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Abstract

In the weak-coupling limit of superconductivity BCS theory, the energy-gap equation near the
transition temperature (T,) involves the integral foymnxﬂ dx where y & S.wp » 1 providing
kg=Boltzmann constant and B, = (kg T,)! is the transition temperature parameter of this
superconductor, and wj, represents the Debye frequency of the normal-metal lattice associated
with this superconductor. This integral is not simple to evaluate since its upper limit is not a
constant but a variable. So far, there exists a pure analytic method to carry out this integral but
complication arises. One has to deal with intuitive integration by parts and infinite series of
Dirichlet Eta function. In this article we devise a new method using simple analytic and
numerical techniques to carry out the integral. Based on a remarkable mathematical property
that the hyperbolic tangent function may be approximated as unity for large x, we replace
tanh (x) with the new function of 2 domains separated by a critical parameter named ¥

between which the function takes the value of hyperbolic tangent function and unity. Suitable

% yields the correct integral. We call this “numerical convergence method”. Both techniques

yield the same result, i.e. nymnTh(x) dx =Ln(1.13387 y) ;y > 1. This result was employed

further to find the ratio Cooper pair binding energy/kg T .

Keywords: BCS theory, Debye frequency, Transition temperature, Cooper-pair binding energy,

Numerical convergence method
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1. Introduction

Soon after Cooper (1956) discovered electron pairing, the BCS theory (Tinkham, 2004,
Schrieffer, 1999; Ketterson & Song, 2010) of superconductivity followed and it was the first one
that successfully explained superconductivity on microscopic scale. Due to BCS theory, the

linearized BCS gap equation at the transition temperature ( T, ) is, in such units that A = 1,

wp tanh( S)
Vo D(EF) fo & = M
or, equivalently,
Bcwp
1 _ tanh (x)
o fo 2 dx — — 2

= Bcf is the new variable of

where wp represents the Debye frequency of the metal phase, x =
integration, B, = FTC stands for the temperature parameter of that superconductor calculated
at the transition temperature, D(€p) is density of states of electrons at the Fermi level of the
normal phase, =V, is the simplified value of matrix element V;,of the interaction between
super-electrons.

Our main target is to evaluate the RHS integral of Eq. (2), which is not easy to obtain
since the upper interval of integration is not a constant but a variable that depends on
temperature of the superconducting material. There exists an analytic method that has been
used to evaluate this integral which we are going to mention now.

This analytic method begins with performing integration by parts, yielding

Bcwp

Jo ¥ S = g (Pt cann (B2) - %

LY dx (3)

Following the original article of BCS theory, we focus on the weak-coupling limit where S.wp >
1 (Bardeen et al., 1957). We may, therefore, send the upper limit to infinity. We now concentrate

Lnx

on how to evaluate the integral fooo dx ———

To do so, we first consider

dx . (4)

)= [~

cosh2 x



NIITATNMTINeEanuasinalulad unInendesviguasaissa a9

S ENLE

Uil 17 atul 26 nange - Sunau 2568

We next observe that I(s) is related to our attending integral by the expression

I'0) = [ ——dx . (5)

cosh? x

Rewriting the hyperbolic function in exponential form gives

I(s) = 4f0°° e oy , (6)

(1+e~2%)2

which can be written in differential form as

1) =2[ 0 < (=) dx. %

dx \1+e2%

Furthermore, the term in parenthesis can be written in geometric series form, i.e.

1(s) = 2 f; %% == B o(—e ™) dox | ®)
We manage to move the summation to the left and do the integral first,

I(s) = 4 S0, (1" k [ 7 x%e 2 dx . 9)
The integral may now be written in the form of gamma function, we get

_k+1
( 1}3 rGs+1). (10)

I(s) =2'° X7,

Also, this infinite series may be written in the form of the Dirichlet Eta function, n(s), so that

I(s) reads

I(s)=2"Sn(s)I(s+1). (11)

Then the derivative follows that

I'(s) = =22 n(s) I'(s + 1) + 275 n'Or(s + 1) + 215 n(s) 'L, (12)
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Now we see that the derivative of / at s=0is
I'(0) = =225 m2n(0) I'(1) + 2 1'(0)I(1) + 2n(0) I'(1) . (13)
Symbolically we obtain
I'(0) = Ln(w/4) -y, (14)

since we have used the values of Eta functions and its derivative at s=0, and also Gamma

function and its derivative at s=1 from an information source (Abramowitz & Stegun, 1972) to be

n© =3 rW =170 =;wn(3), r@m=-y, (15)

where y = 0.577 is the Euler’s constant.

