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บทคัดย่อ 

บทความฉบับนี้ศึกษาสมบัติและโครงสร้างของไดกราฟ Γ(𝑛, 4) ที่มีจุดยอดเป็นเซต 
𝑉 = {0,1,2, … , 𝑛 − 1} และเส้นเชื่อมแสดงทิศทาง (𝑎, 𝑏) ∈ 𝐸 ⊆ 𝑉 × 𝑉 เมื่อ 𝑎4 ≡ 𝑏 (mod 𝑛) 
โดย 𝑛 เป็นจ านวนนับที่ 𝑛 ≥ 2 และหาสูตรของจ านวนจุดตรึงในไดกราฟดังกล่าว 
ค าส าคัญ:  ไดกราฟ สมภาค จุดตรึง 

ABSTRACT 
This article studies properties and structure of the digraph Γ(𝑛, 4) which has the 

vertex set 𝑉 = {0,1,2, … , 𝑛 − 1}  and directed edges (𝑎, 𝑏) ∈ 𝐸 ⊆ 𝑉 × 𝑉  if and only if 
𝑎4 ≡ 𝑏 (mod 𝑛) where 𝑛 is an integer such that 𝑛 ≥ 2 and find the number of fixed 
point of this digraph. 
Keywords:  Digraph, Congruence, Fixed Point  
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1. บทน า 
บทความฉบับนี้ศึกษาเกี่ยวกับกราฟระบุทิศทางหรือไดกราฟที่ได้จากความสัมพันธ์สมภาค

ระหว่างจ านวนนับสองจ านวน 

บทนิยาม 1.1 [1] กราฟระบุทิศทางหรือไดกราฟ 𝐺 = (𝑉, 𝐸) ประกอบด้วยเซตจ ากัด 𝑉 ที่ไม่ใช่เซต
ว่าง เรียกว่าเซตของจุดยอด และ 𝐸 เป็นเซตของคู่อันดับจาก 𝑉 × 𝑉 เรียก 𝐸 ว่าเซตของเส้นเชื่อม
ระบุทิศทาง 

เช่น ส าหรับไดกราฟ 𝐺 = (𝑉, 𝐸) ถ้า (𝑎, 𝑏) ∈ 𝐸 หมายความว่า มีเส้นเชื่อมจากจุดยอด 𝑎 ไปยัง
จุดยอด 𝑏 โดยเรียก 𝑎 ว่าจุดเริ่มต้น และเรียก 𝑏 ว่าจุดปลายของเส้นเชื่อมระบุทิศทาง และมักเขียน
ลูกศรก ากับทิศทางไว้ ในขณะที่ถ้า (𝑎, 𝑎) ∈ 𝐸 จะหมายถึง มีเส้นเชื่อมม้วนเป็นวงกลับมาที่จุดยอด 𝑎 
โดยเรียกเส้นเชื่อมลักษณะนี้ว่าวงวนและเรียก 𝑎 ว่าเป็นจุดตรึงของไดกราฟ 𝐺 

ตัวอย่าง 1.1 ให้ 𝐺 = (𝑉, 𝐸) โดยที่ 𝑉 = {0,1,2, … ,22} และ 𝐸 = {(0,0), (1,1), (2,16), (3,12), 
(4,3), (5,4), (6,8), (7,9), (8,2), (9,6), (10,18), (11,13), (12,13), (13,18), (14,6), (15,2), (16,9), 
(17,8), (18,4), (19,3), (20,12), (21,16), (22,1)} 
 
 
 
 
 

รูปที่ 1.1 ไดกราฟ 𝐺 
สังเกตว่าใน 𝐺 มี (0,0), (1,1) ∈ 𝐸 เป็นจุดตรึงของ 𝐺 ซึ่งในแผนภาพแทนด้วยเส้นเชื่อมแสดง

