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Abstract 

In the weak-coupling limit of superconductivity BCS theory, the energy-gap equation near the 

transition temperature (𝑇𝑐 ) involves the integral ∫ 𝑡𝑎𝑛ℎ(𝑥)

𝑥
 𝑑𝑥

𝑦

0
 where 𝑦 ≝ 𝛽𝑐𝜔𝐷 ≫ 1 providing 

𝑘𝐵=Boltzmann constant and 𝛽𝑐 = (𝑘𝐵  𝑇𝑐)
−1 is the transition temperature parameter of this 

superconductor, and 𝜔𝐷 represents the Debye frequency of the normal-metal lattice associated 

with this superconductor. This integral is not simple to evaluate since its upper limit is not a 

constant but a variable. So far, there exists a pure analytic method to carry out this integral but 

complication arises. One has to deal with intuitive integration by parts and infinite series of 

Dirichlet Eta function. In this article we devise a new method using simple analytic and 

numerical techniques to carry out the integral. Based on a remarkable mathematical property 

that the hyperbolic tangent function may be approximated as unity for large 𝑥, we replace 

𝑡𝑎𝑛ℎ (𝑥) with the new function of 2 domains separated by a critical parameter named 𝑥̃ 

between which the function takes the value of hyperbolic tangent function and unity.  Suitable 

𝑥̃ yields the correct integral. We call this “numerical convergence method”. Both techniques 

yield the same result, i.e.   ∫ 𝑡𝑎𝑛ℎ(𝑥)

𝑥
 𝑑𝑥

𝑦

0
= 𝐿𝑛(1.13387 𝑦)   ; 𝑦 ≫ 1.  This result was employed 

further to find the ratio Cooper pair binding energy/𝑘𝐵  𝑇𝑐 .  
 

Keywords:  BCS theory, Debye frequency, Transition temperature, Cooper-pair binding energy,   
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1. Introduction 
Soon after Cooper (1956) discovered electron pairing,  the BCS theory (Tinkham, 2004; 

Schrieffer, 1999; Ketterson & Song, 2010) of superconductivity followed and it was the first one 
that successfully explained superconductivity on microscopic scale. Due to BCS theory, the 
linearized BCS gap equation at the transition temperature ( 𝑇𝑐 ) is, in such units that ℏ = 1 ,  

 
1

𝑉0 𝐷(∈𝐹)
= ∫ 𝑑𝜉 

𝑡𝑎𝑛ℎ (
𝛽𝑐
2

𝜉)

𝜉

𝜔𝐷

0
    (1) 

 
or, equivalently,  

1

𝑉0 𝐷(∈𝐹)
= ∫ 𝑑𝑥 

𝑡𝑎𝑛ℎ (𝑥)

𝑥

𝛽𝑐𝜔𝐷
2

 

0
    (2) 

 
where 𝜔𝐷 represents the Debye frequency of the metal phase, 𝑥 ≡

𝛽𝑐

2
𝜉 is the new variable of 

integration,  𝛽𝑐 ≡
1

𝑘𝐵𝑇𝑐
 stands for the temperature parameter of that superconductor calculated 

at the transition temperature, 𝐷(∈𝐹) is density of states of electrons at the Fermi level of the 
normal phase, −𝑉0 is the simplified value of matrix element 𝑉𝑘⃗ 𝑘⃗ ′of the interaction between 
super-electrons.  

Our main target is to evaluate the RHS integral of Eq. (2), which is not easy to obtain 
since the upper interval of integration is not a constant but a variable that depends on 
temperature of the superconducting material. There exists an analytic method that has been 
used to evaluate this integral which we are going to mention now.  

This analytic method begins with performing integration by parts, yielding   
 

∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
 = 𝐿𝑛 (

𝛽𝑐 𝜔𝐷

2
) 𝑡𝑎𝑛ℎ (

𝛽𝑐 𝜔𝐷

2
) − ∫

𝐿𝑛 𝑥

𝑐𝑜𝑠ℎ2  𝑥

𝛽𝑐 𝜔𝐷
2

0

𝛽𝑐𝜔𝐷
2

0
𝑑𝑥 .  (3) 

 
Following the original article of BCS theory, we focus on the weak-coupling limit where 𝛽𝑐𝜔𝐷 ≫

1 (Bardeen et al., 1957). We may, therefore, send the upper limit to infinity. We now concentrate 
on how to evaluate the integral ∫ 𝑑𝑥 

𝐿𝑛 𝑥

𝑐𝑜𝑠ℎ2  𝑥

∞

0
 . 

