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บทคัดย่อ 
ส าห รั บทุ ก จ า น วน เ ต็ มบวก  m  ก า หนด ให้  m  แทน เ ซตของ ช้ั นส่ วนต กค้ า งมอดุ โ ล  m  ซึ่ ง 

 0, 1, 2, ..., 1m m   เมื่อ  : (mod )x y x y m    ก าหนดนิยามอันดับ  บนเซต m  ดังนี้ 

0 1 2 3 ... 1m   และ a b  ก็ต่อเมื่อ a b  หรือ a b  ส าหรับเซตย่อย mA   และ 

mn   ก าหนดให ้
    3 , , : (mod ),R A n a b A A a b n m a b      

ในงานวิจัยฉบับนี้ คณะผู้วิจัยศึกษาปัญหาของ Sárközy ใน m  โดยที่เซตย่อย A  และ B  ของ m  และ 

   \ 3A B A B m     ที่ท าให ้ 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   เมื่อ m  เป็นจ านวนคี่ 

ค าส าคัญ:  ผลแบ่งกั้น  ฟังก์ชันตัวแทน  เซตของช้ันส่วนตกค้างมอดุโล m  
 

Abstract  
For every positive integer m , let m  denote the set of residue classes modulo m  such that 

 0, 1, 2, ..., 1m m   when  : (mod )x y x y m   . Define order  on m  by

0 1 2 3 ... 1m   and define a b  if and only if a b  or a b . For a subset mA   
and mn  , let 
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    3 , , : (mod ),R A n a b A A a b n m a b     . 

 In this paper, we study Sárközy’s problem in m  with two subsets A  and B  of m  and  

   \ 3A B A B m     such that 
3 3( , ) ( , )R A n R B n  for all mn  , when m  is an odd 

integer. 

 
Keywords:  partition, representation function, set of residue classes modulo m  

 
1. บทน า 

ให้ X  เป็นอาบีเลียนกึ่งกรุปการบวก ส าหรับทุก A X  และ n X  ให้  1 ,R A n  แทนจ านวนผล

เฉลยของสมการ a b n   โดยที่คู่อันดับ ( , ) ,a b A A   2 ,R A n  แทนจ านวนผลเฉลยของสมการ 

a b n   โดยที่คู่ไม่อันดับ ( , )a b A A   ซึ่ง a b  และ  3 ,R A n  แทนจ านวนผลเฉลยของสมการ 

a b n   โดยที่คู่ไม่อันดับ ( , )a b A A   ในปี ค.ศ. 1978 Nathanson (Nathanson. 1978: 16–20) เรียก

สัญลักษณ์ดังกล่าวว่า “ฟังก์ชันตัวแทน” ต่อจากนั้นมีนักคณิตศาสตร์จ านวนมากที่ให้ความสนใจในการศึกษา

เกี่ยวกับฟังก์ชันตัวแทน เช่น Erdős Sárközy Dombi Yang และ Chen เป็นต้น 

ให้  แทนเซตของจ านวนเต็มที่ไม่เป็นลบ และส าหรับ  1,2,3i  Sárközy (Erdős, Sárközy, Sós 

1986: 183–197) ตั้ ง ค า ถ า ม ว่ า  “ มี เ ซ ต  ,A B   โ ด ย ที่     \A B A B     ที่ ท า ใ ห้  

   , ,i iR A n R B n  ส าหรับทุกจ านวนเต็ม n  หรือไม่” ในปี ค.ศ. 2002 Dombi (Dombi. 2002: 137–146) 

ตอบค าถามของ Sárközy ว่า กรณี 1i   ไม่มีเซตย่อย A  และ B  ของ  ที่สอดคล้องเง่ือนไขของ Sárközy 

และกรณี 2i   มีเซตย่อย A  และ B  ของ  ที่สอดคล้องเง่ือนไขของ Sárközy และในปีต่อมา Chen และ 

Wang (Chen, & Wang. 2003: 299–303) พิสูจน์กรณี 3i   มีสองเซตย่อย A  และ B  ของ  ที่สอดคล้อง

กับเง่ือนไขของ Sárközy จากแนวคิดดังกล่าวจึงท าให้มีนักคณิตศาสตร์หลายท่านให้ความสนใจปัญหาของ 

Sárközy บนเซตของจ านวนเต็มมอดุโล m   

ส าหรับจ านวนเต็มบวก m  ก าหนดให้ m  แทนเซตของช้ันส่วนตกค้างมอดุโล m  นั่นคือ 

 0, 1, 2, ..., 1m m   โดยที่  : (mod )x y x y m    และนิยามอันดับ  บน m  ดังต่อไปนี้ 

0 1 2 3 ... 1m   นอกจากนี้ นิยาม a b  ก็ต่อเมื่อ a b  หรือ a b  ส าหรับ mA   

และ mn   ก าหนดให ้

    1 , , :R A n a b A A a b n      

                  2 , , : ,R A n a b A A a b n a b     และ 

       3 , , : ,R A n a b A A a b n a b      
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เมื่อ a b a b    ส าหรับทุกจ านวนเต็ม a  และ b  

ในปี ค.ศ. 2012 Yang และ Chen (Yang, & Chen. 2012: 257–262) ได้ศึกษาปัญหาของ Sárközy 

ใน m  ซึ่งพวกเขาก าหนดโครงสร้างของเซต , mA B   โดยที่  ( ) \ ( )A B A B m    ส าหรับ 

