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Abstract

In this study, we compare the three different methods for the joint estimation of both
scale and shape parameters for two-parameter in Weibull distribution when data are
contaminated with outliers: the method of moment (MOM), the maximum likelihood method (MLE)
and the weighted likelihood method (WLE). The performance of these methods is compared
using the Monte Carlo s imulation and the efficiency of these methods is compared based on
RMSE. From simulation results, we found that the WLE outperforms the other methods for the
scale parameter in term of RMSE of the estimator for scale parameter for S =0.5. For the
RMSE of the estimator for shape parameter of the MLE approach provides better results for the
scale parameter when outliers in the data set are small. In term of RMSE for two parameter
estimators, the WLE performs better than the other methods when #=0.5. For =1 and 1.5,

the MOM also performs well, especially and outliers in the data set are small.

Keywords: Maximum Likelihood Estimator, Weighted Likelihood Estimator, Method of Moment,

Contamination

Introduction

The Weibull distribution is widely used in reliability and life data analysis its usefulness in
many fields. When samples are collected, the two—parameter Weibull is often used as the first
step of the Weibull analysis. Applications of the two-parameter Weibull distribution, we mention
wind speed amount, prediction of water levels, and analysis of lifetime of materials. The

distribution function for the two-parameter Weibull distribution is

_ s
Fcs py=1-e X9

and the probability density function is

;X>0,6>0,4>0, (1)

f(x;§,ﬁ):ﬂﬂxﬁ_le_(xm)ﬂ X20,5>0, 5>0,
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where § is the scale parameter and S is the shape parameter of the distribution (Murthy et al.,

()}

2004). Let X ={X,X,....,X,} be sample values from a distribution with a density function
f(x;6,6) the maximum likelihood estimator (MLE) of {0,8} are obtained by maximizing the
maximum likelihood function

L(zs,mx(”)):_%lln f(:6.8). 3)

i=

The Weibull distribution can be used to model many of life behaviors. For the two-parameter
Weibull distribution plays a central role in lifetime models. If a dataset is contaminated with
outliers, the maximum likelihood estimator (MLE) can be very unreliable (Boudt et al., 2011).
Ahmed et al. (2005) propose the method of weighted likelihood estimator (WLE). They consider

an estimation method based on the maximizing of weighted likelihood function of exponential

distribution parameters. They establish that the suggested weighted likelihood method provides

Ol-trimmed mean type estimators and suggest a special choice of weights which connected with
the theory of robust estimation, and based on the maximum likelihood method with rejection of
spurious observations. The WLE basically provides the MLE if we assume all weights are equal
one. The statistical asymptotic properties of the WLE are developed and a simulation study is
conducted to appraise the behavior of the proposed estimators for moderate samples.

Boonlha (2013) proposed for robust of the weighted likelihood estimator (WLE) for the
Weibull distribution parameters were considered only an estimator of the scale parameter of the
Weibull distribution and assume that the shape parameter is known. The WLE method can be
extended to estimate the two-parameter Weibull distribution when we assume both of the scale
and shape parameter are unknown. Hence, in this study the WLE is applied to the Weibull
distribution for two parameters, when the data set are contaminated with outliers. However, the
WLE method can be extended to estimate the two-parameter Weibull distribution, we assume
both scale and shape parameters are unknown. So, in this simulation studies are extended to
compare the MLE, WLE, and MOM methods based on root mean square error.

The rest of this paper is organized as follows. In section two we define the WLE for the
two-parameter Weibull distribution. In next section, we compare the MLE, WLE and MOM in

terms of root mean square error. Some conclusions remarks are finally made in last section.

Estimation methods

The distribution function for the two-parameter Weibull distribution is

—(xlé)ﬁ

F(x;S,8)=1—e :X>0,5>0,8>0, (4)
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and the probability density function is

s o B P —(x15P
f(x;0,8) 5,8)( e ;x>0,6>0, >0, (5)

where § is the scale parameter and £ is the shape parameter of the distribution (Murthy et al.,
2004). Assume that the sample x4,X2....X, is taken from a population that follows a distribution
with  the distribution function GE(X) to be defined now. We define the

&£ — contamination model as
G.(X) =(1-&)F(x;0,8)+ R (X0, B) (6)

where F(x;9, /) is the Weibull distribution with parameters (¢, /), and contamination F,(x;6,, 4,)
is the Weibull distribution with parameters (8, B,) where &, =A,6, B, =A,B, A, A, 20,
and £ denotes the contamination proportion, 0<g <1. For instance, one may use of 90 % the
Weibull distribution, and 1 % the Weibull distribution with the same shape but difference scale
which representing outliers. Figure 1 shows the probability density function plot for the Weibull
distribution with the Weibull distribution contamination when shape parameter is 1.5, scale
parameteris 1, A, =2 and A, =1. The goal is still to estimate the parameters from the data, as

if the contamination did not exist.

