

A Note on Maximal and Minimal Elements in Semigroups of Partial Transformation Preserving Order and Contraction

Nares Sawatraksa¹, Chaiwat Namnak^{2*}

¹Division of Mathematics and Statistics, Faculty of Science and Technology,
Nakhon Sawan Rajaphat University

²Department of Mathematics, Faculty of Science, Naresuan University

Abstract

For a positive integer n , let $[n] = \{1, 2, 3, \dots, n\}$, consider the semigroup COP_n consisting of all partial transformations α from $[n]$ to $[n]$ such that α preserves both a natural partial order \leq (if $x \leq y$ then $x\alpha \leq y\alpha$) and contraction ($|x\alpha - y\alpha| \leq |x - y|$). In this paper, we give a characterization of maximal and minimal elements of COP_n with respect to its natural partial order.

Keywords: partial order, maximal (minimal) elements, transformation semigroup

1. Introduction and Preliminaries

For an arbitrary nonempty set X , let PT_X denotes the set of all partial transformations of X , that is, all mappings α whose domain, $\text{dom } \alpha$, and range α , $\text{ran } \alpha$, are subsets of X . The empty transformation which is a partial transformation of X with empty domain is denoted by \emptyset . Then PT_X becomes a semigroup under composition of mappings, that is, for every $\alpha, \beta \in PT_X$, $\alpha\beta \in PT_X$ is defined by

$$x(\alpha\beta) = (x\alpha)\beta \quad \text{for all } x \in \text{dom } \alpha\beta.$$

We also have $\text{dom } \alpha\beta = (\text{ran } \alpha \cap \text{dom } \beta)\alpha^{-1}$ and $\text{ran } \alpha\beta = (\text{ran } \alpha \cap \text{dom } \beta)\beta$.

Let $[n] = \{1, 2, 3, \dots, n\}$ for a positive integer n . We will use the notation PT_n in place of $PT_{[n]}$ to highlight that the set $[n]$ has cardinal n and has ordered in the standard way. Then PT_n is a semigroup of all partial transformations of $[n]$. For $\alpha \in PT_n$, α is called an *order-preserving mapping* if for every $x, y \in \text{dom } \alpha$, $x \leq y$ implies $x\alpha \leq y\alpha$, whereas α is called a *contraction* if for every $x, y \in \text{dom } \alpha$, $|x\alpha - y\alpha| \leq |x - y|$. Let OP_n be the semigroup of all partial order-preserving transformations of $[n]$ and COP_n be the subsemigroup

* Corresponding author : chaiwatn@nu.ac.th

of OP_n consisting of all contraction transformations on $[n]$. The semigroup COP_n was first studied by Zhao and Yang in 2012 which is called the *semigroup of partial transformation that preserving order and contraction on $[n]$* . They also described Green's relations on COP_n and investigated regularity of elements in COP_n .

In 1986, Mitsch (1986) gave a characterization of the natural partial order on any semigroup S as follows:

$$a \leq b \text{ if and only if } a = xb = by \text{ and } a = ay \text{ for some } x, y \in S^1$$

where S^1 is a monoid obtained from S by adjoining an identity if necessary. The natural partial order on various special subsemigroups of partial transformation semigroups have been studied by many researchers examples are (Kowol, & Mitsch, 1986), (Marques-Smith, & Sullivan, 2003), (Sun, Pei, & Cheng, 2008), (Sun, Deng, & Pei, 2011), (Sangkhanan, & Sanwong, 2012), (Sun, & Sun, 2013), (Sun, & Wang, 2013), (Sun, & Sun, 2016), (Han, & Sun, 2018) and (Sangkhanan, 2021).

Next, we introduce some definitions and notations that will be used in the sequel.

Let (X, \leq) be a partially ordered set. An element $a \in X$ is called *maximal (minimal)* if $a \leq x$ ($x \leq a$) and $x \in X$ implies $a = x$, and $b \in X$ is called *maximum (minimum)* if $x \leq b$ ($b \leq x$) for all $b \in X$. We let $\max X$ ($\min X$) denote the maximum (minimum) element of X .

A subset C of $[n]$ is said to be *convex* if C has the form $[i, i + t] = \{x \in [n] \mid i \leq x \leq i + t\}$ for some $i \in [n]$ and $0 \leq t \leq n - 1$.