 1,2,3i  ที่ท าให้    , ,i iR A n R B n  ส าหรับทุก mn   

ในป ีค.ศ. 2017 Yang และ Tang (Yang, & Tang. 2017: 73–85) ศึกษาปัญหาผลแบ่งกั้นในกรณี m   
เป็นจ านวนคี่  โดยที่  3m   ว่า ไม่มีสองเซต , mA B   โดยที่  ( ) \ ( ) 1A B A B m     ที่ท าให้  

   1 1, ,R A n R B n  ส าหรับทุก mn   และส าหรับ 2i   และ 3i   มีสองเซตย่อย , mA B   โดยที่ 
( ) \ ( ) 1A B A B m     ที่ท าให้    , ,i iR A n R B n  ส าหรับทุก mn   

 ในปี ค.ศ. 2021 Chen และ Yan (Chen, & Yan. 2021: 204–209) ศึกษาปัญหาผลแบ่งกั้นของ m  
โดยที่ฟังก์ชันตัวแทนมีค่าเท่ากัน ซึ่งพวกเขาสามารถหาเง่ือนไขของสองเซตย่อย A  และ B  ของ m  โดยที่ 
( ) \ ( ) 2A B A B m     ที่ท า ให้     1 1, ,R A n R B n  ส าหรับทุก  mn   และในปี  ค.ศ.  2020  

พวกเขา (Chen, & Yan. 2020: 111981) ยังพิจารณากรณี 2m   และสามารถก าหนดเง่ือนไขของเซต 
, mA B   โดยที่ mA B   และ 2A B   ที่ท าให้    2 2, ,R A n R B n  ส าหรับทุก mn   

ต่อมาในปี ค.ศ. 2022 Sun และ Cheng (Sun, & Cheng. 2022: 352–363) พิจารณา 2m M  เมื่อ M   
เป็นจ านวนคี่ โดยที่ 3M   และพิสูจน์ว่ามีเซตย่อย , mA B   โดยที่ mA B   และ 2A B    
ที่ท าให้    3 3, ,R A n R B n  ส าหรับทุก mn   และเมื่อไม่นานมานี้ ในปี ค.ศ. 2023 Chen Wang และ 
Yu (Chen, & Wang, & Yu. 2023: 102533) สามารถก าหนดเง่ือนไขที่จ าเป็นและเพียงพอส าหรับโครงสร้าง
ของ เซต , mA B   โดยที่  mA B   และ 2A B   ที่ท าให้     2 2, ,R A n R B n  ส าหรับทุก 

mn   ในปี ค.ศ. 2023 สุภาดา โตกระแสร์และนเรศ สวัสดิ์รักษา (สุภาดา, & นเรศ. 2023: 352–363) 
สามารถแสดงว่าไม่มีเซตย่อย , mA B   ที่ท าให้    1 1, ,R A n R B n  ส าหรับทุก mn   และสามารถ
หาเงื่อนไขของเซตย่อย , mA B   ที่ท าให้    2 2, ,R A n R B n  ส าหรับทุก mn   

จากแนวคิดดังกล่าว คณะผู้วิจัยสนใจศึกษาปัญหาผลแบ่งกั้นของ m  ในกรณีที่สองเซตย่อย A  และ 
B  ของ m  โดยที่  ( ) \ ( ) 3A B A B m     ส าหรับทุก  1,2,3i  ที่ท าให้    , ,i iR A n R B n  
ส าหรับทุก mn   และน าเสนอเง่ือนไขของเซตย่อย , mA B   ที่ท าให้    3 3, ,R A n R B n  ส าหรับ
ทุก mn   
  
2. ผลการศึกษา 

ในหัวข้อนี้ คณะผู้วิจัยศึกษาปัญหาบนผลแบ่งกั ้นของ m  โดยที่ฟังก์ชันตัวแทนเท่ากัน ในกรณี 
( ) \ ( ) 3A B A B m     สำหรับ , mA B   ดังต่อไปนี้ 

บทนิยาม 2.1  ให้ mA   ฟังก์ชันตัวแทน คือ ฟังก์ชันที่มีโดเมนเป็น m  และเรนจ์เป็นเซตย่อยของ  
นิยามโดย 

    3 , , : ,R A n a b A A a b n a b      ส าหรับทุก mn   
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เมื่อ  แทนเซตของจ านวนเตม็ที่ไมเ่ป็นลบ 
 ต่อไปจะเป็นตัวอย่างการหาค่าของฟังก์ชันตัวแทน ในกรณี 11m   ดังนี ้
ตัวอย่าง 2.1  ให้ 11m   จะได้ว่า   11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10  ให้   

 0, 2, 3, 5, 9A   

เนื่องจาก     3 , , : ,R A n a b A A a b n a b      จะได้ว่า  

         3 , 0 , : 0, 0, 0 , 2, 9 2R A a b A A a b a b        

       3 , 1 , : 1, 3, 9 1R A a b A A a b a b        

       3 , 2 , : 2, 0, 2 1R A a b A A a b a b        

         3 , 3 , : 3, 0, 3 , 5, 9 2R A a b A A a b a b        

       3 , 4 , : 4 , 2, 2 1R A a b A A a b a b        

         3 , 5 , : 5, 0, 5 , 2, 3 2R A a b A A a b a b        

       3 , 6 , : 6, 3, 3 1R A a b A A a b a b        

         3 , 7 , : 7, 2, 5 , 9, 9 2R A a b A A a b a b        

       3 , 8 , : 8, 3, 5 1R A a b A A a b a b        

       3 , 9 , : 9, 0, 9 1R A a b A A a b a b        

       3 ,10 , : 10, 5, 5 1R A a b A A a b a b        

 ในงานวิจัยนี ้เราสนใจศึกษาในกรณี , mA B   โดยที่ ( ) \ ( ) 3A B A B m     ที่ท าให ้