---- W(1,1.5)
- W(1(2),1.5(1))
— 0.90W/(1,1.5)+0.1W(1(2),1.5(1))
@ |
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g ° |
o
a
o
2

Figure 1. The probability density function plot for the Weibull distribution with the Weibull
distribution contamination when shape parameter is 1.5, scale parameter is 1,

(A, A,)=(2.2)
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The method of moments (MOM)

The «™ moment of the Weibull distribution (Murthy et al., 2004) about the mean, 1, , is

ok ko k(K (k=] L
=0t E oot (2l "

1
=00 | 1+—|. 8
“ (+ﬂj ©

given by

The mean u is given by

2

The variance o“ is given by

A UC AT R CEN N S

The method of moments is based on expressing k moments in terms of the parameters
of the distribution. Using sample moments in place of the moments in these relationships yields k
equations containing the k unknown parameters. Solving these yields the estimates. Note that in
most cases, the estimates need to be obtained using numerical techniques. One can use the
moments Mk=E[Xk], the central moments yk:E[(X—y)k] or a combination of the two. In the
case of complete datax.x ..x , the sample moments Mk (k=1,2,3) and sample central moments
are obtained as follows: I\?Ik:i.glxik and ;}k:igl(xi _y)k where X

i= i=

estimators are asymptotically consistent and are normally distribution.

=Mj. For the most, momemt

The maximum likelihood estimator (MLE)
Let x™-ix.x,...xp; be sample values from a distribution, the maximum likelihood

estimator {5,5} of the parameter {5,5} be defined as the solution of the equation

n n
2 of (X4:6.5) 2 0f (X4:6.5)
i=1 _ i=1 _
2 =0 and o5 =0, (10)
The log-likelihood function is
NS
mﬂw&m=MWFMM®HﬂJMUQ{%)- (11)
Differentiating (11) with respect to § and g we have
onf(q68) _ BB Xijﬂ
a5 T s ( s) (12)

and
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ey (3) o) ow3)-(3 W) oo
Then
2 ant (45.,8) _ D (—W(X‘]ﬂ] _ s mﬂ, (14
oy 06 izt & ol& 5 Jim\s
and

nW—n i ﬁ_ﬁﬂ (ﬁ] _n n (le_n[)(l)ﬂ [ﬁ}
igl op _El(ﬁ+ln(5j (5) In 5 _ﬂ+i§1|n S igl 5 In 5 S (15)

Set the (12) and (13) equal to zero, from (14), we get
1

5:[1 3 x,ﬂ]ﬂ. (16)

Ni=1

If B is obtained, the & can be determined. To solve B by using Newton—-Raphson method.

The weighted likelihood estimator (WLE)

The method of weighted likelihood estimator (WLE) basically provides the MLE if we
assume all weights are equal one. The statistical asymptotic properties of the WLE are developed
and a simulation study is conducted to appraise the behavior of the proposed estimators for
moderate samples. Estimators of {5,544 obtained by maximizing the weighted log likelihood

function
n
Lo, g1 xM) = _zlwi M)y (f(xi:5.8)), (17)
1=

where w; (x(n)), 1<i<n depends on the sample are called weighted likelihood estimators (WLE)
of {5,4}. Following the idea presented in Ahmed et al. (2005), let the weight w, that corresponds
to the i observation to be 1, if its estimated likelihood is sufficiently large, and O elsewhere. To

be more precise, let

1 if f(.xi;é,/})>C (18)
0 otherwise.

where {5,4} be the MLE of the parameter {5, This means that we delete all improbable
observations from the sample, we reject only extreme order statistics. Following the ideas of

Ahmed, Volodin, and Hussein (2005), we suggest this not be considered as a constant. Rather

assume that C is chosen from the condition of a small probability of rejection of an observation
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when we sample from the non contamination Weibull distribution with cumulative distribution

function, F(x;8,5). Hence, we define C by the given pre-assigned small probability « as

P{f{ max xi;5,ﬁ]<c} =a. SO we get, C :%. The WLE estimator {5, 4} of the parameter {55} is
I<i<n
defined as the solution of the equation
m m
2 of (Xjy :0.) 2 of (Xjy :0./9)
k=1 =0 and k=1 E— (19)
08 op

where Xig 1 Xig s X @re the remaining observations in the sample after the rejection method.