Let A and B be any two subsets of $[n]$. We say that A is *less than* B and write $A < B$, if $a < b$ for all $a \in A, b \in B$.

For $\alpha, \beta \in PT_n$, let

$$\alpha\beta^{-1} = \{(x, y) \in [n] \times [n] \mid x\alpha = y\beta\}.$$

For $\alpha \in COP_n$, we expressed as

$$\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix}$$

where $dom \alpha = A_1 \cup A_2 \cup \dots \cup A_s$, $ran \alpha = \{a_1, a_2, \dots, a_s\}$, $a_1 < a_2 < \dots < a_s$, $A_1 < A_2 < \dots < A_s$,

$$a_i - a_{i-1} \leq \min A_i - \max A_{i-1} \text{ for } i = 2, 3, \dots, s \text{ and } a_i\alpha^{-1} = A_i \text{ for } i = 1, 2, \dots, s.$$

In this introductory section, we present a number of Theorems most of which will be indispensable for our research.

Proposition 1. (Kemprasite, & Changphas, 2000) Let $\alpha \in OP_n$ and $x, y \in ran \alpha$ be such that $x < y$.

Then $x\alpha^{-1} < y\alpha^{-1}$.

Theorem 2. (Marques-Smith, & Sullivan, 2003) Let $\alpha, \beta \in PT_n$. Then $\alpha \leq \beta$ on PT_n if and only if

- (i) $dom \alpha \subseteq dom \beta$
- (ii) $ran \alpha \subseteq ran \beta$
- (iii) $\alpha\beta^{-1} \subseteq \alpha\alpha^{-1}$ and
- (iv) $\beta\beta^{-1} \cap (dom \beta \times dom \alpha) \subseteq \alpha\alpha^{-1}$.

Theorem 3. (Namnak, & Sawatraksa, 2015) Let $\alpha, \beta \in COP_n$ be such that $\alpha = \begin{pmatrix} A_1 \\ a_1 \end{pmatrix}$. Then $\alpha \leq \beta$ if and only if

- (i) $A_1 \subseteq dom \beta$
- (ii) $a_1 \in ran \beta$
- (iii) $\alpha\beta^{-1} \subseteq \alpha\alpha^{-1}$ and
- (iv) $\beta\beta^{-1} \cap (dom \beta \times dom \alpha) \subseteq \alpha\alpha^{-1}$.

Theorem 4. (Namnak, & Sawatraksa, 2015) Let $\alpha, \beta \in COP_n$ be such that $\alpha = \begin{pmatrix} A_1 & A_2 \\ a_1 & a_2 \end{pmatrix}$.

Then $\alpha \leq \beta$ if and only if

- (i) $dom \alpha \subseteq dom \beta$
- (ii) $ran \alpha \subseteq ran \beta$
- (iii) for every $i \in \{1, 2\}$ and $y \in ran \beta$, if $y\beta^{-1} \cap A_i \neq \emptyset$, then $y\beta^{-1} \subseteq A_i$ and
- (iv) $(\max A_1)\beta = a_1$ and $(\min A_2)\beta = a_2$.

Theorem 5 . (Namnak, & Sawatraksa, 2015) Let $\alpha, \beta \in COP_n$ be such that $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix}$ where $s \geq 3$. Then $\alpha \leq \beta$ if and only if

- (i) $dom \alpha \subseteq dom \beta$
- (ii) $ran \alpha \subseteq ran \beta$
- (iii) $a_i\beta^{-1} = A_i$ for all $i \in [2, s - 1]$
- (iv) for every $i \in \{1, s\}$ and $y \in ran \beta$, if $y\beta^{-1} \cap A_i \neq \emptyset$, then $y\beta^{-1} \subseteq A_i$ and
- (v) $(\max A_1)\beta = a_1$ and $(\min A_s)\beta = a_s$.

The purpose of this article is to investigate the conditions under which elements in COP_n are maximal and minimal with respect to the natural partial order.