ทิศทางที่มีลักษณะเป็นวงวนดังรูป 1.1 และมี (2,16), (16,9), (9,6), (6,8), (8,2) ∈ 𝐸 ซึ่ งใน
แผนภาพแทนด้วยเส้นเชื่อมแสดงทิศทางห้าเส้นที่เชื่อมจุดยอด 2, 16, 9, 6 และ 8 เข้าด้วยกันเป็นวง 
เรียกเส้นเชื่อมแสดงทิศทางท้ังห้าเส้นที่เชื่อมจุดยอดเหล่านี้เข้าด้วยกันว่า วง 

Skowronex-KaziÓw [2] ได้สร้างไดกราฟ Γ(𝑛, 4) = (𝑉, 𝐸) ส าหรับจ านวนนับ 𝑛 ที่ 𝑛 ≥ 2 
โดยที่ 𝑉 = {0,1,2, … , 𝑛 − 1} และ (𝑎, 𝑏) ∈ 𝐸 เมื่อ 𝑎3 ≡ 𝑏 (mod 𝑛) แล้วศึกษาโครงสร้างของ 
Γ(𝑛, 3) โดยเฉพาะอย่างยิ่งจ านวนจุดตรึงของ Γ(𝑛, 3) ต่อมาในปี ค.ศ. 2014 Ju และ Wu [3] ได้
ศึกษาโครงสร้างและจ านวนจุดตรึงของไดกราฟลักษณะเดียวกับ [2] แต่เปลี่ยนเงื่อนไขของการมีเส้น
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เชื่อมระบุทิศทาง (𝑎, 𝑏) ในไดกราฟเป็น 𝑎5 ≡ 𝑏 (mod 𝑛) และในปี ค.ศ. 2011 Somer และ 

Křížek [4] ได้ขยายแนวคิดของ [2] มาศึกษาไดกราฟ Γ(𝑛, 𝑘) ที่เงื่อนไขการมีเส้นเชื่อมระบุทิศทาง 
(𝑎, 𝑏) ในไดกราฟเป็น 𝑎𝑘 ≡ 𝑏 (mod 𝑛) เมื่อ 𝑘 เป็นจ านวนนับที่ 𝑘 ≥ 2 อย่างไรก็ดี [4] พิสูจน์ได้
เพียงขอบเขตล่างของจ านวนจุดตรึงของไดกราฟ Γ(𝑛, 𝑘) เท่านั้น 

2. จุดตรึงและสูตรส าหรับจ านวนจุดตรึงของไดกราฟ 𝚪(𝒏, 𝟒) ที่เกิดจากความสัมพันธ์  
      𝒂𝟒 ≡ 𝒃 (𝐦𝐨𝐝 𝒏) 

ให้ 𝑛 เป็นจ านวนนับที่ 𝑛 ≥ 2 และ 𝑉 = {0,1,2, … , 𝑛 − 1} นิยามไดกราฟ Γ(𝑛, 4) = (𝑉, 𝐸) 
โดย (𝑎, 𝑏) ∈ 𝐸 เมื่อ 𝑎4 ≡ 𝑏 (mod 𝑛)  

ตัวอย่าง 2.1 ให้ 𝑛 = 5 จะได้ว่า 𝑉 = {0,1,2,3,4} เนื่องจาก 04 ≡ 0 (mod 5), 14 ≡ 1 (mod 5), 
24 ≡ 1 (mod 5), 34 ≡ 1 (mod 5) และ 44 ≡ 1 (mod 5) ดังนั้น Γ(5,4) จะมีแผนภาพดังรูป 2.1 
 
 
 
 

รูปที่ 2.1 Γ(5,4) 

บทนิยาม 2.1 จุดยอด 𝑣 ของไดกราฟ 𝛤(𝑛, 4) เป็นจุดตรึงเอกเทศ เมื่อ 𝑣 เป็นจุดตรึงของ 𝛤(𝑛, 4) ที่
ไม่มีเส้นเชื่อมระบุทิศทางจากจุดยอดอ่ืนของ 𝛤(𝑛, 4) มาเชื่อมกับ 𝑣 