The log-likelihood function is

-\
X
lnf(xik 16, B) = In(B) - BIn(5) + (ﬂ—l)ln(xik ) —(g‘j : (20)
Differentiating (20) with respect to § and g we have
ot oiy 88 __p g i P o
o5 S5 sl s )
and
- By . NPy
op yij S ) Yij 1) 1) S
Then
m aln (% :6.8) _ M| g pf % B mg B M ( X B
gyl gy, -
k=1 o5 -l 6 S\ o 5§ 5\ o
and

ng o £+|n Xlik _(Xlkjﬂln Xlik :m+ g]: In Xlik _ g]: (Xlk)ﬂln Xlik i (24)
k=t B k= # (6 )17 o)) Byt {0 ) =1\ 9 o

Set the (21) and (22) equal to zero, from (23), we get
1

f{1m 5\p
5_[mkzlxik] . (25)

If g is obtained,the § can be determined. To solve £ by using Newton—Raphson method.

Simulation Study
The main objective of this study is to compare the performance of three different
methods to estimate the shape and scale parameters of two-parameter Weibull distribution with

outlier. A simulation study we generate the random sample data from the & —contamination
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model with two-parameter Weibull distribution performance of three different methods to estimate
the scale and shape parameters. The central distribution to be the Weibull with scale parameter
6 =1 and shape parameter = 0.5, 1, and 1.5. The contamination has the Weibull distribution
with scale parameter 6, =A,0 where A, =1,2 and shape parameter S, = A, where A, =12
and the contamination proportion & = 0.01 and 0.10 and the values of « =0.01, 0.05 and 0.10. In
this simulation study, we have chosen sample n =30, 50 and 100 to represent small, moderate
and large sample size. All the following simulations results are based on 5,000 replicates and
the simulation was done using statistical software R version 3.3.1. Then we compute the root

mean square error (RMSE) of the estimator for scale and shape parameter

5 L5000 o 2o 15000 . 2 o he perf ;
RMSEs= |—— | — , an RMSE g=, | —— 1~ . To compare the performance o
9745000 El( i-9) A=\(s000 Ai-s) P P

the methods we compute the sample root mean square error (RMSE) of two parameter given by

1 50000, . 2 . 2
RMSE= |- > {(ﬁ—é) +Bi-B) } The estimator with smaller RMSE are preferred.
i=1

Results and discussion

The results of the simulation study are summarized and tabulates in Table 1 to 3 for the
RMSE of the three estimators for all sample, £ and & respectively. It is evident that as the
sample size increase the values of the RMSE all methods decrease and hence the estimation
precision of the parameters increases. When shape parameter increase, the RMSE decrease
when all parameter fixed. And the RMSE is increase when & increase. Consider the RMSE of
the estimator scale parameter, for outlier through shape parameter the results in Table 1 obtained
from A, =1 and A, =2. The comparison shows that the WLE outperforms the other methods
for the scale parameter in term of RMSE for #=0.5. Consider the RMSE of the estimator for
scale parameter, of the MLE approach provides better results for the scale parameter if outliers in
the data set is small that is £ =0.01, and large values of &, say & =0.10the MOM approach
performs better than the other methods in term of S =1. For #=1.5, we found that MOM, MLE
approach performs slightly better than the WLE approach in estimating scale parameter for
Weibull distribution. In case the RMSE of the estimator for shape parameter, in general the
RMSE of the shape parameter of the MOM outperforms the other methods for the shape
parameter. In term of RMSE for two parameter estimators, the MLE also performs well, especially
and outliers in the data set are small, say £ =0.01. To generate outliers through only shape
parameter, keeping the scale parameter fixed, the results in Table 2 obtained from A, =2 and
A, =1. The comparison shows that the WLE outperforms the other methods for the scale

parameter in term of RMSE for S =0.5 if outlier in the data set is small value at £ =0.10, the
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MOM approach performs better than the other methods for all S . Consider the RMSE of the
estimator for shape parameter, of the MLE approach provides better results for the scale
parameter if outlier in the data set is small. In term of RMSE for two parameter estimators when
£ =05 and 1 the WLE perform better than the other methods if &£=0.0land the MOM
approach performs better than the other methods. To generate outliers through shape and scale
parameter the results in Table 3 obtained from A, =2 and A, =2. The comparison shows that
the WLE outperforms the other methods for the scale parameter in term of RMSE for g =0.5 if
outliers in the data set are small. For f=1and 1.5 the MLE approach provides better results for
the scale parameter if &£ =0.01. When large values the MOM approach performs better than the
other methods for all . Some situations, MOM performs well, especially for shape estimates.
In addition, it can be observed that the sample RMSE of two parameters in almost all case WLE

performed better than the MLE and MOM when £ =0.01.