2. Main Results

Note that, if $n = 1$, we get $COP_1 = \{\emptyset, \binom{\{1\}}{1}\}$ and then $\binom{\{1\}}{1}$ is the maximum element of COP_1 . If $n = 2$, then $COP_2 = \{\emptyset, \binom{\{1\}}{1}, \binom{\{1\}}{2}, \binom{\{2\}}{1}, \binom{\{2\}}{2}, \binom{\{1, 2\}}{1}, \binom{\{1, 2\}}{2}, \binom{\{1\} \quad \{2\}}{1 \quad 2}\}$. It is easily verified that $\{\binom{\{1\}}{1}, \binom{\{1\}}{2}, \binom{\{2\}}{1}, \binom{\{2\}}{2}, \binom{\{1\} \quad \{2\}}{1 \quad 2}\}$ is the set of all maximal elements of COP_2 .

In order to prove our main results, the following lemmas will be needed later.

Lemma 6. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix} \in COP_n$. If α is maximal, then $ran \alpha$ is a convex subset of $[n]$.

Proof. If $s = 1$ is trivial. Assume that $s \geq 2$, suppose that $ran \alpha$ is not convex. Then there exists an element $y \in [a_1, a_s]$ where $y \notin ran \alpha$. Thus, $a_{i-1} < y < a_i$ for some $i \in [2, s]$. Hence, $a_i - a_{i-1} > 1$. By contraction of α , we get $\min A_i - \max A_{i-1} > 1$.

Let $k = y - a_{i-1}$ and $l = a_i - y$. Then $k + l = a_i - a_{i-1} \leq \min A_i - \max A_{i-1}$.

Let $z \in [\max A_{i-1} + k, \min A_i - l]$. Then $\max A_{i-1} < z < \min A_i$. Define $\beta \in OP_n$ by

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{i-1} & \{z\} & A_i & \dots & A_s \\ a_1 & a_2 & \dots & a_{i-1} & y & a_i & \dots & a_s \end{pmatrix}.$$

Obviously, $\alpha \neq \beta$. If $x \in A_{i-1}$, then

$$|x\beta - z\beta| = |a_{i-1} - y| = y - a_{i-1} = k = (\max A_{i-1} + k) - \max A_{i-1} \leq z - \max A_{i-1} \leq |x - z|.$$

If $x \in A_i$, then

$$|x\beta - z\beta| = |a_i - y| = a_i - y = l = \min A_i - (\min A_i - l) \leq \min A_i - z \leq |x - z|.$$

We deduce that $\beta \in COP_n$. It can be easily checked that $\alpha \leq \beta$ from Theorem 4 or 5. This proves that α is not maximal. This completes the proof. \square

Lemma 7. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix} \in COP_n$. If α is maximal and $n \in ran \alpha$, then $A_1 = \{1\}$.

Proof. Let α be a maximal element of COP_n and $n \in ran \alpha$. Then $a_s = n$. Suppose that $A_1 \neq \{1\}$. Then $A_1 \setminus \{1\} \neq \emptyset$. If $a_1 = 1$, choose $x \in A_1 \setminus \{1\}$. Hence, $x > 1$ and $x\alpha = 1$. By contraction of α , we have

$$n - 1 = |\min A_s \alpha - x\alpha| \leq \min A_s - x \leq n - x$$

which is impossible. Thus, $a_1 > 1$. Define $\beta \in OP_n$ by

$$\beta = \begin{pmatrix} \{1\} & A_1 \setminus \{1\} & A_2 & \dots & A_s \\ a_1 - 1 & a_1 & a_2 & \dots & n \end{pmatrix}.$$

For each $x \in A_1 \setminus \{1\}$,

$$|x\beta - 1\beta| = a_1 - (a_1 - 1) = 1 \leq x - 1 = |x - 1|,$$

so $\beta \in COP_n$. It can be easily checked that $\alpha \leq \beta$ from Theorem 4 or 5. By property of α , we have $\alpha = \beta$ which is a contradiction. Hence, $A_1 = \{1\}$. \square

Lemma 8. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix} \in COP_n$. If α is maximal and $n \notin ran \alpha$, then $A_s = \{n\}$.