ทฤษฎีบท 2.1 0 และ 1 เป็นจุดตรึงของ 𝛤(𝑛, 4) ยิ่งไปกว่านั้น 0 เป็นจุดตรึงเอกเทศของ 𝛤(𝑛, 4)  
ก็ต่อเมื่อ 𝑛 ปราศจากก าลังสอง นั่นคือ 𝑛 มีสมบัติว่าส าหรับจ านวนเฉพาะ 𝑝 ที่เป็นตัวประกอบของ 𝑛 
ถ้า 𝑝𝛼|𝑛 แล้ว 𝛼 = 1 
บทพิสูจน์ เนื่องจาก 𝑛|(04 − 0) และ 𝑛|(14 − 1) ทุกจ านวนนับ 𝑛 จะได้ว่า 0 และ 1 เป็นจุดตรึง
ของ 𝛤(𝑛, 4) 

ต่อมาจะพิสูจน์ว่า 0 เป็นจุดตรึงเอกเทศของ 𝛤(𝑛, 4) ก็ต่อเมื่อ 𝑛 ปราศจากก าลังสอง 
สมมติว่า 𝑛 ไม่ปราศจากก าลังสอง จะได้ว่ามีจ านวนเฉพาะ 𝑝 และจ านวนเต็ม 𝑘 ที่ 𝑛 = 𝑝2𝑘  

ท าให้ (𝑛

𝑝
)

4
= 𝑛2𝑘2 ≡ 0 (mod 𝑛) ดังนั้น (𝑛

𝑝
, 0) ∈ 𝐸 นั่นคือ 0 ไม่เป็นจุดตรึงเอกเทศของ 𝛤(𝑛, 4) 
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สมมติว่า 𝑛 ปราศจากก าลังสอง ท าให้ได้ว่ามีจ านวนเฉพาะ 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑙 ที ่𝑛 = 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑙 
ต่อมาสมมติว่า 0 ไม่เป็นจุดตรึงเอกเทศ ฉะนั้นจะมี 𝑘 ∈ 𝑉 และมีจ านวนเต็ม 𝑠 ที่ 𝑘4 = 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑙𝑠 
เนื่องจาก 𝑘 เป็นจ านวนเต็ม ดังนั้นจะมีจ านวนเต็ม 𝑡 ที่ท าให้  

𝑘4 = 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑙(𝑝1𝑝2𝑝3 ⋯ 𝑝𝑙)3𝑡4 

จะได้ว่า 𝑘 = 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑙𝑡 ≥ 𝑛 ท าให้เกิดข้อขัดแย้ง      

ข้อสังเกต 2.1 เนื่องจาก (𝑛 − 1)4 − (𝑛 − 1) = (𝑛 − 1)(𝑛3 − 3𝑛2 + 3𝑛 − 2) ท าให้ได้ว่า 𝑛 หาร 
(𝑛 − 1)4 − (𝑛 − 1) ลงตัว ก็ต่อเมื่อ 𝑛 = 2 ดังนั้นส าหรับจ านวนนับ 𝑛 ที่ 𝑛 ≥ 3 จุดยอด 𝑛 − 1 ไม่
เป็นจุดตรึงของ 𝛤(𝑛, 4) ซึ่งแตกต่างจากไดกราฟที่ศึกษาใน [2] และ [3] ที่ 𝑛 − 1 เป็นจุดตรึงของได
กราฟเสมอ 

ต่อมาในการหาสูตรส าหรับจ านวนจุดตรึงทั้งหมดใน 𝛤(𝑛, 4) จ าเป็นต้องมีความรู้พ้ืนฐานทาง
ทฤษฎีจ านวนเกี่ยวกับการมีอยู่ของผลเฉลยของสมภาค 𝑓(𝑥) ≡ 0 (mod 𝑚) 