Table 1. RMSE for scale and shape parameters of Weibull distribution obtained from a

contamination W (L, ) +&W (1, 0.5(2)).

RMSEg RMSEg RMSE

MOM  MLE WLE | MOM  MLE WLE | MOM  MLE WLE

0.5 30 | 0.01 | 0.01 | 0.558 0.430 0.429 | 0.153 0.104 0.109 | 0.579 0.442 0.443
0.05 | 0.558 0.430 0.420 | 0.153 0.104 0.124 | 0.579 0.442 0.438
0.1 | 0.558 0.430 0.410 | 0.153 0.104 0.133 | 0.579 0.442 (0.431

0.10 | 0.01 | 0.525 0.515 0.508 | 0.183 0.205 0.219 | 0.557 0.554 0.554
0.05 | 0.525 0.515 0.478 | 0.183 0.205 0.245 | 0.557 0.554 0.538
0.1 | 0525 0.515 0.453 | 0.183 0.205 0.261 | 0.557 0.554 0.523

50 | 0.01 | 0.01 | 0.425 0.329 0.329 | 0.120 0.082 0.087 | 0.442 0.339 0.340
0.05 | 0.425 0.329 0.320 | 0.120 0.082 0.097 | 0.442 0.339 0.334
0.1 | 0425 0.329 0.312 | 0.120 0.082 0.104 | 0.442 0.339 0.329

0.10 | 0.01 | 0.404 0430 0419 | 0.144 0.180 0.194 | 0.429 0.467 0.462
0.05 | 0.404 0.430 0.392 | 0144 0.180 0.212 | 0.429 0467 0.445
0.1 | 0.404 0430 0.370 | 0.144 0.180 0.224 | 0.429 0467 0.433

100 | 0.01 | 0.01 | 0.309 0.240 0.238 | 0.088 0.065 0.069 | 0.321 0.248 0.248
0.05 | 0.309 0.240 0.230 | 0.088 0.065 0.076 | 0.321 0.248 0.242
0.1 | 0.309 0.240 0.224 | 0.088 0.065 0.081 | 0.321 0.248 0.238

0.10 | 0.01 | 0.298 0.365 0.352 | 0.107 0.162 0.174 | 0.316 0.399 0.392
0.05 | 0.298 0.365 0.328 | 0107 0.162 0.186 | 0.316 0.399 0.377
0.1 | 0298 0.365 0.312 | 0107 0.162 0.195 | 0.316 0.399 0.368
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RMSEg RMSEg RMSE

By E 1 % 'vom ME WLE | MOM MLE WLE | MOM MLE  wiE
1] 30| 001|001/ 0194 0189 0189 | 0.187 0.173 0.174 | 0269 0.256 0.257
005 | 0.194 0.189 0.190 | 0.187 0473 0.178 | 0269 0.256 0.261

01| 0194 0183 0192 | 0.187 0473 0184 | 0.269 0.256 0.266

010 | 0.01 | 0177 0181 0.181 | 0.256 0296 0298 | 0.312 0347 0.348
005 | 0177 0.181 0.182 | 0.256 0296 0.308 | 0.312 0.347 0.357

0.1 | 0177 0481 0182 | 0.256 0296 0.321 | 0.312 0347 0.369

50 | 0.01 | 0.01 | 0.150 0.147 0.147 | 0142 0.127 0.128 | 0.207 0194 0.194
005 | 0.150 0.147 0.47 | 0142 0427 0132 | 0.207 0194 0.197

01| 0150 0.147 0148 | 0.142 0427 0135 | 0.207 0194 0.200

010 | 0.01 | 0138 0143 0143 | 0.207 0251 0253 | 0.249 0289 0.291
005 | 0138 0.143 0143 | 0.207 0251 0262 | 0.249 0289 0.299