Proof. Let α be a maximal element of COP_n and $n \notin ran \alpha$. Suppose that $A_s \neq \{n\}$. Then $A_s \setminus \{n\} \neq \emptyset$. Since $n \notin ran \alpha$, it follows that $a_s < n$. Define $\beta \in OP_n$ by

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_s \setminus \{n\} & \{n\} \\ a_1 & a_2 & \dots & a_s & a_s + 1 \end{pmatrix}.$$

For each $x \in A_s \setminus \{n\}$,

$$|x\beta - n\beta| = |a_s - (a_s + 1)| = 1 \leq |x - n|,$$

thus $\beta \in COP_n$. It can be easily checked that $\alpha \leq \beta$ from Theorem 4 or 5. By property of α , we have $\alpha = \beta$ which is a contradiction. Hence, $A_s = \{n\}$. \square

Lemma 9. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix} \in COP_n$. If α is maximal, then $1 \in ran \alpha$ or $A_1 = \{1\}$.

Proof. Suppose that $1 \notin ran \alpha$ and $A_1 \neq \{1\}$. Then $a_1 \neq 1$ and $A_1 \setminus \{1\} \neq \emptyset$. Define $\beta \in OP_n$ by

$$\beta = \begin{pmatrix} \{1\} & A_1 \setminus \{1\} & A_2 & \dots & A_s \\ a_1 - 1 & a_1 & a_2 & \dots & a_s \end{pmatrix}.$$

For each $x \in A_1 \setminus \{1\}$,

$$|1\beta - x\beta| = |a_1 - (a_1 + 1)| = 1 \leq x - 1,$$

so, $\beta \in COP_n$. It can be easily checked that $\alpha \leq \beta$ from Theorem 4 or 5. Thus α is not a maximal element of COP_n . \square

Lemma 10. Let $\alpha, \beta \in COP_n$ be such that $\alpha \leq \beta$. If $x \in dom \beta \setminus dom \alpha$, then $x\beta \notin ran \alpha$.

Proof. Let $x \in dom \beta \setminus dom \alpha$. Suppose that $x\beta \in ran \alpha$. Then there exists $z \in dom \alpha$ such that $z\alpha = x\beta$. Hence, $(z, x) \in \alpha\beta^{-1}$. Since $\alpha \leq \beta$, $\alpha\beta^{-1} \subseteq \alpha\alpha^{-1}$ by Theorem 2(iii). This implies that $(z, x) \in \alpha\alpha^{-1}$, so $z\alpha = x\alpha$ which contradicts to $x \notin dom \alpha$. Therefore, $x\beta \notin ran \alpha$. \square

Lemma 11. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix}, \beta \in COP_n$ be such that $\alpha \leq \beta$. If $dom \alpha = dom \beta, A_1 = \{1\}$ and $a_s = n$, then $\alpha = \beta$.

Proof. Let $dom \alpha = dom \beta, A_1 = \{1\}$ and $a_s = n$. We show that $\alpha = \beta$, let $x \in dom \alpha$. We consider three possible cases.

Case 1: $s = 1$. Then $dom \alpha = \{1\}$ and hence $x = 1$ and $x\alpha = a_1$. Since $\alpha \leq \beta$, $a_1 \in ran \beta$ by Theorem 3(ii). By assumption, we have $dom \beta = \{1\}$, it then follows that $x\beta = 1\beta = a_1 = x\alpha$.

Case 2: $s = 2$. Then $dom \alpha = A_1 \cup A_2 = \{1\} \cup A_2$, and $a_2 = n$.

If $x \in A_1$, then $x\alpha = a_1$. By Theorem 4(iv), $x\alpha = a_1 = (\max A_1)\beta = 1\beta = x\beta$.

If $x \in A_2$, then $x\alpha = n$ and $\min A_2 \leq x$. Since $\beta \in OP_n$, $(\min A_2)\beta \leq x\beta$. By Theorem 4(iv),

$(\min A_2)\beta = a_2 = n$. This implies that $x\beta = x\alpha$.

Case 3: $s \geq 3$. Then $dom \alpha = A_1 \cup A_2 \cup \dots \cup A_s$ and $a_s = n$.

If $x \in A_1 = \{1\}$, then $x\alpha = a_1 = (\max A_1)\beta = 1\beta = x\beta$ by Theorem 5(v).

If $x \in A_i$ for some $i \in [2, s-1]$, then $x\alpha = a_i$. By Theorem 5(iii), we have that $x \in a_i\beta^{-1}$ which implies that $x\beta = a_i$. Thus, $x\beta = x\alpha$.