3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   

พิจารณา ( ) \ ( ) 3A B A B m     จะได้ว่าสามารถแบ่งเปน็ 4 กรณี ดังนี้ 

1. A B m   และ 3A B   

2. 1A B m    และ 2A B   

3. 2A B m    และ 1A B   

4. 3A B m    และ 0A B   

เริ่มต้นจะพิจารณา m  และจ านวนสมาชิกของเซต A  และ B  ของทั้ง 4 กรณีข้างต้น ดังต่อไปนี้ 
บทต้ัง 2.1  (Yang, & Tang. 2017: 73–85) ให ้ mA   จะได้ว่า 

 
1

3
0

,
2

m

n

A
R A n A





 
  
 

  

ทฤษฎีบท 2.1  ให้ , mA B   โดยที่ ( ) \ ( ) 3A B A B m     ถ้า 3 3( , ) ( , )R A n R B n  ส าหรับทุก 

mn   แล้ว A B  และ m  เป็นจ านวนคี่ 
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บทพิสูจน์  สมมติว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   โดยบทตั้ง 2.1 จะได้ว่า  
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ให้ A k  และ B l  จะได้วา่ , 1k l   และ   

( 1) ( 1)

2 2

k k l l
k l

 
      

นั่นคือ 
2 22 2

2 2

k k k l l l   
  เพราะฉะนั้น 2 2k k l l    ท าให้ได้ว่า 2 2( )( )k l k l k l l k     

ถ้า k l  แล้ว 0k l   และ 1k l    ซึ่งเกิดข้อขัดแย้ง ดังนั้น k l  นั่นคือ A B  เนื่องจาก 
( ) \ ( ) 2A B A B A B A B       และ ( ) \ ( ) 3A B A B m     จะได้ว่า 

 3 ( ) \ ( ) 2 2 2 2m A B A B A B A B A A B A A B               

ดังนั้น 3m   เป็นจ านวนคู่ เพราะฉะนั้น m  เป็นจ านวนคี่                 

หลังจากนี้เป็นต้นไป สมมติว่า m  เป็นจ านวนคี่ โดยที่ 5m    

ทฤษฎีบท 2.2  ให้ , mA B   โดยที่ mA B   และ 3A B   ถ้า 3 3( , ) ( , )R A n R B n  ส าหรับทุก 

mn   แล้ว 3

2

m
A B


   

บทพิสูจน์  สมมติว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   โดยทฤษฎีบท 2.1 จะได้ว่า A B  ดังนั้น 

2 3A A A A B A B A B m           

นั่นคือ 3

2

m
A B


                                                                            

ส าหรับกรณี 2 – 4 สามารถพิสูจน์ในท านองเดียวกับกรณีที่ 1 ดังผลลัพธ์ต่อไปนี ้

ทฤษฎีบท 2.3  ให้ , mA B   โดยที่ 1A B m    และ 2A B   ถ้า 3 3( , ) ( , )R A n R B n  ส าหรับ

ทุก mn   แล้ว 1

2

m
A B


   

ทฤษฎีบท 2.4  ให้ , mA B   โดยที่ 2A B m    และ 1A B   ถ้า 3 3( , ) ( , )R A n R B n  ส าหรับ

ทุก mn   แล้ว 1

2

m
A B


   

ทฤษฎีบท 2.5  ให้ , mA B   โดยที่ 3A B m    และ 0A B   ถ้า 3 3( , ) ( , )R A n R B n  ส าหรับ

ทุก mn   แล้ว 3

2

m
A B


   
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ต่อไปพิจารณากรณี mA B   และ 3A B   ที่ท าให้ฟังก์ชันตัวแทนมีค่าเท่ากัน และแนะน า
สัญลักษณ์ที่จะใช้ในการพิสูจน์ทฤษฎีบทต่อไปดังนี้ 

สำหรับทุก mA   ฟังก์ชันลักษณะเฉพาะ (Characteristic function) : {0,1}A   นิยาม
โดย 

0; ,
( )

1;
A

t A
t

t A






 สำหรับทุก t  

ทฤษฎีบท 2.6  ให้ , mA B   โดยที่ 3

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่  mA B   และ

 1 2 3, ,A B r r r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

    1 2 3\ : ! , , , 2 : 2 2 ;{ , , } {1,2,3}m m i j kA B t r r r r t r A t t r r t r B i j k               

บทพิสูจน์  สมมติว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ให้  1 2 3\ , ,mt r r r  พิจารณาสมการ 

2x y t   จะได้ว่า a  และ 2t a  เป็นชุดค าตอบของ 2x y t    

กรณี 1  1 2 32 , ,it r r r r   ส าหรับทุก  1,2,3i  ดังนั้น มี  1 2 7 /2, ,..., mma a a    ที่ท าให้ 

           
 7 /2

1 2 3 1 2 3
1

, 2 2 2 2 , ,
m

i i
i

m a t a t r t r t r r r r t




           

ให้ 1, 2j   โดยที ่

      1 7 / 2 : ,2
j

i iA i m A a t a j        

      1 7 / 2 : ,2
j

i iB i m B a t a j        

จะได้ว่า    1 1
A B  และ 

           1 2
1 2 32 2 2 2 3A A A AA A A t r t r t r t                    (1)

           1 2
1 2 32 2 2 2 3B B B BB B B t r t r t r t                   (2)  

           2
3 1 2 3, 2 2 2 2A A A AR A t A t r t r t r t                  (3)  

           2
3 1 2 3, 2 2 2 2B B B BR B t B t r t r t r t                  (4)  

เนื่องจาก A B  จะได้ว่าสมการ (1)  เท่ากับสมการ (2)  และท าให้ได้ว่า 

         