01 | 0138 0.143 0143 | 0.207 0251 0270 | 0.249 0289 0.306

100 | 0.01 | 0.01 | 0.107 0.104 0.104 | 0.103 0.090 0.090 | 0.148 0.137 0.138
0.05 | 0.107 0.104 0.104 | 0.103 0.090 0093 | 0.148 0.137 0.140

01 | 0107 0.104 0105 | 0.103 0.090 0.095 | 0.148 0.137  0.141

010 | 0.01 | 0174 0200 0.198 | 0.253 0339 0.344 | 0.307 0393 0.397
005 | 0174 0200 0.196 | 0.253 0.339 0.354 | 0.307 0.393 0.404

0.1 | 0174 0200 0.193 | 0.253 0.339 0.361 | 0.307 0.393 0.409

15| 30| 001 |001]| 0126 04125 0125 | 0.248 0255 0255 | 0.278 0284 0.284
005 | 0.126 0.125 0125 | 0.248 0255 0.258 | 0.278 0284 0.287

01| 0126 0425 0126 | 0.248 0255 0.262 | 0.278 0284 0.290

010 | 0.01 | 0.114 0.114 0.114 | 0354 0396 0396 | 0.372 0412 0.412
005 | 0114 0.114 0114 | 0.354 0396 0400 | 0.372 0412 0.416

0.1 | 0114 0114 0115 | 0.354 0.396 0406 | 0.372 0412 0422

50 | 0.01 | 0.01 | 0.098 0.097 0.097 | 0185 0.186 0.186 | 0.210 0.210 0.210
0.05 | 0.098 0.097 0.097 | 0.185 0.186 0.187 | 0.210 0.210 0.211

0.1 | 0.098 0.097 0098 | 0.185 0.186 0.190 | 0.210 0.210 0.214

010 | 0.01 | 0.089 0.089 0.089 | 0.291 0328 0.328 | 0.304 0.340 0.340
0.05 | 0.089 0.089 0.089 | 0.291 0328 0.332 | 0.304 0.340 0.344

0.1 | 0.089 0.089 0.089 | 0.2901 0.328 0.337 | 0.304 0.340 0.349

100 | 0.01 | 0.01 | 0.069 0.069 0.069 | 0.132 0.129 0.129 | 0.149 0.146 0.146
005 | 0.069 0.069 0.069 | 0132 0.129 0130 | 0.149 0.146 0.147

0.1 | 0.069 0.069 0.069 | 0.132 0.129 0132 | 0.149 0.146 0.149

010 | 0.01 | 0.063 0064 0064 | 0.241 0277 0278 | 0.250 0284 0.285
0.05 | 0.063 0064 0064 | 0241 0277 0281 | 0.250 0284 0.289

0.1 | 0.063 0064 0064 | 0241 0277 0285 | 0.250 0284 0.292

99
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Table 2. RMSE for scale and shape parameters of Weibull distribution obtained from a

contamination W (1, ) + éW (1(2), 0.5(2)).

RMSEg RMSEg RMSE

MOM MLE WLE | MOM MLE WLE | MOM MLE  WLE

0.05 30 | 0.01 | 0.01 | 0.578 0.473 0.470 | 0.162 0.126 0.132 | 0.601 0.489 0.489
0.05 | 0.578 0.473 0.452 | 0.162 0.126 0.150 | 0.601 0.489 0.477
0.1 | 0578 0.473 0.436 | 0.162 0.126 0.160 | 0.601 0.489 0.464

0.10 | 0.01 | 0.798 0.814 0.804 | 0.243 0.239 0.248 | 0.834 0.849 0.842
0.05 | 0.798 0.814 0.765 | 0.243 0.239 0.269 | 0.834 0.849 0.811
0.1 | 0798 0.814 0.728 | 0.243 0.239 0.283 | 0.834 0.849 0.781

50 | 0.01 | 0.01 | 0445 0.373 0.370 | 0.127 0.103 0.109 | 0463 0.387 0.386
0.05 | 0.445 0.373 0354 | 0.127 0.103 0.121 | 0463 0.387 0.374
0.1 | 0445 0.373 0.339 | 0.127 0.103 0.129 | 0463 0.387 0.363

0.10 | 0.01 | 0.678 0.736 0.722 | 0.199 0214 0.223 | 0.707 0.767 0.756
0.05 | 0.678 0.736 0.689 | 0199 0.214 0.239 | 0.707 0.767 0.729
0.1 | 0.678 0.736 0.661 | 0.199 0.214 0.249 | 0.707 0.767 0.706