If $x \in A_s$, then $x\alpha = n$ and $\min A_s \leq x$. Since $\beta \in OP_n$ and by Theorem 5(v), we have $n = (\min A_s)\beta \leq x\beta$. This implies that $x\beta = n = x\alpha$.

From above three cases we obtain $\alpha = \beta$, as required. \square

Lemma 12. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix}$, $\beta \in COP_n$ be such that $\alpha \leq \beta$. If $\text{dom } \alpha = \text{dom } \beta$, $1 \in \text{ran } \alpha$ and $A_s = \{n\}$, then $\alpha = \beta$.

Proof. Let $\text{dom } \alpha = \text{dom } \beta$, $1 \in \text{ran } \alpha$ and $A_s = \{n\}$. Then $a_1 = 1$. To show that $\alpha = \beta$, we consider three possible cases.

Case 1: $s = 1$. Clearly, $n\alpha = 1 = n\beta$.

Case 2: $s = 2$. Then $\text{dom } \alpha = A_1 \cup \{n\}$.

If $x = n$, then $x\alpha = a_2$. By Theorem 2(iv), $n\beta = (\min A_2)\beta = a_2$. Hence, $x\alpha = x\beta$.

If $x \in A_1$, then $x\alpha = 1$. By Theorem 2(iv), $(\max A_1)\beta = 1$. Since $x \leq \max A_1$ and $\beta \in OP_n$, $x\beta \leq (\max A_1)\beta$. This implies that $x\beta = 1$, hence, $x\alpha = x\beta$.

Case 3: $s \geq 3$. Then $\text{dom } \alpha = A_1 \cup A_2 \cup \dots \cup \{n\}$.

If $x \in A_1$, then $x\alpha = 1$. By Theorem 2(iv), $a_1 = (\max A_1)\beta$. Since $\beta \in OP_n$ and $x \leq \max A_1$, we obtain $x\beta \leq (\max A_1)\beta$. It follows that $x\beta = 1$. Thus, $x\alpha = x\beta$.

If $x \in A_i$ for some $i \in [2, s-1]$, then $x\alpha = a_i$. By Theorem 2(iv) we have that $x \in a_i\beta^{-1}$ which implies that $x\beta = a_i$. Thus, $x\beta = x\alpha$.

If $x \in A_s = \{n\}$, then $x = n$ and $x\alpha = a_s$. By Theorem 2(iv), $a_s = (\min A_s)\beta = n\beta = x\beta$. Hence, $x\alpha = x\beta$.

From above three cases we obtain $\alpha = \beta$, as required. \square

Lemma 13. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix}$, $\beta \in COP_n$ be such that $\alpha \leq \beta$. If $\text{dom } \alpha = \text{dom } \beta$, $A_1 = \{1\}$ and $A_s = \{n\}$, then $\alpha = \beta$.

Proof. Let $\text{dom } \alpha = \text{dom } \beta$, $A_1 = \{1\}$ and $A_s = \{n\}$. To show that $\alpha = \beta$, we consider three possible cases.

Case 1: $s = 1$. Obviously, $1\alpha = 1\beta$.

Case 2: $s = 2$. Then $A_2 = \{n\}$, hence $\text{dom } \alpha = \{1, n\}$. By Theorem 4(iv),

$$1\alpha = a_1 = (\max A_1)\beta = 1\beta \text{ and } n\alpha = a_2 = (\min A_2)\beta = n\beta.$$

Case 3: $s \geq 3$. Let $x \in \text{dom } \alpha$.

If $x \in A_1 = \{1\}$, then $x = 1$ and hence $x\alpha = a_1 = (\max A_1)\beta = 1\beta = x\beta$.

If $x \in A_i$ for some $i \in [2, s-1]$, then $x\alpha = a_i$. By Theorem 2(iv), we have that $x \in a_i\beta^{-1}$ which implies that $x\beta = a_i$. Thus, $x\beta = x\alpha$.

If $x \in A_s = \{n\}$, then $x = n$. By Theorem 2(iv), we have $x\beta = n\beta = (\min A_s)\beta = a_s = x\alpha$.

From above three cases we obtain $\alpha = \beta$, as required. \square

Next, we give necessary and sufficient conditions for elements of COP_n to be maximal when $n \geq 3$.