         

2
1 2 3

2
1 2 3

2 2 2 2

2 2 2 2

A A A A

B B B B

A t r t r t r t

B t r t r t r t

   

   

       

      

   (5)  

เนื่องจาก    3 3, 2 , 2R A t R B t  จะได้ว่าสมการ (3)  เท่ากับสมการ (4)  ดังนั้น 
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         

         

2
1 2 3

2
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   

       

      

                         (6)  

น าสมการ (5)  ลบสมการ (6)  จะได้ว่า    2 2
A B  ดังนั้น 

       

       

1 2 3

1 2 3

2 2 2

2 2 2
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A A A A

t r t r t r t

t r t r t r t

   

   

      

     
                             (7)  

กรณี 2 มี  1 2 32 , ,it r r r r   ส าหรับบาง  1,2,3i  โดยไม่เสียนัยทั่วไป สมมติว่า 1 22t r r   
ดังนั้นมี  1 2 5 /2, ,..., mma a a    ที่ท าให้ 

       
 5 /2

3 1 2 3
1

, 2 2 , ,
m

i i
i

m a t a t r r r r t




       

ให้ 1, 2j   โดยที ่

      1 5 / 2 : ,2
j

i iA i m A a t a j        

      1 5 / 2 : ,2
j

i iB i m B a t a j        

จะได้ว่า    1 1
A B  และ 

       1 2
32 2 3A AA A A t r t                                         (9)  

       1 2
32 2 3B BB B B t r t                                       (10)  

       2
3 3, 2 2 1A AR A t A t r t                             (11)  

       2
3 3, 2 2 1B BR B t B t r t                                       (12)  

เนื่องจาก A B  จะได้ว่าสมการ (9)  เท่ากับสมการ (10)  และท าให้ได้ว่า 

           2 2
3 32 2 2 2A A B BA t r t B t r t                                (13)  

เนื่องจาก    3 3, 2 , 2R A t R B t  จะได้ว่าสมการ (11)  เท่ากับสมการ (12)  ดังนั้น 

           2 2
3 32 2A A B BA t r t B t r t                                  (14)  

น าสมการ (13)  ลบสมการ (14)  จะได้ว่า    2 2
A B  ท าให้ได้ว่า 

       3 32 2A A B Bt r t t r t                                          (15)  

ต่อไปจะแสดงว่า 

    1 2 3\ : ! , , , 2 : 2 2 ;{ , , } {1,2,3}m m i j kA B t r r r r t r A t t r r t r B i j k               
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ดังต่อไปนี ้

   ให ้ \t A B  จะได้ว่า t B  ดังนั้น   1A t   และ   0B t    

กรณี 1  1 2 32 , ,it r r r r   ส าหรับทุก  1,2,3i  จากสมการ (7)  จะได้ว่า 

           1 2 3 1 2 32 2 2 2 2 2 1B B B A A At r t r t r t r t r t r                  (16)  

ถ้า 2 it r B   ส าหรับทุก  1,2,3i  จะได้ว่า 2 it r A   ส าหรับทุก  1,2,3i  ดังนั้น  12 1,B t r    

 22 1,B t r     32 1,B t r     12 0,A t r     22 0A t r    และ  32 0A t r    ซึ่งท าให้ได้ว่า 
สมการ (16)  ไม่จริง ดังนั้นจะมี  1,2,3i  ที่ท าให้ 2 it r A   โดยไม่เสียนัยทั่วไป สมมติว่า 12t r  และ 

22t r  เป็นสมาชิกของ A  จะได้ว่า 12 ,t r  22t r B   เพราะฉะนั้น  12 1,A t r     22 1,A t r    

 12 0B t r    และ  22 0B t r    ซึ่งท าให้ได้ว่าสมการ (16)  ไม่จริง ดังนั้น จะมี  1 2 3, ,r r r r  มีเพียง
ตัวเดียวเท่านั้น ที่ท าให้ 2t r A   นั่นคือ   1 2 3: ! , , , 2mt t r r r r t r A       

กรณี 2 มี  1 2 32 , ,it r r r r   ส าหรับบาง  1,2,3i  โดยไม่เสียนัยทั่วไป สมมติว่า 1 22t r r   
จะได้ว่า 2 12t r r   ดังนั้น 1 22 ,2t r t r B    จากสมการ (15)  จะได้ว่า    3 32 2 1B At r t r      
ซึ่งเป็นจริง เมื่อ  32 1B t r    และ  32 0A t r    นั่นคือ 32t r B   ดังนั้น 

 : 2 2 ;{ , , } {1,2,3}m i j kt t t r r t r B i j k         

   ให ้

    1 2 3: ! , , , 2 : 2 2 ;{ , , } {1,2,3}m m i j kt t r r r r t r A t t r r t r B i j k               

กรณี 1   1 2 3: ! , , , 2mt t r r r r t r A       จะได้ว่า มี 1r  เพียงตัวเดียวเท่านั้น ที่ท าให้ 

12t r A   เพราะฉะนั้น 22 ,t r  32t r B   ดังนั้น  1 2 32 , ,it r r r r   ส าหรับทุก  1,2,3i  จะได้ว่า 

 12 1,A t r     22 0,A t r     32 0,A t r     12 0,B t r     22 1,B t r     32 1B t r    
จากสมการ (7)  จะได้ว่า  

    1A Bt t    

ซึ่งเป็นจริง เมื่อ   1A t   และ   0B t   ดังนั้น \t A B  

กรณี 2  : 2 2 ;{ , , } {1,2,3}m i j kt t t r r t r B i j k         โดยไม่เสียนัยทั่วไป สมมติว่า 

