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ABSTRACT
We discuss fundamental algebraic-order-topological properties of ordered
fields. In fact, the absolute value in any ordered field has properties similar to those of
real numbers. We give a simple proof of the equivalence between the Archimedean
property and the density of the rational subfield. We also provide equivalent

conditions for an ordered field to be Archimedean, involving convergence of certain

sequences and the geometric series test.

Keywords: Ordered Field, Archimedean Property, Rational Subfield, Geometric
Series
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1. Introduction

In the course of undergraduate
mathematical analysis (e.g. [1-3]), the first
thing to learn is the real number system, i.e.,
the real numbers together with fundamental
algebraic/order/topological propertiecs. We
begin with two algebraic operations, name-
ly, the addition and the multiplications.
From abstract-algebra point of view, the real
numbers with these operations constitute a
field. Then we discuss how to compare or
order two real numbers, and how nice is the
order relation related to algebraic opera-
tions. In fact, the real numbers is an example
of an ordered field. The last axiom for the
real numbers is the completeness axiom or
the least-upper-bound property, making the
real numbers a complete ordered field.

Consequently, the set of real numbers
possesses the Archimedean property and the
rational numbers is dense in the real line.
From these properties, we can discuss con-
vergence of sequences and series for real
numbers, and limits, continuity, differen-
tiation, integration, and other analytical con-
cepts for real-valued functions. Therefore, it
is significant to discuss properties of
arbitrary ordered field. See more related
discussions in [4-6].

In this paper, we focus on abstract
properties of ordered fields. We provide the
definition and examples of ordered fields,
and discuss fundamental algebraic-order-
topological properties. In fact, the absolute

value in ordered field has properties similar

to those of real numbers. In particular, every
ordered field is a metric space. In any
ordered field, there is a subset isomorphic to
the rational numbers, called the rational sub-
field (see Section 2). We provide a simple
proof for the fact that the Archi-medean
property is equivalent to the density of the
rational subfield (see Section 3). Moreover,
this property is equivalent several properties
involving convergence of certain sequences

and the geometric series test (see Section 4).

2. Ordered Fields

In this section, we review fundamental
properties of arbitrary ordered fields. The
axiomatic properties of an ordered field are

modeled from the real numbers.

Definition 1. A order on a set E is a binary
relation < on E with the following
properties:
(1) Trichotomy property: For each x, y €
E, one and only one of the following
statements hold: x <y, x=y,y<ux.
(i) Transitivity: For each x,y, z € E, if x
<yandy < zthen x < z.
In this case, we say that E is an ordered set

with respect to the order <.

Definition 2. An ordered field is a field (F,
+, - ) which is also an ordered set (F, <) such
that

(i) Foreachx,y, z€F,ify< zthen x

+ty<x+z
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(i) For each x, y, z € F, if 0 < x and
0<ythen0<x-y.
Here, 0 denotes the additive identity in the
field F.

The property (i) means that the order
relation is compatible with addition. The
property (ii) can be replaced by (ii)'. For
eachx,y,z€ F,ifx<yand 0 < zthenx-z
< y-z. The property (ii) or (ii)’ means that
the order relation is compatible with
multiplication. The collection of conditions
(i) and (ii) is equivalent to the conditions (i)
and (ii)".

Example 3. The following examples are
ordered fields:

1) The real numbers R with respect to
the usual addition, the usual multi-
plication, and the usual order.

2) The field R(x) of real rational
functions in the form p(x)/g(x) where
p(x) and ¢g(x)#=0are polynomials
with real coefficients, here for each
f,g € R(x) we define f < g if and
only if f (k) < g (k) for all sufficiently

large real numbers k.

Any subfield of an ordered field is an
ordered field inheriting the algebraic and
order structures. For example, the field of
rational numbers and the field of real
algebraic numbers are ordered subfield of
the real numbers.

As a ring, every ordered field F' always

has characteristic zero since the elements

L1+1,1+1+1,...
are all different, so it contains copies of Z.
Thus, an ordered field necessarily must
contain an infinite number of elements. It
follows that every finite field cannot be
ordered consistently with its algebraic
structures. The universal mapping property
of the quotient field implies that the ring
monomorphism 7Z — F can be extended to
a monomorphism Q — F. Call the image of
this map the rational subfield of F, denoted
by Q,. We also denote

N, ={L1+L1+1+L...}
and Z, =N, U{0} U(-N,)
where —N, ={—x|xeN,}. We can define
nx and x" for each natural number n and
xeF by x+x+ ...+ x (n times) and
xx---x (n times), respectively. We can also
define open and closed intervals in a similar
manner to those in the real line. From the
trichotomy property, we define

|a| = max{a,—a} foreach aeF.

Then the following properties hold for any
a,b,c e F with ¢ > 0.

e positivity: |a|>0, and |a|= 0 if

and only if a=0.