Theorem 14. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_s \\ a_1 & a_2 & \dots & a_s \end{pmatrix} \in \text{COP}_n$. Then α is maximal if and only if $\text{ran } \alpha$ is a convex subset of $[n]$ and either one of the following conditions holds:

- (i) if $n \in \text{ran } \alpha$, then $A_1 = \{1\}$ or
- (ii) if $n \notin \text{ran } \alpha$, then $A_s = \{n\}$ and $(1 \in \text{ran } \alpha \text{ or } A_1 = \{1\})$.

Proof. *Necessity.* It follows from Lemma 6, 7, 8 and 9.

Sufficiency. We must prove that α is maximal of COP_n . Let $\beta \in \text{COP}_n$ be such that $\alpha \leq \beta$. By Theorem 2, $\text{dom } \alpha \subseteq \text{dom } \beta$, $\text{ran } \alpha \subseteq \text{ran } \beta$ and $\alpha\beta^{-1} \subseteq \alpha\alpha^{-1}$. To prove that $\alpha = \beta$, let's divide it into two cases.

Case 1: $n \in \text{ran } \alpha$. By (i), we have $A_1 = \{1\}$. Suppose that $\text{dom } \beta \setminus \text{dom } \alpha \neq \emptyset$. Then there is an element $x \in \text{dom } \beta \setminus \text{dom } \alpha$. Then $x > 1$ and $x\beta = y$ for some $y \in \text{ran } \beta$. By Lemma 10, $y \notin \text{ran } \alpha$. Since $\text{ran } \alpha$ is convex, $A_1 = \{1\}$ and $n \in \text{ran } \alpha$, we obtain that $1\alpha = a_1$ and $\text{ran } \alpha = [a_1, n]$. This implies $y < a_1$. Since $a_1 \in \text{ran } \alpha \subseteq \text{ran } \beta$, there exists $a' \in [n]$ such that $a'\beta = a_1$. Hence, $(1, a') \in \alpha\beta^{-1} \subseteq \alpha\alpha^{-1}$ and so $a'\alpha = 1\alpha = a_1$. Since $A_1 = \{1\}$, it follows that $a' = 1$ and hence $1\beta = a_1$. Since $\beta \in \text{OP}_n$ and $y < a_1$, $y\beta^{-1} < a_1\beta^{-1}$ by Proposition 1 and hence, $x < 1$ which is a contradiction. This proves that $\text{dom } \beta \setminus \text{dom } \alpha = \emptyset$. Hence, $\text{dom } \alpha = \text{dom } \beta$ comes directly from $\text{dom } \alpha \subseteq \text{dom } \beta$. By Lemma 11, $\alpha = \beta$.

Case 2: $n \notin \text{ran } \alpha$. By (ii), we have $A_s = \{n\}$ and $(1 \in \text{ran } \alpha \text{ or } A_1 = \{1\})$. Consider two subcases.

Subcase 2.1: $1 \in \text{ran } \alpha$. Suppose that $\text{dom } \beta \setminus \text{dom } \alpha \neq \emptyset$. Then there exists $x \in \text{dom } \beta \setminus \text{dom } \alpha$. Then $x\beta = y$ for some $y \in \text{ran } \beta$. By Lemma 10, $y \notin \text{ran } \alpha$.

Since $\text{ran } \alpha$ is convex, $1 \in \text{ran } \alpha$ and $A_s = \{n\}$, we obtain $\text{ran } \alpha = [1, a_s]$ and $n\alpha = a_s$. This implies $a_s < y$. Since $a_s \in \text{ran } \alpha \subseteq \text{ran } \beta$, there exists $a' \in [n]$ such that $a'\beta = a_s$. Hence, $(n, a') \in \alpha\beta^{-1} \subseteq \alpha\alpha^{-1}$ and thus, $a'\alpha = n\alpha$. It follows that $a' = n$ and $n\beta = a_s$. Since $\beta \in \text{OP}_n$ and $a_s < y$ by Proposition 1, we obtain $a_s\beta^{-1} < y\beta^{-1}$, and hence, $n < x$. This is a contradiction which means that $\text{dom } \alpha = \text{dom } \beta$. By Lemma 12, $\alpha = \beta$.