1 22t r r   แ ล ะ  32t r B   จ ะ ไ ด้ ว่ า  2 12t r r   ดั ง นั้ น  1 22 ,2t r t r B    เ พ ร า ะ ฉ ะ นั้ น 

 32 1B t r    จากสมการ (15)  จะได้ว่า  

   1A Bt t    

ซึ่งเป็นจริง เมื่อ   1A t   และ   0B t   ดังนั้น \t A B  
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ดังนั้นเราสามารถสรุปได้ว่า 

    1 2 3\ : ! , , , 2 : 2 2 ;{ , , } {1,2,3}m m i j kA B t r r r r t r A t t r r t r B i j k               

ในทางกลับกัน ให ้

     1 2 3\ : ! , , , 2 : 2 2 ;{ , , } {1,2,3}m m i j kA B t r r r r t r A t t r r t r B i j k               

และ  1 2 3\ , ,mt r r r  โดยไม่เสียนัยทั่วไป สมมติว่า \t A B    

กรณี 1  1 2 32 , ,it r r r r   ส าหรับทุก  1,2,3i  ดังนั้น  

  1 2 3: ! , , , 2mt t r r r r t r A       

จะได้ว่า 

              2 2
3 1 2 3, 2 2 2 2 2A A A AR A t A t r t r t r t A              

             2 2
3 1 2 3, 2 2 2 2 2B B B BR B t B t r t r t r t B              

และ  

               1 2 3 1 2 32 2 2 2 2 2A A A A B B B Bt r t r t r t t r t r t r t                     

จากสมการ    1 , 2  และ A B  จะได้ว่า 

         

         

2
1 2 3

2
1 2 3

2 2 2 2

2 2 2 2

A A A A

B B B B

A t r t r t r t

B t r t r t r t

   

   

       

      

 

ดังนั้น    2 2
2 2A B  นั่นคือ    3 3, 2 , 2R A t R B t   

กรณี 2  1 2 32 , ,it r r r r   ส าหรับบาง  1,2,3i  โดยไม่เสียนัยทั่วไป สมมติว่า 1 22t r r   
ดังนั้น  

 : 2 2 ;{ , , } {1,2,3}m i j kt t t r r t r B i j k         

จะได้ว่า 

         2 2
3 3, 2 2 1 2A AR A t A t r t A         

         2 2
3 3, 2 2 1 2B BR B t B t r t B         

และ  

       3 32 2A A B Bt r t t r t         
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จากสมการ    9 , 10  และ A B  จะได้ว่า 

           2 2
3 32 2 2 2A A B BA t r t B t r t           

ดังนั้น    2 2
2 2A B  นั่นคือ    3 3, 2 , 2R A t R B t   

จากทั้งสองกรณี จะได้ว่า 3 3( , 2 ) ( , 2 )R A n R B n  ส าหรับทุก mn   โดยที่  1 2 32 2 ,2 ,2n r r r   

ต่อไปจะแสดงว่า 

   3 1 3 1, 2 , 2 ,R A r R B r     3 2 3 2, 2 , 2R A r R B r  และ    3 3 3 3, 2 , 2R A r R B r  

ให้  1 2 3, ,c r r r  เราเลือก  1 2 1 /2, ,..., mmb b b    ที่ท าให้ 

   
 1 /2

1

, 2
m

i i
i

m b c b c




    

ให้ 3, 4j   โดยที ่

      1 1 / 2 : ,2 2
j

i iA i m A b c b j         

      1 1 / 2 : ,2 2
j

i iB i m B b c b j         

จะได้ว่า    3 3
A B  และ 

   3 4
2 1A A A    

   3 4
2 1B B B    

  (4)
3 , 2 1R A c A   

  (4)
3 , 2 1R B c B   

เนื่องจาก A B  จะได้ว่า        3 4 3 4
2 1 2 1A A B B      ดังนั้น    4 4

A B  และ  

   3 3, 2 , 2R A c R B c  

นี้ แ สดงว่ า     3 3, 2 , 2R A n R B n  ส าหรั บทุ ก  mn   เ นื่ อ งจาก  m  เป็ นจ านวน เต็ มคี่  จ ะ ได้ ว่ า 

3 3( , ) ( , )R A n R B n  ส าหรับทุก mn                             

ต่อไปพิจารณากรณี 1A B m    และ 2A B    

ทฤษฎีบท 2.7  ให้ , mA B   โดยที่ 1

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่  1 2,A B r r   และ 

 3\mA B r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 
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     

 

1 2 3 1 2 3

1 2 3

\ : ! , , 2 2 : 2 , , ,

: 2 2

m m

m

A B t r r r t r A t r A t t r B r r r r

t t r r t r A

              

      
 

บทพิสูจน์  สมมติว่า    3 3, ,R A n R B n  ส าหรับทุก mn   ให้  1 2 3\ , ,mt r r r  พิจารณาสมการ 

2x y t   จะได้ว่า a  และ 2t a  เป็นชุดค าตอบของสมการ 2x y t    

กรณี 1  1 22 ,it r r r   ส าหรับทุก  1,2i  ดังนั้น มี  1 2 ( 7)/2 3, , , \m ma a a r   ที่ท าให้ 

             
 7 /2

3 1 2 3 1 2
1

\ , 2 2 2 2 ,
m

i i
i

m r a t a t r t r t r r r t




           

ให้ 1, 2j   โดยที ่

      1 7 / 2 : ,2
j

i iA i m A a t a j        

      1 7 / 2 : ,2
j

i iB i m B a t a j        

จะได้ว่า    1 1
A B  และ 

           1 2
1 2 32 2 2 2 2A A A AA A A t r t r t r t                    (1)  