 
To do so, we first consider 

 

                                        𝐼(𝑠) ≡ ∫  
𝑥𝑠

𝑐𝑜𝑠ℎ2  𝑥

∞

0
 𝑑𝑥 .          (4) 
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We next observe that 𝐼(𝑠) is related to our attending integral by the expression  
 

𝐼′(0) = ∫  
𝐿𝑛 𝑥

𝑐𝑜𝑠ℎ2  𝑥

∞

0
𝑑𝑥 .           (5) 

 
Rewriting the hyperbolic function in exponential form gives 
 

𝐼(𝑠) = 4∫  
𝑥𝑠𝑒−2𝑥

(1+𝑒−2𝑥)2  

∞

0
 𝑑𝑥 ,    (6) 

 
which can be written in differential form as 
 

𝐼(𝑠) = 2∫ 𝑥𝑠 𝑑

𝑑𝑥
 (

1

1+𝑒−2𝑥)
∞

0
 𝑑𝑥 .      (7) 

 
Furthermore, the term in parenthesis can be written in geometric series form, i.e. 
 

𝐼(𝑠) = 2∫ 𝑥𝑠 𝑑

𝑑𝑥
 ∑ (−𝑒−2𝑥)𝑘∞

𝑘=0
∞

0
 𝑑𝑥 .         (8) 

 
We manage to move the summation to the left and do the integral first,  
 

𝐼(𝑠) = 4∑ (−1)𝑘+1∞
𝑘=1 𝑘 ∫ 𝑥𝑠𝑒−2𝑘𝑥∞

0
 𝑑𝑥 .          (9) 

 
The integral may now be written in the form of gamma function, we get  
 

𝐼(𝑠) = 21−𝑠 ∑
(−1)𝑘+1

𝑘𝑠
∞
𝑘=1 𝛤(𝑠 + 1) .     (10) 

 
Also, this infinite series may be written in the form of the Dirichlet Eta function, 𝜂(𝑠), so that 
𝐼(𝑠) reads 
 

𝐼(𝑠) = 21−𝑠 𝜂(𝑠) 𝛤(𝑠 + 1) .          (11) 
 

Then the derivative follows that 
 

    𝐼′(𝑠) = −21−𝑠 𝑙𝑛2 𝜂(𝑠) 𝛤(𝑠 + 1) + 21−𝑠 𝜂′(𝑠)𝛤(𝑠 + 1) + 21−𝑠 𝜂(𝑠) 𝛤′(𝑠+1).   (12) 
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Now we see that the derivative of I at s=0 is 
 

𝐼′(0) = −21−𝑠 𝑙𝑛2 𝜂(0) 𝛤(1) + 2 𝜂′(0)𝛤(1) + 2 𝜂(0) 𝛤′(1) .   (13) 
 
Symbolically we obtain  
 

                                𝐼′(0) = 𝐿𝑛(𝜋/4) − 𝛾 ,     (14) 
 
since we have used the values of Eta functions and its derivative at s=0, and also Gamma 
function and its derivative at s=1 from an information source (Abramowitz & Stegun, 1972) to be 
 

𝜂(0) =
1

2
, 𝛤(1) = 1, 𝜂′(0) =

1

2
𝐿𝑛 (

𝜋

2
) , 𝛤′(1) = −𝛾 ,    (15) 

 
where 𝛾 ≅ 0.577 is the Euler’s constant.  
 Up to now, we are able to conclude that  
 

∫  
𝐿𝑛 𝑥

𝑐𝑜𝑠ℎ2  𝑥

∞

0
𝑑𝑥 = 𝐼′(0) = 𝐿𝑛(𝜋/4) − 𝛾 .         (16) 

 
Accordingly, Eq. (3) may be simplified to  
 

∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
 = 𝐿𝑛 (

𝛽𝑐 𝜔𝐷

2
) 𝑡𝑎𝑛ℎ (

𝛽𝑐 𝜔𝐷

2
) − 𝐿𝑛 (

𝜋

4
) + 𝛾 

𝛽𝑐𝜔𝐷
2

 

0
.        (17) 