ทฤษฎีบทประกอบ 2.2 [5] (ทฤษฎีบทประกอบของเฮนเซิล) ให้ 𝑓(𝑥) เป็นพหุนามในตัวแปร 𝑥 ที่มี
สัมประสิทธิ์เป็นจ านวนเต็มและ 𝑟 เป็นจ านวนนับ  

ถ้ าจ านวน เต็ ม  𝑚1,  𝑚2,  𝑚3,  . . . ,  𝑚𝑟 เป็ นจ านวน เฉพาะสั ม พัทธ์ ซึ่ ง กั นและกั น  และ 
𝑚 = 𝑚1𝑚2𝑚3 ⋯ 𝑚𝑟  แล้ว 𝑓(𝑥) ≡ 0 (mod 𝑚) มีผลเฉลย ก็ต่อเมื่อ 𝑓(𝑥) ≡ 0 (mod 𝑚𝑖) มีผล
เฉลยทุก 𝑖 ∈ {1,2,3, … , 𝑟} ยิ่งไปกว่านั้นถ้า 𝑣(𝑚) และ 𝑣(𝑚𝑖) เป็นจ านวนผลเฉลยของ 
𝑓(𝑥) ≡ 0 (mod 𝑚) และ 𝑓(𝑥) ≡ 0 (mod 𝑚𝑖) ตามล าดับ แล้ว  

𝑣(𝑚) = 𝑣(𝑚1)𝑣(𝑚2)𝑣(𝑚3) ⋯ 𝑣(𝑚𝑟) 

นอกจากนี้ยังต้องอาศัยความรู้เกี่ยวกับส่วนตกค้างก าลังสองมอดุโล 𝑚 

บทนิยาม 2.2 [6]  
(ก) ให้ 𝑚 เป็นจ านวนเต็มบวกและ 𝑎 เป็นจ านวนเต็มที่ทั้งคู่เป็นจ านวนเฉพาะสัมพัทธ์ซึ่งกันและ

กัน จะกล่าวว่า 𝑎 เป็นส่วนตกค้างก าลังสองมอดุโล 𝑚 เมื่อ 𝑥2 ≡ 𝑎 (mod 𝑚) มีผลเฉลย มิเช่นนั้นจะ
กล่าวว่า 𝑎 ไม่เป็นส่วนตกค้างก าลังสองมอดุโล 𝑚 

(ข) ให้ 𝑝 เป็นจ านวนเฉพาะคี่และ 𝑎 เป็นจ านวนเต็มที่ 𝑝 ∤ 𝑎 สัญลักษณ์เลอช็องดร์ (𝑎/𝑝)  

ก าหนดค่าโดย 
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(𝑎/𝑝) = {
1  เมื่อ 𝑎 เป็นส่วนตกค้างก าลังสองมอดุโล 𝑝

−1   เมื่อ 𝑎 ไม่เป็นส่วนตกค้างก าลังสองมอดุโล 𝑝
 

ทั้งนี้สัญลักษณ์เลอช็องดร์มีสมบัติส าคัญดังต่อไปนี้ 

ทฤษฎีบทประกอบ 2.3 [6] ให้ 𝑝 เป็นจ านวนเฉพาะคี่และ 𝑎 และ 𝑏 เป็นจ านวนเต็มที่ 𝑝 ∤ 𝑎 และ 
𝑝 ∤ 𝑏  

(ก) (𝑎𝑏/𝑝) = (𝑎/𝑝)(𝑏/𝑝) 

(ข) (−1/𝑝) = {
1    เมื่อ 𝑝 ≡ 1  (mod 4)

−1 เมื่อ 𝑝 ≡ 3 (mod 4)
 และ  

     ถ้า 𝑝 ≠ 3 แล้ว (3/𝑝) = {
1     เมื่อ 𝑝 ≡ 1 หรือ − 1 (mod 12)

−1   เมื่อ 𝑝 ≡ 5 หรือ − 5 (mod 12)
 

ทฤษฎีบทประกอบ 2.3 ท าให้เราสามารถค านวณค่า (−3/𝑝) เมื่อ 𝑝 เป็นจ านวนเฉพาะคี่ท่ี 𝑝 ≠ 3 ได ้