           1 2
1 2 32 2 2 2 2B B B BB B B t r t r t r t                    (2)  

         2
3 1 2, 2 2 2A A AR A t A t r t r t               (3)  

         2
3 1 2, 2 2 2B B BR B t B t r t r t               (4)  

เนื่องจาก A B  จะได้ว่าสมการ (1)  เท่ากับสมการ (2)  และท าให้ได้ว่า 

         

         

2
1 2 3

2
1 2 3

2 2 2 2

2 2 2 2

A A A A

B B B B

A t r t r t r t

B t r t r t r t

   

   

       

      

     (5)  

เนื่องจาก    3 3, 2 , 2R A t R B t  จะได้ว่าสมการ (3)  เท่ากับสมการ (4)  ดังนั้น 

               2 2
1 2 1 22 2 2 2A A A B B BA t r t r t B t r t r t                       (6)  

น าสมการ (5)  ลบสมการ (6)  จะได้ว่า 

       2 2
3 32 2A BA t r B t r       

แทน        2 2
3 32 2B AA B t r t r       ในสมการ (6)  จะได้ว่า 
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       

       

1 2 3

1 2 3

2 2 2

2 2 2

A A B A

B B A B

t r t r t r t

t r t r t r t

   

   

      

     
   (7)  

กรณี 2  1 22 ,it r r r   ส าหรับบาง  1,2i  เพราะฉะนัน้ 1 22t r r   ดังนั้น มี

 1 2 ( 5)/2 3, , , \m ma a a r   ที่ท าให้ 

         
 5 /2

3 3 1 2
1

\ , 2 2 ,
m

i i
i

m r a t a t r r r t




       

ให้ 1, 2j   โดยที ่
      1 5 / 2 : ,2

j
i iA i m A a t a j        

      1 5 / 2 : ,2
j

i iB i m B a t a j        

จะได้ว่า    1 1
A B  และ 

       1 2
32 2 2A AA A A t r t                (9)  

       1 2
32 2 2B BB B B t r t               (10)  

     2
3 , 2 1AR A t A t            (11)  

     2
3 , 2 1BR B t B t            (12)  

เนื่องจาก A B  จะได้ว่าสมการ (9)  เท่ากับสมการ (10)  และท าให้ได้ว่า 
           2 2

3 32 2 2 2A A B BA t r t B t r t               (13)  

เนื่องจาก    3 3, 2 , 2R A t R B t  จะได้ว่าสมการ (11)  เท่ากับสมการ (12)  ดังนั้น 
       2 2

A BA t B t              (14)  

น าสมการ (13)  ลบสมการ (14)  จะได้ว่า 
       2 2

3 32 2A BA t r B t r       

แทน        2 2
3 32 2B AA B t r t r       ในสมการ (14)  จะได้ว่า 

       3 32 2B A A Bt r t t r t            (15)  

ต่อไปจะแสดงว่า  

     

 

1 2 3 1 2 3

1 2 3

\ : ! , , 2 2 : 2 , , ,

: 2 2

m m

m

A B t r r r t r A t r A t t r B r r r r

t t r r t r A

              

      
 

   ให้  \t A B  และ  2t r B   ส าหรับบาง   1 2 3, ,r r r r  จะ ได้ ว่ า  t B  ดั งนั้ น 

  1A t   และ   0B t    
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กรณี 1  1 22 ,it r r r   ส าหรับทุก  1,2i  จะแสดงว่า 32t r A   สมมติว่า 32t r A   จะได้
ว่า 32t r B   จากสมการ (7)  จะได้ว่า 

       1 2 1 22 2 2 2 2A A B Bt r t r t r t r            
ซึ่ งท า ให้ ได้ ว่ า   12 1B t r    และ   22 1B t r    นั่ นคื อ  12 ,t r  22t r B   จะ ได้ ว่ า  12 ,t r  

22 ,t r  32t r B   ซึ่ ง เ กิ ด ข้ อ ขั ด แ ย้ ง  ดั ง นั้ น  32t r A   นั่ น คื อ  32t r B   เ พ ร า ะ ฉ ะ นั้ น 

 32 1A t r    และ  32 0B t r    ต่อไปจะแสดงว่า มี  1 2,r r r  เพียงตัวเดียวเท่านั้น ที่ท าให้  
2t r A   สมมติว่า 12t r  22t r A   ท าให้ได้ว่า  12 0A t r    และ  22 0A t r    ซึ่งเกิดข้อ
ขัดแย้งกับสมการ (7)  ดังนั้น จะมี  1 2,r r r  ที่ท าให้ 2t r A   ถ้า 2t r A   ส าหรับทุก  1 2,r r r  
จะได้ว่า ว่า  12 1A t r    และ  22 1A t r    ซึ่งเกิดข้อขัดแย้งกับสมการ (7)  ดังนั้นเราจะสรุปได้ว่า มี 

 1 2,r r r  เพียงตัวเดียวเท่าน้ัน ที่ท าให้ 2t r A   นั่นคือ 

     

 

1 2 3 1 2 3

1 2 3

: ! , , 2 2 : 2 , , ,

: 2 2

m m

m

t t r r r t r A t r A t t r B r r r r

t t r r t r A

              

      
 

 กรณี 2  1 22 ,it r r r   ส าหรับบาง  1,2i  เพราะฉะนั้น 1 22t r r   จะได้ว่า 2 12t r r   
ดั งนั้น 1 22 ,2t r t r B    จากสมการ (15)  จะได้ว่า     3 32 1 2B At r t r      ซึ่ ง เป็นจริ ง เมื่อ 