 
As before, the weak-coupling limit ( 𝛽𝑐  𝜔𝐷 ≫ 1) enables us to take the hyperbolic tangent in 
Eq. (17) to be unity, we are therefore left with    
 

∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
 = 𝐿𝑛 (

𝛽𝑐 𝜔𝐷

2
) − 𝐿𝑛 (

𝜋

4
) + 𝛾 

𝛽𝑐𝜔𝐷
2

0
.           (18) 

 
By grouping all factors in one Logarithmic term, we obtain 
 

∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
 = 𝐿𝑛 (

2 𝑒𝛾 

𝜋
  𝛽𝑐  𝜔𝐷) 

𝛽𝑐𝜔𝐷
2

0
   .         (19) 

 
Numerically we get, to five decimal places,  
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2 𝑒𝛾 

𝜋
= 1.13387       (20) 

 
so that we finally reach the conclusion  
 

∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
 = 𝐿𝑛(1.13387  𝛽𝑐  𝜔𝐷) ;      𝛽𝑐𝜔𝐷 ≫ 1 

𝛽𝑐𝜔𝐷
2

0
 .         (21) 

 
2. Objective 
 From previous section we see that to obtain the result, Eq. (21), by analytic method 
one must encounter pretty tedious work that requires several tricks including some familiarity 
with Gamma and Dirichlet Eta functions and their derivatives. Now we present another method 
that requires no such difficulties, employing both simple analytic and numerical techniques. 
Numerical part participates in finding the optimum point to get the results converged. We call 
it “numerical convergence method”. We shall see in the last section that its result is numerically 
equivalent to the analytic method that we mentioned earlier.  
 
3. Methodology 
 The idea of numerical convergence method is simple. Let us focus on the integrand. 

In order to simplify the integral ∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
  

𝛽𝑐𝜔𝐷
2

 

0
 we define a new discontinuous function  

 

𝑔𝑥(𝑥) ≡ {
𝑡𝑎𝑛ℎ(𝑥)        ; 0 < 𝑥 ≤ 𝑥 ̃

1            ; 𝑥 > 𝑥̃ 
 ,       (22) 

 
where we have approximated 𝑡𝑎𝑛ℎ(𝑥) by 𝑔𝑥(𝑥) , realizing that the hyperbolic tangent function 
asymptotically tends to unity. By this, we have adopted the parameter 𝑥̃ after which  
𝑔𝑥(𝑥) becomes unity. This parameter is, of course, adjustable.   

After replacing 𝑡𝑎𝑛ℎ(𝑥) by 𝑔𝑥̃(𝑥), we can simply evaluate the integral  ∫ 𝑑𝑥 
𝑡𝑎𝑛ℎ (𝑥)

𝑥
 

𝛽𝑐𝜔𝐷
2

0
 

and obtain 
 

∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

0
≅ ∫  

𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥 + ∫  

1

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

 

𝑥

𝑥̃

0
.    (23) 

 
The advantage is that the second integral on the RHS can be simply carried out, yielding  
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∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

0
≅ ∫  

𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥 + 𝐿𝑛 (

𝛽𝑐𝜔𝐷

2𝑥̃
)

𝑥̃

0
   .   (24) 

 
Two terms on the right maybe grouped in a single one under the Logarithmic expression, i.e., 

 

∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

0
≅ 𝐿𝑛 (𝛽𝑐𝜔𝐷 (

 𝐸𝑥𝑝[∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝑥̃
0 ]

2𝑥
)) .   (25) 

 
This equation may be rewritten as 
 

∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

0
≅ 𝐿𝑛 (𝛽𝑐𝜔𝐷𝛷(𝑥̃)) ,       (26) 

 
provided that we define the function  𝛷(𝑥̃) such that 
 

𝛷(𝑥̃) ≡
 𝐸𝑥𝑝[∫  

𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝑥̃
0 ]

2𝑥
.           (27) 

 
The main idea of this method is to find suitable values of 𝑥̃ that makes 𝛷(𝑥̃)  numerically 
convergent, up to 5 decimal places of accuracy.  
 
4. Results  
 In order to see the convergence of 𝛷(𝑥̃), we input several numerical values of 𝑥𝑐 and 
evaluate ∫ 𝑡𝑎𝑛ℎ𝑥 

𝑥
𝑑𝑥

𝑥

0
  ,  𝑒𝑥𝑝 {∫  

𝑡𝑎𝑛ℎ𝑥 

𝑥
𝑑𝑥

𝑥

0
} , and then 𝛷 .   All numerical values are displayed in 

5 decimal places. the results are given in Table 1. 
 