Subcase 2.2: $A_1 = \{1\}$. Suppose that $\text{dom } \beta \setminus \text{dom } \alpha \neq \emptyset$. Then there exists $x \in \text{dom } \beta \setminus \text{dom } \alpha$. Then $x\beta = y$ for some $y \in \text{ran } \beta$. By Lemma 10, $y \notin \text{ran } \alpha$. Since $\text{ran } \alpha$ is convex, $\text{ran } \alpha = [a_1, a_s]$, $1\alpha = a_1$ and $n\alpha = a_s$. These imply that $y < a_1$ or $a_s < y$. Since $\beta \in \text{OP}_n$, $y\beta^{-1} < a_1\beta^{-1}$ or $a_s\beta^{-1} < y\beta^{-1}$ by Proposition 1. Hence, $x < 1$ or $n < y$. This is a contradiction. Therefore, $\text{dom } \alpha = \text{dom } \beta$. By Lemma 13, $\alpha = \beta$.

Considering the above two cases, we can conclude that α is a maximal element of COP_n . □

Let us, illustrate this theorem. For $n = 8$, let

$$\alpha_1 = \begin{pmatrix} \{1\} & \{3, 5\} & \{6, 7\} \\ 6 & 7 & 8 \end{pmatrix}, \alpha_2 = \begin{pmatrix} \{2\} & \{3, 5, 7\} & \{8\} \\ 1 & 2 & 3 \end{pmatrix}, \alpha_3 = \begin{pmatrix} \{1\} & \{3, 5, 7\} & \{8\} \\ 3 & 4 & 5 \end{pmatrix},$$

$$\text{and } \alpha_4 = \begin{pmatrix} \{1\} & \{2, 3, 4\} & \{5, 6\} & \{7, 8\} \\ 5 & 6 & 7 & 8 \end{pmatrix}.$$

It is easy to check that $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \text{COP}_n$. By Theorem 14, all such transformations are maximal.

It is clear that \emptyset is the minimum element of COP_n . We say $\alpha \in \text{COP}_n \setminus \{\emptyset\}$ is a non-zero minimal element of COP_n if α is minimal among the non-zero elements of COP_n . Finally, we provide necessary and sufficient condition for non-zero elements in COP_n to be minimal.

Theorem 15. Let α be a non-zero element in COP_n . Then α is a non-zero minimal element of COP_n if and only if α is a constant mapping.

Proof. *Necessity.* We will prove the contrapositive. Suppose that α be nonconstant. Then $|\text{ran } \alpha| > 1$. We choose and fix an element $u \in \text{ran } \alpha$. Define $\beta \in \text{COP}_n$ by

$$x\beta = u \text{ for all } x \in u\alpha^{-1}.$$

It is clearly that $\emptyset \neq \beta \neq \alpha$. It suffices to verify that $\beta\alpha^{-1} \subseteq \beta\beta^{-1}$ and $\alpha\alpha^{-1} \cap (\text{dom } \alpha \times \text{dom } \beta) \subseteq \beta\beta^{-1}$. Let $(x, y) \in \beta\alpha^{-1}$. Then $x\beta = y\alpha$. Since $x\beta = u$, it follows that $y \in u\alpha^{-1}$. This implies $x\beta = y\beta$, and thus, $(x, y) \in \beta\beta^{-1}$. Hence, $\beta\alpha^{-1} \subseteq \beta\beta^{-1}$. Next, let $(x, y) \in \alpha\alpha^{-1} \cap (\text{dom } \alpha \times \text{dom } \beta)$. Then $x\alpha = y\alpha$ and $y \in \text{dom } \beta = u\alpha^{-1}$. Hence, $y\alpha = u$, so $x \in u\alpha^{-1}$. By the definition of β , $x\beta = u$. This shows that $(x, y) \in \beta\beta^{-1}$. By Theorem 3, $\beta \leq \alpha$. We proved that α is not a non-zero minimal element of COP_n .