 32 1A t r    และ  32 0B t r    ดังนั้น 32t r A   นั่นคือ  

 1 2 3: 2 2mt t t r r t r A        

   ให้  

     

 

1 2 3 1 2 3

1 2 3

: ! , , 2 2 : 2 , , ,

: 2 2

m m

m

t t r r r t r A t r A t t r B r r r r

t t r r t r A

              

      
 

กรณี 1 ถ้า   1 2 3: ! , , 2 2mt t r r r t r A t r A          แล้วจะมี  1 2,r r r  เพียงตัว

เดียวเท่านั้น ที่ท าให้ 2t r A   และ 32t r A   โดยไม่เสียนัยทั่วไป สมมติว่า 12t r A   และ 22t r A    

ดังนั้น  1 22 ,it r r r   ส าหรับทุก  1,2i  จะได้ว่า  12 1A t r    และ  22 0A t r    จากสมการ 
(7)  และ 32t r A   จะได้ว่า    1 2A Bt t     นั่นคือ  

    1A Bt t          (16)  
ซึ่งเป็นจริง เมื่อ   0B t   และ   1A t   ดังนั้น t B  และ t A  

กรณี 2 ถ้า   1 2 3: 2 , , ,mt t t r B r r r r       แล้ว 2t r B   ส าหรับทุก 

 1 2 3, ,r r r r  ดังนั้น  1 22 ,it r r r   ส าหรับทุก  1,2i  นั่นคือ  12 0,A t r     22 0,A t r    

 32 0,A t r     12 1,B t r     22 1B t r    และ  32 1B t r    จากสมการ (7)  จะได้ว่า 

   1 2A Bt t     นั่นคือ  
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    1A Bt t          (17)  
ซึ่งเป็นจริง เมื่อ   0B t   และ   1A t   ดังนั้น \t A B  

กรณี 3 ถ้า  1 2 3: 2 2mt t t r r t r A        แล้ว 1 22t r r   และ 32t r A   ดังนั้น   

 32 1A t r    และ  32 0B t r    จากสมการ (15)  จะได้ว่า  

    1A Bt t          (18)  
ซึ่งเป็นจริง เมื่อ   0B t   และ   1A t   ดังนั้น \t A B  
ดังนั้น 

     

 

1 2 3 1 2 3

1 2 3

\ : ! , , 2 2 : 2 , , ,

: 2 2

m m

m

A B t r r r t r A t r A t t r B r r r r

t t r r t r A

              

      
 

ในทางกลับกัน สมมติว่า  

     

 

1 2 3 1 2 3

1 2 3

\ : ! , , 2 2 : 2 , , ,

: 2 2

m m

m

A B t r r r t r A t r A t t r B r r r r

t t r r t r A

              

      
 

ให้  1 2 3\ , ,mt r r r  โดยไมเ่สียนยัทั่วไป สมมติวา่ \t A B    

กรณี 1  1 22 ,it r r r   ส าหรับทุก  1,2i  จะได้ว่า  

     1 2 3 1 2 3: ! , , 2 2 : 2 , , ,m mt t r r r t r A t r A t t r B r r r r                

ดังนั้น  

         2
3 1 2, 2 2 2A A AR A t A t r t r t         

         2
3 1 2, 2 2 2B B BR B t B t r t r t         

และ 

               1 2 3 1 2 32 2 2 2 2 2A A B A B B A Bt r t r t r t t r t r t r t                     

จาก (1),  2  และ A B  จะได้ว่า 
         

         

2
1 2 3

2
1 2 3

2 2 2 2

2 2 2 2

A A A A

B B B B

A t r t r t r t

B t r t r t r t

   

   

       

      

 

ดังนั้น (2) (2)2 2A B  นั่นคือ 3 3( , 2 ) ( , 2 )R A t R B t   

กรณี 2  1 22 ,it r r r   ส าหรับบาง  1,2i  เพราะฉะนั้น 1 22t r r   จะได้ว่า 2 12t r r   
ดังนั้น 

 1 2 3: 2 2mt t t r r t r A        

 จะได้ว่า 

       2 2
3 , 2 1 2AR A t A t A      
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       2 2
3 , 2 1 2BR B t B t B      

และ 

       3 32 2B A A Bt r t t r t         
จาก (8),   9  และ A B  จะได้ว่า 

           2 2
3 32 2 2 2A A B BA t r t B t r t           

ดังนั้น (2) (2)2 2A B  นั่นคือ 3 3( , 2 ) ( , 2 )R A t R B t   

จากทั้งสองกรณี จะได้ว่า    3 3, 2 , 2R A n R B n  ส าหรับทุก mn   โดยที่  1 2 32 2 ,2 ,2n r r r   

ต่อไปจะแสดงว่า    3 1 3 1, 2 , 2R A r R B r  และ    3 2 3 2, 2 , 2R A r R B r  ให้  1 2,c r r   

เราสามารถเลือก  1 2 3 /2, ,..., mmb b b    ที่ท าให ้

       
 3 /2

3 3
1

\ , 2 2
m

i i
i

m r b c b c r c




      

ให้ 3, 4j   โดยที ่
      1 3 / 2 : ,2 2

j
i iA i m A b c b j         

      1 3 / 2 : ,2 2
j

i iB i m B b c b j         

จะได้ว่า    3 3
A B  และ 

     3 4
32 2 1AA A A c r      

     3 4
32 2 1BB B B c r      

  (4)
3 , 2 1R A c A   

  (4)
3 , 2 1R B c B   

เนื่องจาก A B  และ    3 3
A B  จะได้ว่า 

       4 4
3 32 2 2 2A BA c r B c r       

เพราะฉะนั้น         4 4
3 32 2 2B AA B c r c r       ท าให้ได้ว่า    3 32 2 0B Ac r c r      