Table 1  Numerical values of  𝛷  for some values of 𝑥̃ (calculated with Mathematica 10)  

𝒙 ∫
𝒕𝒂𝒏𝒉𝒙 

𝒙
𝒅𝒙

𝒙̃

𝟎

 𝒆𝒙𝒑 {∫  
𝒕𝒂𝒏𝒉𝒙 

𝒙
𝒅𝒙

𝒙̃

𝟎

} 
𝛷 ≡

𝒆𝒙𝒑 {∫
𝒕𝒂𝒏𝒉𝒙 

𝒙
𝒅𝒙

𝒙  ̃

𝟎 
}

𝟐𝒙
 

1.0 0.90968                     2.48351 1.24176 
2.0 1.51941 4.56954 1.14238 
3.0 1.91811 6.80809 1.13468 
4.0 2.20515 9.07161 1.13395 
5.0 2.42823 11.3388 1.13388 
6.0 2.61054 13.6064 1.13387 
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𝒙 ∫
𝒕𝒂𝒏𝒉𝒙 

𝒙
𝒅𝒙

𝒙̃

𝟎

 𝒆𝒙𝒑 {∫  
𝒕𝒂𝒏𝒉𝒙 

𝒙
𝒅𝒙

𝒙̃

𝟎

} 
𝛷 ≡

𝒆𝒙𝒑 {∫
𝒕𝒂𝒏𝒉𝒙 

𝒙
𝒅𝒙

𝒙  ̃

𝟎 
}

𝟐𝒙
 

7.0 2.76469 15.8741 1.13387 
8.0 2.89822 18.1419 1.13387 
9.0 3.01600 20.4096 1.13387 
10.0 3.12137 22.6773 1.13387 

 
5. Conclusions and Discussions 
 As obviously seen from Table 1, the numerical value converges at  𝛷 = 1.13387.  Even 
though we don’t exactly identify the onset of real 𝑥̃ that makes 𝛷 converged, we pay attention 
on integral numbers of 𝑥̃ instead and find that  𝛷 converges at 𝑥̃ = 6.0 onwards. 
 With this, Eq. (26) turns out to be, for  𝛽𝑐𝜔𝐷 ≫ 1,  
 

∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

0
≅ 𝐿𝑛 (1.13387  𝛽𝑐𝜔𝐷)            (28) 

 
which is obviously equivalent to that obtained from analytic method, Eq. (21) in introduction 
section. We have to emphasize that in analytic method we deal with cumbersome derivations 
and we unavoidably confront Dirichlet Eta and Gamma functions and their derivatives. On the 
other hand, by numerical convergence method we just evaluate 𝛷 at some input values of 𝑥̃, 
and after we obtain the converged value of  𝛷 we get from Eq.(26) the correct value of 

∫  
𝑡𝑎𝑛ℎ (𝑥)

𝑥
   𝑑𝑥

𝛽𝑐𝜔𝐷
2

0
, which is numerically identical to 2 𝑒𝛾 

𝜋
 obtained by analytic method.  

 Not surprisingly, the accuracy of this method can go beyond 5 decimal places if we set 
it to be. For 2 examples, to obtain converged numerical value of 𝛷 for 8 decimal places of 
accuracy we have to go up to 𝑥̃ = 9.0  onwards and get 𝛷 = 1.13386592, and in case of 10 
decimal places of accuracy we have to go up to 𝑥̃ = 11.0 onwards and obtain 𝛷 =

1.1338659173. Both are undoubtedly equal to the numerical values of 2 𝑒𝛾 

𝜋
. The higher level 

of accuracy we set, the greater value of 𝑥̃ we employ.  
Even though evaluation of 𝛷 at accuracy levels much higher than 5 decimal places can 

be performed in principle but, in practice, it is pointless to go for that since researchers in this 

field so far pay no attention on it. They just take numerical values of 2 𝑒𝛾 

𝜋
 for 2 decimal places. 

For example, some textbook authors take it to be just 1.13 (Annett, 2003; Tinkham, 2004; Fetter 
& Walecka, 2003; Grosso & Parravicini, 2000). Moreover, some others display it more roughly as 
1.14 (Alexandrov, 2003; Kittel, 1987; Mahan, 1990).  
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