Up to now, we are able to conclude that

7 ==2—dx =1'(0) = Ln(n/4) — v . (16)

cosh? x
Accordingly, Eq. (3) may be simplified to

Bcwp

Jo? dx mnxﬂ =Ln (BC%) tanh (ﬁ”%) —Ln G) +y. (17)

As before, the weak-coupling limit ( B, wp » 1) enables us to take the hyperbolic tangent in

Eq. (17) to be unity, we are therefore left with

Bcwp

Jy 2 dx tan:(x) =Ln(ﬁCwD)—Ln(g)+y. (18)

2

By grouping all factors in one Logarithmic term, we obtain

Bcwp

fE dx e =Ln(2” B. a)D) , (19)

T

Numerically we get, to five decimal places,
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2¢e¥

= 1.13387 (20)
so that we finally reach the conclusion
Bewp tanh (x)
J, T dx T2 = In(113387 Bowp);  Bewp > 1 . (21)

2. Objective

From previous section we see that to obtain the result, Eqg. (21), by analytic method
one must encounter pretty tedious work that requires several tricks including some familiarity
with Gamma and Dirichlet Eta functions and their derivatives. Now we present another method
that requires no such difficulties, employing both simple analytic and numerical techniques.
Numerical part participates in finding the optimum point to get the results converged. We call
it “numerical convergence method”. We shall see in the last section that its result is numerically

equivalent to the analytic method that we mentioned earlier.

3. Methodology

The idea of numerical convergence method is simple. Let us focus on the integrand.

Bcwp

In order to simplify the integral fo 2z dx

tanh (x X . . .
% we define a new discontinuous function

tanh(x) ;0<x <X

geCy = {@m) DS EEE 22

where we have approximated tanh(x) by gz(x) , realizing that the hyperbolic tangent function
asymptotically tends to unity. By this, we have adopted the parameter % after which

gz(x) becomes unity. This parameter is, of course, adjustable.

Bcwp
After replacing tanh(x) by gz(x), we can simply evaluate the integral fo 2y L)
and obtain
BC;)D tanh (x) do = % tanh (x) d BC% 1 d 23)
fO T X = fO T x + f)? ; X.

The advantage is that the second integral on the RHS can be simply carried out, yielding
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Bcwp

b ?

tanh (x) ~ (X tanh (x) Bcwp
PO g = f7 R gy 4 Lo (B22) (24)

Two terms on the right maybe grouped in a single one under the Logarithmic expression, i.e.,

Bewp Ny e
IRE mnxﬂ dx = Ln (ﬁcwD <M) . (25)

2x

This equation may be rewritten as

Bcwp

b ?

tanh (x)
x

dx = Ln (B,wp® (%)) , (26)
provided that we define the function @ (%) such that

Exp[ff tanTh(x) dx]

P(x) =

2%

The main idea of this method is to find suitable values of % that makes @ (%) numerically

convergent, up to 5 decimal places of accuracy.

4. Results

In order to see the convergence of @ (%), we input several numerical values of x, and

J-JZ tanhx

X tanhx
evaluate [ —— N

0 dx} ,and then @ . All numerical values are displayed in

dx , exp{

5 decimal places. the results are given in Table 1.

Table 1 Numerical values of @ for some values of ¥ (calculated with Mathematica 10)

5 f% tanhx I exp { f tanhx dx} _exp { ff ta:;hx dx}
o * o X ¢= 2%

L0 0.90968 2.48351 1.24176

2.0 151941 4.56954 1.14238

3.0 1.91811 6.80809 1.13468

4.0 2.20515 9.07161 1.13395

5.0 2.42823 11.3388 1.13388

6.0 2.61054 13.6064 1.13387
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+ f* tanhx I oxp { J‘? tanhx dx} _exp { ff tar;hx dx}
o X o X ®= 2%

7.0 2.76469 15.8741 1.13387

8.0 2.89822 18.1419 1.13387

9.0 3.01600 20.4096 1.13387

10.0 3.12137 22.6773 1.13387

5. Conclusions and Discussions

As obviously seen from Table 1, the numerical value converges at @ = 1.13387. Even
though we don’t exactly identify the onset of real ¥ that makes @ converged, we pay attention
on integral numbers of % instead and find that @ converges at ¥ = 6.0 onwards.

With this, Eq. (26) turns out to be, for B.wp > 1,

Bcwp

?

tanh (x)
x

dx = Ln (1.13387 B.wp) (28)

which is obviously equivalent to that obtained from analytic method, Eq. (21) in introduction
section. We have to emphasize that in analytic method we deal with cumbersome derivations
and we unavoidably confront Dirichlet Eta and Gamma functions and their derivatives. On the
other hand, by numerical convergence method we just evaluate @ at some input values of ¥,

and after we obtain the converged value of @ we get from Eq.(26) the correct value of

Bcwp

b ?

Y
tanh ) dx, which is numerically identical to 2% obtained by analytic method.

Not surprisingly, the accuracy of this method can ¢o beyond 5 decimal places if we set
it to be. For 2 examples, to obtain converged numerical value of @ for 8 decimal places of
accuracy we have to go up to ¥ = 9.0 onwards and get @ = 1.13386592, and in case of 10
decimal places of accuracy we have to go up to ¥ =11.0 onwards and obtain @ =
1.1338659173. Both are undoubtedly equal to the numerical values of %. The higher level
of accuracy we set, the greater value of ¥ we employ.

Even though evaluation of @ at accuracy levels much higher than 5 decimal places can
be performed in principle but, in practice, it is pointless to go for that since researchers in this
field so far pay no attention on it. They just take numerical values of % for 2 decimal places.
For example, some textbook authors take it to be just 1.13 (Annett, 2003; Tinkham, 2004, Fetter
& Walecka, 2003; Grosso & Parravicini, 2000). Moreover, some others display it more roughly as

1.14 (Alexandrov, 2003; Kittel, 1987; Mahan, 1990).
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