ดังนั้น    4 4
A B  และ    3 3, 2 , 2R A c R B c   

สุดท้ายนี้ เราจะแสดงว่า    3 3 3 3, 2 , 2R A r R B r  พิจารณา  1 2 1 /2, ,..., mmb b b    ที่ท าให ้

   
 1 /2

3 3
1

\ , 2
m

i i
i

m r b r b




   

ให้ 5,6j   โดยที ่
      31 1 / 2 : ,2 4

j
i iA i m A b r b j         

      31 1 / 2 : ,2 2
j

i iB i m B b r b j         
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จะได้ว่า    5 5
A B  และ 

   5 6
2A A A   

   5 6
2B B B   

  (6)
3 3, 2R A r A  

  (6)
3 3, 2R B r B  

เนื่องจาก A B  และ    6 6
A B  จะได้ว่า 

   3 3 3 3, 2 , 2R A r R B r  

ดังนั้น 3 3( , 2 ) ( , 2 )R A n R B n  ส าหรับทุก mn   เนื่องจาก m  เป็นจ านวนคี่ จะได้ว่า    3 3, ,R A n R B n  
ส าหรับทุก mn                                                      

ส าหรับกรณี 3 และ 4 สามารถพิสูจน์ในท านองเดียวกับทฤษฎีบท 2.6 และ 2.7 ดังผลลัพธ์ต่อไปนี้ 

ทฤษฎีบท 2.8  ให้ , mA B   โดยที่ 1

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่  1A B r   และ 

 2 3\ ,mA B r r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

     2 3 1 1 2 3\ : ! , , 2 2 : 2 , , ,m mA B t r r r t r B t r B t t r A r r r r                

ทฤษฎีบท 2.9  ให้ , mA B   โดยที่ 3

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่ A B   และ 

 1 2 3\ , ,mA B r r r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

  1 2 3: ! , , , 2mA t r r r r t r A       

3. อภิปรายและสรุปผลการวิจัย 

งานวิจัยที่ศึกษาเกี่ยวกับปัญหาของ Sárközy ใน m  ซึ่งผลการศึกษาที่ได้มีความสอดคล้องและ
เป็นไปตามแนวคิดของ Yang และ Chen (Yang, & Chen. 2012: 257-262) ในปี ค.ศ. 2012 ที่เริ่มศึกษาปัญหา
ของ Sárközy ใน m  และให้เง่ือนไขของเซตย่อย , mA B   โดยที่ ( ) \ ( )A B A B m    ที่ท าให้ 

3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ m  เป็นจ านวนคู่ และ 

 : 0 / 2 1, / 2mA t t m t m A        

ต่อมาในปี ค.ศ. 2017 Yang และ Tang (Yang, & Tang. 2017: 73-85) แสดงว่าส าหรับ m  เป็นจ านวนคี่  
จะมีสองเซตย่อย A  และ B  ของ m  โดยที่ ( ) \ ( ) 1A B A B m     ที่ท าให้ 3 3( , ) ( , )R A n R B n   

ส าหรับทุก  mn   ก็ ต่ อ เมื่ อ   : 2mA t t r B     โดยที่  r A B   และสุดท้ าย ในกรณี  

( ) \ ( ) 2A B A B m     ในปี ค.ศ. 2022 Sun และ Cheng (Sun, & Cheng. 2022: 352-363) พิจารณา 
2m M  เมื่อ M  เป็นจ านวนคี่ โดยที่ 3M   และผลการศึกษาส าหรับเซตย่อย , mA B   โดยที่  

mA B   แ ล ะ  2A B   ถ้ า  2 (2)pord  ส า ห รั บ ทุ ก จ า น ว น เ ฉ พ า ะ  p  ซึ่ ง  |p M  แ ล้ ว 
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3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ / 2B A m   ในงานวิจัยฉบับนี้ คณะผู้วิจัยได้ศึกษา
กรณี ( ) \ ( ) 3A B A B m     ซึ่งผลการศึกษาแบ่งเป็น 4 กรณี ดังนี้ 

1. ให ้ , mA B   โดยที่ 3

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่ mA B   และ

 1 2 3, ,A B r r r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

  

 

1 2 3\ : ! , , , 2

: 2 2 ;{ , , } {1,2,3}

m

m i j k

A B t r r r r t r A

t t r r t r B i j k

      

      
 

2. ให ้ , mA B   โดยที่ 1

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่  1 2,A B r r   และ 

 3\mA B r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

  

    

1 2 3

1 2 3 1 2 3

\ : ! , , 2 2

: 2 , , , : 2 2

m

m m

A B t r r r t r A t r A

t t r B r r r r t t r r t r A

         

           
 

3. ให ้ , mA B   โดยที่ 1

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที่  1A B r   และ 

 2 3\ ,mA B r r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

     2 3 1 1 2 3\ : ! , , 2 2 : 2 , , ,m mA B t r r r t r B t r B t t r A r r r r                

4. ให ้ , mA B   โดยที่ 3

2

m
A B


   และให้ 1 2 3, , mr r r   โดยที ่ A B   และ 

 1 2 3\ , ,mA B r r r   จะได้ว่า 3 3( , ) ( , )R A n R B n  ส าหรับทุก mn   ก็ต่อเมื่อ 

  1 2 3: ! , , , 2mA t r r r r t r A       

ซึ่งผลการศึกษาดังกล่าวเป็นเพียงเง่ือนไขที่จะใช้ตรวจสอบเซตย่อย A  และ B  ของ m  ที่ท าให้ฟังก์ชัน
ตัวแทนมีค่าเท่ากัน 
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