ทฤษฎีบทประกอบ 2.4 ให้ 𝑝 เป็นจ านวนเฉพาะคี่ท่ี 𝑝 ≠ 3 จะได้ว่า 

(−3/𝑝) = {
1   เมื่อ 𝑝 ≡ 1 หรือ 7 (mod 12)

−1  เมื่อ 𝑝 ≡ 5 หรือ 11 (mod 12)
 

บทพิสูจน์ ให้ 𝑝 เป็นจ านวนเฉพาะคี่ท่ี 𝑝 ≠ 3 จะได้ว่า (−3/𝑝) = (3/𝑝)(−1/𝑝) 
กรณี 1 𝑝 ≡ 1 (mod 12) จะได้ว่า 𝑝 ≡ 1 (mod 4)  

ดังนั้น (−3/𝑝) = 1 ∙ 1 = 1 
กรณี 2 𝑝 ≡ 7 (mod 12) จะได้ว่า 𝑝 ≡ 3 (mod 4)  

ดังนั้น (−3/𝑝) = (−1) ∙ (−1) = 1 
กรณี 3 𝑝 ≡ 5 (mod 12) จะได้ว่า 𝑝 ≡ 1 (mod 4)  

ดังนั้น (−3/𝑝) = (−1) ∙ 1 = −1 
กรณี 4 𝑝 ≡ 11 (mod 12) จะได้ว่า 𝑝 ≡ 3 (mod 4)  

ดังนั้น (−3/𝑝) = 1 ∙ (−1) = −1        

ทฤษฎีบทต่อไปนี้จะเป็นสูตรส าหรับหาจ านวนจุดตรึงทั้งหมดใน 𝛤(𝑛, 4)  

ทฤษฎีบท 2.5 ให้ 𝑛 เป็นจ านวนนับที่ 𝑛 ≥ 2 ที่แยกตัวประกอบได้ในรูป 

𝑛 = 2𝑚𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 ⋯ 𝑝𝑠

𝛼𝑠 
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โดยที่ 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑠 เป็นจ านวนเฉพาะคี่ท่ีแตกต่างกัน 𝛼𝑖 ≥ 1, 𝑚 ≥ 0 และ 𝑠 ≥ 0 และ
ให้  𝜔(𝑛) แทนจ านวนของจ านวนเฉพาะคี่  𝑝𝑖 ที่ เป็นตัวประกอบของ 𝑛 และ 𝑝𝑖 ≡ 1 หรือ 
7 (mod 12) ถ้า 𝐿(𝑛) แทนจ านวนจุดตรึงทั้งหมดใน 𝛤(𝑛, 4) แล้ว 

𝐿(𝑛) = {2𝜔(𝑛)+𝑠     เมื่อ 𝑚 = 0

2𝜔(𝑛)+𝑠+1 เมื่อ 𝑚 ≥ 1
 

บทพิสูจน์ เนื่องจาก 𝐿(𝑛) เป็นจ านวนจุดตรึงทั้งหมดใน 𝛤(𝑛, 4) ดังนั้น  

𝐿(𝑛) = |{0 ≤ 𝑘 < 𝑛 − 1: 𝑓(𝑘) ≡ 0 (mod 𝑛)}| 

เป็นจ านวนผลเฉลยใน 𝑉 ของ 𝑓(𝑥) = 𝑥4 − 𝑥 = 𝑥(𝑥 − 1)(𝑥2 + 𝑥 + 1) ≡ 0 (mod 𝑛) 