Sufficiency. Assume that α is constant. Then there exists $y \in [n]$ such that $x\alpha = y$ for all $x \in \text{dom } \alpha$. Let $\gamma \in COP_n \setminus \{\emptyset\}$ be such that $\gamma \leq \alpha$. By Theorem 3, $\text{dom } \gamma \subseteq \text{dom } \alpha$, $\text{ran } \gamma \subseteq \text{ran } \alpha$ and $\gamma\alpha^{-1} \subseteq \gamma\gamma^{-1}$. It follows directly that $\text{ran } \gamma = \{y\}$. To show that $\text{dom } \alpha \subseteq \text{dom } \gamma$, let $a \in \text{dom } \alpha$. Then $a\alpha = y$. We choose an element $b \in \text{dom } \gamma$. Then $b\gamma = y$ and hence, $a\alpha = b\gamma$. This shows that $(b, a) \in \gamma\alpha^{-1} \subseteq \gamma\gamma^{-1}$, which means that $a \in \text{dom } \gamma$. Therefore, $\text{dom } \alpha \subseteq \text{dom } \gamma$, as required. Consequently, $\alpha = \gamma$. This completes the proof. \square

3. Acknowledgments.

The authors wish to express their appreciation to the referees for some value comments and suggestions that help improving the quality of this paper.

4. References

Han, X., & Sun, L. (2018). A natural partial order on certain semigroups of transformations restricted by an Equivalence. *Bulletin of the Iranian Mathematical Society*, 44, 1571-1579. <https://doi.org/10.1007/s41980-018-0108-8>

Kemprasite, Y., & Changphas, T. (2000). Regular order-preserving transformation semigroups. *Bulletin of the Australian Mathematical Society*, 62(3), 511-524. <https://doi.org/10.1017/S000497270001902X>

Kowol, G., & Mitsch, H. (1986). Naturally ordered transformation semigroups. *Monatsheft für Mathematik*, 102, 115-138. <https://link.springer.com/article/10.1007/BF01490204>

Marques-Smith, M.P., & Sullivan, R.P. (2003). Partial orders on transformation semigroups. *Monatsheft für Mathematik*, 140, 103-118. <https://doi.org/10.1007/s00605-002-0546-4>

Mitsch, H. (1986). A natural partial order for semigroups. *Proceedings of the American Mathematical Society*, 97(3), 384-388. <https://doi.org/10.2307/2046222>

Namnak, C., & Sawatraksa, N. (2015). Natural partial order for semigroups of transformations that preserve order and a contraction. *Proceedings of Annual Pure and Applied Mathematics Conference 2015 (APAM 2015)*, 125-130.

Sangkhanan, K. (2021). A partial order on transformation semigroups with restricted range that preserve double direction equivalence. *Open Mathematics*, 19(1), 1366-1377. <https://doi.org/10.1515/math-2021-0109>

Sangkhanan, K., & Sanwong, J. (2012). Partial orders on semigroups of partial transformations with restricted range. *Bulletin of the Australian Mathematical Society*, 86, 100-118. <https://doi.org/10.1017/S0004972712000020>

Sun, L., Deng, W., & Pei, H. (2011). Naturally ordered transformation semigroups preserving an equivalence relation and a cross-section. *Algebra Colloquium*, 18(3), 523-532. <https://doi.org/10.1142/S100538671100040X>

Sun, L., Pei, H., & Cheng, Z. (2008). Naturally ordered transformation semigroups preserving an equivalence. *Bulletin of the Australian Mathematical Society*, 78(1), 117-128. <https://doi.org/10.1017/S0004972708000543>

Sun, L., & Sun, J. (2013). A partial order on transformation semigroups that preserve double direction equivalence relation. *Journal of Algebra and Its Applications*, 12(08), 1350041. <https://doi.org/10.1142/S0219498813500412>

Sun, L., & Sun, J. (2016). A natural partial order on certain semigroups of transformations with restricted range. *Semigroup Forum*, 92(1), 135-141. <https://doi.org/10.1007/s00233-014-9686-9>

Sun, L., & Wang, L. (2013). Natural partial order in semigroups of transformations with invariant set. *Bulletin of the Australian Mathematical Society*, 87(1), 94-107. <https://doi.org/10.1017/S0004972712000287>

Zhao, P., & Yang, M. (2012). Regularity and Green's relation on semigroups of transformation preserving order and compression. *Bulletin of the Korean Mathematical Society*, 49(5), 1015-1025. <https://doi.org/10.4134/BKMS.2012.49.5.1015>