100 | 0.01 | 0.01 | 0.327 0.290 0.285 | 0.093 0.086 0.091 | 0.340 0.303 0.299
0.05 | 0.327 0.290 0.271 | 0.093 0.086 0.099 | 0.340 0.303 0.289
0.1 | 0.327 0.290 0.261 | 0.093 0.086 0.104 | 0.340 0.303 0.281

0.10 | 0.01 | 0.570 0.681 0.666 | 0.156 0.194 0.203 | 0.591 0.708 0.697
0.05 | 0.570 0.681 0.641 | 0.156 0.194 0.214 | 0.591 0.708 0.676
0.1 | 0.570 0.681 0.622 | 0.156 0.194 0.221 | 0.591 0.708 0.660

1 30 | 0.01 | 0.01 | 0.195 0192 0.192 | 0.194 0.186 0.187 | 0.275 0.267 0.268
0.05 | 0.195 0.192 0.193 | 0.194 0.186 0.192 | 0.275 0.267 0.272
0.1 | 0195 0.192 0.194 | 0.194 0.186 0.199 | 0.275 0.267 0.277

0.10 | 0.01 | 0.249 0.265 0.264 | 0.347 0.395 0.396 | 0.427 0.475 0.476
0.05 | 0.249 0.265 0.263 | 0.347 0.395 0.407 | 0.427 0475 0.485
0.1 | 0.249 0.265 0.259 | 0.347 0.395 0.421 | 0.427 0475 0.4%

50 | 0.01 | 0.01 | 0.152 0.150 0.150 | 0.148 0.140 0.141 | 0.212 0.205 0.205
0.05 | 0.152 0.150 0.150 | 0.148 0.140 0.145 | 0.212 0.205 0.209
0.1 | 0.152 0.150 0.150 | 0.148 0.140 0.149 | 0.212 0.205 0.212

0.10 | 0.01 | 0.219 0.237 0.237 | 0.297 0.347 0.349 | 0.369 0.420 0.422
0.05 | 0.219 0.237 0.234 | 0.297 0.347 0.360 | 0.369 0.420 0.429
0.1 | 0219 0.237 0.231 | 0.297 0.347 0.369 | 0.369 0.420 0.435

100 | 0.01 | 0.01 | 0.109 0.108 0.108 | 0.108 0.103 0.104 | 0.153 0.149 0.150
0.05 | 0.109 0.108 0.108 | 0.108 0.103 0.107 | 0.153 0.149 0.152
0.1 | 0.109 0.108 0.108 | 0.108 0.103 0.110 | 0.153 0.149 0.154
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RMSEg RMSEg RMSE

Bl © 1 % 'MoM ME WE | MOM ME WLE | MOM MIE WiE
010 | 0.01 | 0196 0216 0215 | 0253 0311 0315 | 0.320 0378 0.381
005 | 0196 0216 0213 | 0253 0311 0322 | 0.320 0.378 0.386

01| 0196 0216 0210 | 0253 0311 0328 | 0.320 0378 0.390

15| 30| 001 |001]| 0126 0126 0126 | 0.255 0266 0266 | 0.285 0294 0.294
005 | 0126 0.126 0.126 | 0.255 0266 0.269 | 0.285 0294 0.297

01| 0126 0126 0.126 | 0255 0266 0.273 | 0.285 0294 0.301

010 | 0.01 | 0.163 0167 0.167 | 0.479 0530 0530 | 0.506 0556 0.556
0.05 | 0.163 0.167 0.167 | 0.479 0530 0.534 | 0.506 0.556 0.560

0.1 | 0163 0.167 0.167 | 0.479 0530 0.542 | 0.506 0.556 0.567

50 | 0.01 | 0.01 | 0.098 0.098 0.098 | 0192 0196 0.196 | 0.216 0219 0.219
0.05 | 0.098 0.098 0.098 | 0.192 0196 0.198 | 0.216 0219 0.221

0.1 | 0.098 0.098 0.098 | 0.192 0.196 0.201 | 0.216 0219 0.224

010 | 0.01 | 0.146 0150 0.150 | 0.420 0461 0.462 | 0.444 0485 0.485
0.05 | 0.146 0150 0.150 | 0.420 0461 0.467 | 0.444 0485 0.490

0.1 | 0146 0150 0.149 | 0.420 0461 0473 | 0.444 0485 0.496

100 | 0.01 | 0.01 | 0.070 0.070 0.070 | 0.138 0.139 0.139 | 0.155 0156 0.156
0.05 | 0.070 0.070 0.070 | 0.138 0.139 0.141 | 0.155 0.156 0.158

