
x € a; 371 which implies that x = a;. Thus, X = xa.
If x € As = {n}, then x = n. By Theorem 2(iv), we have x§ = nf§ =
(minAy)B = as = xa.
From above three cases we obtain @ = ,3 as required. d
Next, we give necessary and sufficient conditions for elements of COP,, to be maximal

whenn > 3.

A Ay . Ay

) € COP,. Then a is maximal if and only if
a, ap .. ag

Theorem 14. Let @ = (

ran « is a convex subset of [n] and either one of the following conditions holds:
(i) ifn € ran a, then A; = {1} or
(i) if n € ran a, then Ag = {n}and (1 Erana or A; = {1}).
Proof. Necessity. It follows from Lemma 6, 7, 8 and 9.

Sufficiency. We must prove that & is maximal of COP,. Let § € COP, be such that
a < fB. By Theorem 2, dom a € dom §,rana € ran f and aff~! € aa™1. To prove
that @ = B, let’s divide it into two cases.

Case 1: M € ran a. By (i), we have A; = {1}. Suppose that dom 8 \ dom a # @. Then
there is an element x € dom 8 \ dom a. Then x > 1 and xf§ = y for some y €E ran .
By Lemma 10, ¥ € ran a. Since ran a is convex, A; = {1} and n € ran a, we obtain that
la = a; and ran a = [a4, n]. This implies ¥y < a4. Since a; E rana S ran 3, there
exists @’ € [n] such that a’f = a,. Hence, (1,a") Eaf ! S aatandsoa’'a = la =
a,. Since A; = {1}, it follows that @’ = 1 and hence 18 = a,. Since B € OP, and y <
a, y,[?_1 < alﬁ_l by Proposition 1 and hence, x < 1 which is a contradiction. This proves
that dom B\ doma = @. Hence, dom a = dom 8 comes directly from dom a €
dom 3. By Lemma 11, @ = [5.
Case 2: n & ran a. By (i), we have A; = {n} and (1 € ran a or A; = {1}). Consider two
subcases.

Subcase 2.1: 1 € ran a. Suppose that dom  \ dom a # @. Then there exists
x €Edom f \ doma. Then xf =y for some y Eranff. By Lemma 10, y € ran a.
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Since ran a is convex, 1 € ran a and Ag = {n}, we obtainran @ = [1,as5] and na =
a,. Thisimplies a; < y.Since as € ran a S ran B, there exists @’ € [n] suchthat a’'f =

ag. Hence, (n,a") € af™! € aa™?

and thus, a'a = na. It follows that @’ = nand nf =
as. Since B € OP, and a5 <y by Proposition 1, we obtain ag8~t < yB~1, and hence,
n < x. This is a contradiction which means that dom a = dom f§. By Lemma 12, = f.

Subcase 2.2: A; = {1}. Suppose that dom 8 \ dom a # @. Then there exists x €
dom [ \ dom a. Then xf§ =y for some y € ran 5. By Lemma 10, y € ran a. Since
ran « is convex, ran a = [a4,as], la = a; and na = ag. These imply that y < a4 or
as <7y.Since § € OP, vy~ < a;f Y orasB~t < yB~1 by Proposition 1. Hence, x <
1 or n < y. This is a contradiction. Therefore, dom & = dom [5. By Lemma 13, @ = 5.

Considering the above two cases, we can conclude that & is a maximal element of

COP,. 0

Let us, illustrate this theorem. For n = 8, let

0= (W G567 o (@ BT B o
(W B.57) ®)
3 4 57/

and a, = ({1} {2,3,4} {5,6} {7,8} )
5 6 7 8
It is easy to check that ay, @y, @3, &ty € COR,. By Theorem 14, all such transformations are

maximal.
It is clear that @ is the minimum element of COPB,. We say & € COP, \ {0} is a
non-zero minimal element of COP, if & is minimal among the non-zero elements of COP,.

Finally, we provide necessary and sufficient condition for non-zero elements in COP, to be

minimal.

Theorem 15. Let & be a non-zero element in COP,,. Then & is a non-zero minimal element
of COP, if and only if & is a constant mapping.

Proof. Necessity. We will prove the contrapositive. Suppose that & be nonconstant. Then

|ran a| > 1. We choose and fix an element u € ran a. Define 8 € COP, by

xB =uforal x € ua™l.
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It is clearly that @ # B # a. It suffices to verify that fa™ 1 € AL and aa 1 n
(doma xdom B) € BB~ L Let (x,y) € Ba~t Then xf = ya. Since xf = u, it
follows that y € ua ™. This implies xB = yB, and thus, (x,y) € BB~L. Hence, Ba™t €
BB~L Next, let (x,y) €Eaa ln(doma xdomf). Then xa =ya and yE€E
dom B = ua™! Hence, ya = u, so x € ua 1. By the definition of B, X8 = . This shows
that (x,y) € BBL. By Theorem 3, B < a. We proved that a is not a non-zero minimal
element of COP,.

Sufficiency. Assume that & is constant. Then there exists y € [n] such that xa =y
for all x € dom a. Let y € COB, \ {@} be such that ¥ < a. By Theorem 3, domy S
doma,rany S ran a and ya~! € yy 1. It follows directly that ran ¥y = {y}. To show
that doma € domy, let a €Edoma. Then ax =y . We choose an element b €
domy. Then by =y and hence, aa = by. This shows that (b,a) € ya~l € yy~1,
which means that @ € dom y. Therefore, dom a € dom y, as required. Consequently,

a = Y. This completes the proof. a
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