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ABSTRACT
. . S 1 s .
In this research, we find the sum of the series Z(— where (a,) , is an
-0

arithmetic progression of nonnegative integers.
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1. Introduction
This work is motivated by the sum of the series Z( and Z ; Which

can be evaluated by the Maclaurin series of hyperboUc cosine and hyperboUc sine

0 1 0
functions, i.e., Z COSh Z —Slnh ) (see [4] for more details). In
n=0 (2n)' o
00 1 w
this paper, we give a closed form for the sum of the series Z(— vvhere an)n:0 is
=0
any arithmetic progression of nonnegative integers.
2. Preliminaries
= x™
Let d be a positive integer greater than 1. We define f . The
n:O

Absolute Convergence Test shows that the series Z dn)' is absolutely convergent
n=0 -

for all xeR. Thus fd(X) is well-defined for all XeR. Let g, :cos[zd—”jﬂsin[zd—”).
The following results are known in [1].

Theorem 2.1 1,w,,?,...,¢ " are roots of the polynomial x* —1.
Proof. It is clear by De Moivre formula that ¢ =1. Thus
(w;)—l( ) ~1=1-1=0
for all iE{O,l,---,d —1}. This proves that 1,a,,a?,...,o¢™ are roots of the polynomial
x¢ —1. O

d-1

Theorem 2.2 o,,aj,...,f* are roots of the polynomial >" x'.
i=0

d-1

Proof. Since X’ —1=(X—1)[ Xij and o) »1 forall 1€{1,2,...,d =1} by Theorem 2.1,
0

d-1
we obtain that w,,?,...,e™ are roots of 2x‘ ) O
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Let
1 1 1 1
A= @ o o e |
ol a)j(d—l) wg,(d-l) . wg(d—l)
u=(11...1) and v=(10....,0). It is worth noting that det(A,)= [] (a)cf —a););to

I<i<j<n-1

and hence A, is invertible.

Lemma 2.3 Let A,,u and v be defined as above. Then Au™ =dv'.

Proof. Let p(x):dixi .

i=0

=(d,0,0,...,0)
=dv'
O
Theorem 2.4 The particular solution of the initial value problem
y@ —y=0,y(0)=1 y"(0)=0 forau ie{L,2,...,d -1} (1)

1(&
iS y(X):_(Ze dxj.
d\=
Proof. The auxiliary equation is x* =1=0. The roots of x! -1 are «,,&?,...,o¢ and
they are all distinct. Thus, the general solution of y(d) -y=0is
d )
y(x)=2 ce™
i=1
where ¢,,c,,..., c, eC. Then

. d = .
yV (x)= chwgeng
i1

for all | 6{1,2,---,d —1} . Hence the initial conditions give the system of equations
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d .
Za)(',(d_l)ci =0
i=1
which can be written as A,c™ =v" where C=(Cl,Cz,--.,Cd). By Lemma 2.3, we get
CT :Aj—lvT :%UT.

Thus ¢ :% for all i 6{1,2,---,d}. Therefore, the particular solution of the initial value

problem is
1(&
09336 | .
i=1

0 an
Theorem 2.5 f, (X):z(dn)' satisfies problem (1).

n=0 .

w© an

Proof. Let y=§(dn)! . Then

for all i€{1,2,---,d}. In particular,

@ _§_X
VU= 2 sy
© an
“2 @)
=V.
It is clear that Y(0)=1 and y(')(0)=0 for all i€{1,2,-~,d —1}.
Thus fd(X) satisfies (1). O

3. Sum of Factorial Series

The following theorems are needed for our main results.
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Theorem 3.1 For any positive integer d ,

Proof. For d =1, ix_”:ex.

n=0 n!

For d>1, we get by Theorem 2.4, Theorem 2.5 and the uniqueness of the solution

of the initial value problem (1) [5], that

Sl ) .

n=0 i=1

Theorem 3.2 For any positive integer d>1, and 1<i<d,

i X" _l Zd:a)ijeng
(dn-i)t d\& " )

n=1

Proof. The desired result follows from

g(d);—i)!: V“’(X)Zﬁ@wgew]- O

Let (an ):;0 be an arithmetic progression of nonnegative integers with common
difference d >0.Then a, =dn+r where r>0. We consider two cases:

1. 0<r<d, and

2. rxd. Write r=kd +s, where k21 and 0<s<d-1. Then 3-,]=d(n+k)+3.

Theorem 3.3 The following results hold:

1. If a,=dn+r, where 0<r<d, then

Proof.

1. The statement follows directly from Theorem 3.2.
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2. We have

0 0

Z“( z dn+s)' Z“(d|+s)'

n=0 - n=0

i e Lty

4. Examples

We give examples when d =3. By Theorem 3.3, we have

1. io ):glie+2elcos(\2§ﬂ |
> §(3n1+1)!=%[e—e;(cos[*ﬂ fs'”(fn

STty

Note that Examples 1 - 3 are guaranteed in [2] using a different method as well as in

[3].

5. Acknowledgments
The authors would like to thank the anonymous referees for their valuable

comments.



NIEANTAAAAENT USUT 63 LaUT 695 We¥A1AL — WA 2561

References

[1] Dummit, D. S. and Foote, R. M. (2004). Abstract Algebra (3rd ed.). New York:
Jonn Wiley and Sons.

[2] Griffiths, M. (2015). Irrationals sums from reciprocals of factorials. The
Mathematical Gazette, 99 (545), 331 - 335.

[3] Mangulis, V. (1965). Handbook of Series for Scientists and Engineers. New York:
Academic Press..

[4] Markley N. G. (2004). Principle of Differential Equations, Pure and Applied
Mathematics. New York: Wiley-Interscience Series of Texts, monographs, and
Tracts.

[5] Stewart, J. (1999). Calculus (4th ed.). California: Brooks/Cole Publishing

Company press.