0.1 | 0.070 0.070 0071 | 0.138 0.139 0.143 | 0.155 0.156 0.159

010 | 0.01 | 0133 0137 0137 | 0.373 0409 0410 | 0.396 0432 0.432
005 | 0133 0137 0136 | 0.373 0409 0415 | 0.396 0432 0.437

0.1 | 0133 0137 0.136 | 0.373 0409 0420 | 0.396 0432 0.441
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Table 3. RMSE for scale and shape parameters of Weibull distribution obtained from a

contamination W (1, £) + eW (1(2), 0.5(2)).

RMSEg RMSEg RMSE

MOM  MLE WLE | MOM  MLE WLE | MOM  MLE WLE

0.05 30 | 0.01 | 0.01 | 0.565 0.453 0.451 | 0.156 0.120 0.126 | 0.586 0.468 0.468
0.05 | 0.565 0.453 0.437 | 0.156 0.120 0.144 | 0.586 0.468 0.460
0.1 | 0.565 0.453 0.423 | 0.156 0.120 0.154 | 0.586 0.468 0.450

0.10 | 0.01 | 0.606 0.678 0.662 | 0.217 0.269 0.291 | 0.644 0730 0.723
0.05 | 0.606 0.678 0.616 | 0.217 0.269 0.321 | 0.644 0.730 0.695
0.1 | 0.606 0.678 0.580 | 0.217 0.269 0.340 | 0.644 0730 0.672

50 | 0.01 | 0.01 | 0431 0.353 0.351 | 0.122 0.098 0.104 | 0448 0.366 0.366
0.05 | 0.431 0.353 0.337 | 0.122 0.098 0.116 | 0.448 0.366 0.357
0.1 | 0.431 0353 0.325 | 0.122 0.098 0.124 | 0.448 0.366 0.348

0.10 | 0.01 | 0.487 0.604 0.583 | 0.172 0.241 0.260 | 0.516 0.651 0.639
0.05 | 0.487 0.604 0544 | 0172 0.241 0.283 | 0.516 0.651 0.613
0.1 | 0.487 0604 0514 | 0172 0.241 0.297 | 0.516 0.651 0.593

100 | 0.01 | 0.01 | 0.314 0.268 0.264 | 0.090 0.082 0.087 | 0.327 0.280 0.278
0.05 | 0.314 0.268 (0.252 | 0.090 0.082 0.094 | 0.327 0.280 0.269
0.1 | 0.314 0.268 0.243 | 0.090 0.082 0.100 | 0.327 0.280 0.263

0.10 | 0.01 | 0.379 0.552 0.529 | 0.129 0.220 0.237 | 0.400 0594 0.580
0.05 | 0.379 0552 0498 | 0.129 0220 0.253 | 0.400 0.594 0.559
0.1 | 0379 0552 0476 | 0129 0.220 0.263 | 0.400 0.594 0.544

1 30 | 0.01 | 0.01 | 0.194 0.191 0.191 | 0.192 0.184 0.185 | 0.273 0.265 0.266
0.05 | 0.194 0.191 0.192 | 0.192 0.184 0.190 | 0.273 0.265 0.270
0.1 | 0.194 0191 0193 | 0192 0.184 0.197 | 0.273 0.265 0.276

0.10 | 0.01 | 0.228 0.248 0.248 | 0.350 0.421 0424 | 0.418 0.489 0.491
0.05 | 0.228 0.248 0.247 | 0.350 0.421 0.438 | 0.418 0.489 0.502
0.1 | 0.228 0.248 0.243 | 0.350 0.421 0.456 | 0.418 0489 0.517

50 | 0.01 | 0.01 | 0.151 0.149 0.149 | 0.147 0.138 0.139 | 0.211 0.203 0.204
0.05 | 0.151 0.149 0.149 | 0.147 0.138 0.143 | 0.211 0.203 0.207
0.1 | 0.151 0149 0.150 | 0.147 0.138 0.148 | 0.211 0.203 0.210

0.10 | 0.01 | 0.198 0.221 0.220 | 0.297 0.374 0.378 | 0.357 0.434 0.437
0.05 | 0.198 0.221 0.218 | 0.297 0.374 0.391 | 0.357 0.434 0.447
0.1 | 0198 0.221 0214 | 0.297 0.374 0.402 | 0.357 0.434 0.455
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Table 3. (Cont.)