กรณี 1 𝑚 = 0  
กรณี 1.1 𝑠 = 1 นั่นคือ 𝑛 = 𝑝1

𝛼1  
โดยไม่เสียนัยทั่วไปให้ 𝑛 = 𝑝𝛼 เมื่อ 𝑝 เป็นจ านวนเฉพาะคี่ และ 𝛼 เป็นจ านวนนับ  
จะได้ว่า 𝑉 = {0,1,2, … , 𝑝𝛼 − 1}  
สมมติให้ 𝑥 ∈ 𝑉 − {0,1} เป็นผลเฉลยของ 𝑓(𝑥) ≡ 0 (mod 𝑝𝛼)  
เนื่องจาก 𝑝|𝑝𝛼 ท าให้ได้ว่า 𝑝|𝑥 หรือ 𝑝|(𝑥 − 1) หรือ 𝑝|(𝑥2 + 𝑥 + 1) 
กรณี 1.1.1 𝑝|𝑥  
สมมติว่า 𝑝|(𝑥 − 1) หรือ 𝑝|(𝑥2 + 𝑥 + 1) จะได้ว่า 𝑝|1 ท าให้เกิดข้อขัดแย้ง  
ดังนั้น 𝑝 ∤ (𝑥 − 1) และ 𝑝 ∤ (𝑥2 + 𝑥 + 1) ท าให้ได้ด้วยว่า 𝑝𝛼 ∤ (𝑥 − 1) และ 𝑝𝛼 ∤ (𝑥2 + 𝑥 + 1) 
และเนื่องจาก 2 ≤ 𝑥 ≤ 𝑝𝛼 − 1 ท าให้ได้ว่า 𝑝𝛼 ∤ 𝑥 เช่นกัน 
กรณี 1.1.2 𝑝|(𝑥 − 1)  
ในท านองเดียวกันกับกรณี 1.1.1 สามารถพิสูจน์ได้ว่า 𝑝𝛼 ∤ 𝑥, 𝑝𝛼 ∤ (𝑥 − 1) และ  
𝑝𝛼 ∤ (𝑥2 + 𝑥 + 1) 
กรณี 1.1.3 𝑝|(𝑥2 + 𝑥 + 1)  
เนื่องจาก 4(𝑥2 + 𝑥 + 1) = (2𝑥 + 1)2 + 3 ท าให้ 𝑝|(𝑥2 + 𝑥 + 1) ส่งผลให้เกิดความสัมพันธ์ 
𝑦2 ≡ −3 (mod 𝑝) ถ้า 𝑝 = 3 แล้วเห็นได้ชัดว่า 𝑦2 ≡ −3 (mod 𝑝) ไม่มีผลเฉลย แต่เมื่อ  𝑝 ≠ 3 
และ 𝑝 ≡ 1 หรือ 7 (mod 12) โดยทฤษฎีบทประกอบ 2.4 จะได้ว่า 𝑦2 ≡ −3 (mod 𝑝) มีผลเฉลย
สองตัว สมมติว่าเป็น 𝑎 และ 𝑏 ที่แตกต่างกัน 

ดังนั้นจากกรณี 1.1.1, 1.1.2 และ 1.1.3 จะได้ว่า  



 วารสารคณิตศาสตร์ ปริมา 63 เล่มที่ 695 พฤษภาคม – สิงหาคม 2561 

15 

𝐿(𝑛) = {
|{0,1, 𝑎, 𝑏}| = 4     เมื่อ 𝑝 ≡ 1 หรือ 7 (mod 12)

     |{0,1}| = 2        เมื่อ 𝑝 ≡ 5 หรือ 11 (mod 12)
 

กรณี 1.2 𝑠 ≥ 2 โดยทฤษฎีบทประกอบ 2.2 จะได้ว่า  

𝐿(𝑛) = 𝐿(𝑝1
𝛼1)𝐿(𝑝2

𝛼2)𝐿(𝑝3
𝛼3) ⋯ 𝐿(𝑝𝑠

𝛼𝑠) 