RMSE; RMSEg RMSE

MOM MLE WLE | MOM MLE WLE | MOM MLE WLE

100 | 0.01 | 0.01 | 0.108 0.107 0.107 | 0.107 0.102 0.102 | 0.152 0.148 0.148
0.05 | 0.108 0.107 0.107 | 0.107 0.102 0.105 | 0.152 0.148 0.151
0.1 | 0.108 0.107 0.107 | 0.107 0.102 0.108 | 0.152 0.148 0.152

0.10 | 0.01 | 0.174 0.200 0.198 | 0.253 0.339 0.344 | 0.307 0.393 0.397
0.05 | 0174 0.200 0.196 | 0.253 0.339 0.354 | 0.307 0.393 0.404
0.1 | 0174 0.200 0.193 | 0.253 0.339 0.361 | 0.307 0.393 0.409

1.5 30 | 0.01 | 0.01 | 0.126 0.126 0.126 | 0.255 0.266 0.266 | 0.285 0.294 0.294
0.05 | 0.126 0.126 0.126 | 0.255 0.266 0.269 | 0.285 0.294 0.297
0.1 | 0126 0126 0.126 | 0.255 0.266 0.273 | 0.285 0.294 0.300

0.10 | 0.01 | 0.160 0.165 0.165 | 0.510 0.568 0.568 | 0.534 0.592 0.592
0.05 | 0.160 0.165 0.165 | 0.510 0.568 0.573 | 0.534 0.592 0.596
0.1 | 0160 0.165 0.164 | 0.510 0.568 0.582 | 0.534 0.592 0.605

50 | 0.01 | 0.01 | 0.098 0.098 0.098 | 0.192 0.196 0.196 | 0.216 0.219 0.219
0.05 | 0.098 0.098 0.098 | 0192 0.196 0.198 | 0.216 0.219 0.221
0.1 | 0.098 0.098 0.098 | 0.192 0.196 0.201 | 0.216 0.219 0.224

0.10 | 0.01 | 0.144 0.149 0.149 | 0.449 0.499 0501 | 0.472 0521 0.522
0.05 | 0.144 0149 0.148 | 0.449 0.499 0.507 | 0.472 0.521 0.528
0.1 | 0144 0.149 0.148 | 0.449 0.499 0513 | 0472 0.521 0.534

100 | 0.01 | 0.01 | 0.070 0.070 0.070 | 0.138 0.139 0.140 | 0.155 0.156 0.156
0.05 | 0.070 0.070 0.070 | 0138 0.139 0.141 | 0155 0.156 0.158
0.1 | 0.070 0.070 0.070 | 0.138 0.139 0.143 | 0.155 0.156 0.159

0.10 | 0.01 | 0.131 0.136 0.136 | 0.403 0449 0.450 | 0.424 0.469 0.470
0.05 | 0131 0.136 0.135 | 0.403 0.449 0457 | 0424 0469 0.476
0.1 | 0131 0.136 0.135 | 0.403 0449 0461 | 0.424 0469 0.481

Conclusion

The performance of the method of moment (MOM), the maximum likelihood method
(MLE) and the weighted likelihood method (WLE) for the joint estimation of both scale and shape
parameters for two-parameter Weibull distribution are compared using the Monte Carlo simulation
and the efficiency of these methods is compared based on RMSE. From simulation results, it is
evident that as the sample size increase the values of the RMSE all methods decrease and
hence the estimation precision of the parameters increases. This is expected because most
estimator in statistical theory perform better when sample size increases. To examine the

performance of the WLE method in comparison with the MLE and MOM methods, we found that
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the WLE outperforms the other methods for the scale parameter in term of RMSE of the
estimator for scale parameter for =0.5 with outliers in the data set. Consider the RMSE of the
estimator for shape parameter the MLE approach provides better results for the scale parameter
if outliers in the data set is small and the MOM approach performs better than the other methods
if outliers in the data set is large values. In almost all cases WLE perform better than the other
methods when [ =0.5in term of RMSE for two parameter estimators. For f=1and 1.5, the
MOM also performs well, especially and outliers in the data set is small. As future work we may
mention that the WLE method can be extended to some further modifications of the Weibull
distribution. One extened this approach can also be extened to case when data contain the
censored observations. In addition, in this study we were considered only the two-parameter
Weibull distribution, the WLE method can be extended to estimate the three-parameter Weibull

distribution when data are contaminated with outliers.
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