ดังนั้นจากกรณี 1.1 จะได้ว่า 𝐿(𝑛) = 4𝜔(𝑛) ∙ 2𝑠−𝜔(𝑛) = 2𝜔(𝑛)+𝑠 

กรณี 2 𝑚 ≥ 1  
กรณี 2.1 𝑠 = 0 นั่นคือ 𝑛 = 2𝑚 จะได้ว่า 𝑉 = {0,1,2, … , 2𝑚 − 1}  

เนื่องจาก 2 ≤ 𝑥 − 1 < 𝑥 ≤ 2𝑚 − 1 ท าให้ 2𝑚 ∤ 𝑥 และ 2𝑚 ∤ (𝑥 − 1)  
นอกจากนี้เนื่องจาก 𝑥2 + 𝑥 + 1 เป็นจ านวนคี่และ ห.ร.ม. ของ 𝑥 และ 𝑥 − 1 เป็น 1  
ดังนั้น 2𝑚 ∤ 𝑥(𝑥 − 1)(𝑥2 + 𝑥 + 1) ท าให้ได้ว่า 𝐿(2𝑚) = |{0,1}| = 2 
กรณี 2.2 𝑠 ≥ 1 โดยทฤษฎีบทประกอบ 2.2 จะได้ว่า 

𝐿(𝑛) = 𝐿(2𝑚)𝐿(𝑝1
𝛼1)𝐿(𝑝2

𝛼2)𝐿(𝑝3
𝛼3) ⋯ 𝐿(𝑝𝑠

𝛼𝑠) 

ดังนั้นจากกรณี 1.1 และ 2.1 จะได้ว่า 𝐿(𝑛) = 2 ∙ 4𝜔(𝑛) ∙ 2𝑠−𝜔(𝑛) = 2𝜔(𝑛)+𝑠+1    

ตัวอย่าง 2.1 ให้ 𝑛 = 49 จะได้ว่า 𝑚 = 0, 𝑠 = 1 และ 𝑝1 = 7 ≡ 7 (mod 12)  
ดังนั้น 𝐿(49) = 21+1 = 4 

 
รูปที่ 2.2 𝛤(49,4) 
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ตัวอย่าง 2.2 ให้ 𝑛 = 75 จะได้ว่า 𝑚 = 0, 𝑠 = 2, 𝑝1 = 3 ≢ 1 และ 7 (mod 12) และ 𝑝2 = 5 ≢ 1 
และ 7 (mod 12) ดังนั้น 𝜔(75) = 0 และ 𝐿(75) = 20+2 = 4 

 
รูปที่ 2.3 𝛤(75,4) 

ตัวอย่าง 2.3 ให้ 𝑛 = 16 จะได้ว่า 𝑚 = 4 และ 𝑠 = 0 ดังนั้น 𝐿(16) = 20+0+1 = 2 

 
รูปที่ 2.4 𝛤(16,4) 
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ตัวอย่าง 2.4 ให้ 𝑛 = 650 จะได้ว่า 𝑚 = 1, 𝑠 = 2, 𝑝1 = 5 ≡ 5 (mod 12) และ 
𝑝2 = 13 ≡ 1  (mod 12) ดังนั้น 𝜔(650) = 1 และ 𝐿(650) = 21+2+1 = 16 

 
รูปที่ 2.5 𝛤(650,4) 

3. สรุป 
จะเห็นได้ว่าความสัมพันธ์ 𝑎4 ≡ 𝑏 (mod 𝑛) บนเซต 𝑉 = {0,1,2, … , 𝑛 − 1} สามารถเขียนเป็น

ไดกราฟที่มีจ านวนจุดตรึงตามสูตรในทฤษฎีบท 2.5 ได้ นอกจากจ านวนจุดตรึงของไดกราฟดังกล่าว
แล้วนักวิจัยบางท่านยังได้ศึกษาโครงสร้างอ่ืนๆ เช่น ความยาวของวงที่ปรากฏในไดกราฟ และความ
สมมาตรของไดกราฟ ซึ่งผู้ที่สนใจก็สามารถศึกษาโครงสร้างเหล่านี้ได้โดยสร้างข้อคาดการณ์จากกรณี
เฉพาะแล้วจึงขยายไปสู่การพิสูจน์อย่างรัดกุมต่อไป  
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