—lal < a<]al.

|a| < ¢ ifand only if —c<a<c.
lab| =[a|b]; in

particular | a" |=|a|" forany neN.

o multiplicativity:

triangle inequality:
la+b| <|al|+]|b].

In the context of ordered field, the
binomial expansion theorem and Bernoulli’s

inequality also hold by mathematical

NSENSACIAFERS MJ-MATh 63(694) Jan-Apr, 2018


https://www.revolvy.com/main/index.php?s=Characteristic%20(algebra)&item_type=topic
https://www.revolvy.com/main/index.php?s=Finite%20field&item_type=topic

induction.

We can equip an ordered field F with a
topological structure as follows. For each
acF and ¢ >0, the ¢ - neighborhood of a
is given by

B.(a)={xeF :|x—-al<&}.
From which one can define open sets, closed
sets, continuity, convergence, and another
topological/metric notions. In particular,

every ordered field is a metric space.

3.Archimedean Property and Density of
the Rationals Subfield in Ordered Fields

A fundamental fact in mathematical
analysis, is the density of the rational
numbers in the real line. We shall discuss
this property in an ordered field (F, <):

(D): Given x,ye F with x<y, we can
findan r e Q, suchthat x<r<y.
This fact is equivalent to the fact that the
topological closure of Q, in F is the whole
space F. A usual proof of (D) in textbooks
(see, e.g. [1, 2]) is given by expanding with
sufficiently large spaces. Indeed, if x and y
are elements of F withx <y, we will find
m,ne”Z, such that x <m/n<y by scaling
the interval [x, y] to [nx, ny] where n is large
enough so that the interval [nx, ny] contains
an element meZ,. This task is done by
using a version of Archimedean property,
namely:
(AP1): Given x>0, there is an ne N, such
that 1/n < x.

Some authors (e.g. [3]) use (AP1) and

the well-ordering principle to give

a constructive proof of (D). There is a non-
constructive proof using (AP1), the well-
ordering principle and a contradiction, e.g.,
[71.

The next theorem provides a simple
proof of the fact (D) by using (AP1) and the
following property:

(AP2): N, isnot bounded above.

Theorem 4. In an ordered field (F, >), we
have (AP1), (AP2), and (D) are mutually
equivalent.
Proof. The equivalence between (AP1) and
(AP2) in an ordered field is easy to see.
Suppose (AP1) holds. The idea to prove (D)
is “partitioning with sufficiently small
spaces”. In order to get a fish, we first
identify a “suitable place” it lives, then we
use a fishnet with sufficiently small meshes.
Indeed, by (AP2) there are a,beZ, such
that a<x<y<b. We shall partition the
interval [a, b] into many intervals so that x
and y belong to different intervals and the
endpoints of each interval are in Q.. The
proof is done if the length of each interval is
less than y-x. Indeed, (AP1) allows the
existence of ann € N for which
1/n<y—x. Now, we use 1/n as the length
of each interval.

Conversely, suppose (D) holds. Let x >0
. The density of QQ, guarantees the existence
of an re@Q, such thatO<r<x. With
r=m/n where

1/n < m/n < x. Thus, (AP1) holds.

mneN,, we have
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4. Archimedean Property and
Convergence of Certain Sequences and

Series in Ordered Fields

Let us discuss the concept of
Archimedean property from two abstract
mathematical structures, namely, linearly
ordered groups and normed fields.

In a linear ordered group(G,*), an
element a is said to be infinitesimal with
respect to an element b if no positive integer
multiple of @ is greater than . The linear
order is called Archimedean if there are no
infinitesimal elements.

Let F be a normed field, i.e., F is a field
equipped with a function |[s|: F —[0,0)

such that [0] = 0, |x] > 0 if x#0, and
satisfies |xy| = |x| [y] and | x+y|<|x|+]| y|
for all x, y in F. Then F is called
Archimedean if, for each xe F, there is a

natural number n such that [nx| > 1.

Theorem 5. The following conditions are
equivalent in an ordered field (FF,<):
(i) F is Archimedean;
(i1) the sequence (r"),., converges to
0 whenever |r|<1;
(iii) the sequence (1/k"),_ converges
to 0 for all k €{2,3,4,...};
(iv) thereisak €{2,3,4,...} such that
the sequence . (1/ k"), -
converges to 0;
(v) the geometric series 1+r+7>+---

is convergent whenever |r|<1.

Proof. To prove (i) implies (ii),

let relF—{0} be such that |r|<l. Then
c=(/|r])—1 is a positive element of F.
Since Bernoulli’s inequality also valid in [,
we have 1+nc<(l+c¢)" for every natural
number n. Let £ be a positive element in .

The hypothesis (i) guarantees the existence
of a natural number n such that 1/(cg) < N.
Hence, for any natural number n> N, we
have

1 1 1

< <—<e&.
(+¢)" 1+nc nc

0<|r"|=|rl"=

Thus, the sequence (r"),_, converges to 0.
The implications (ii) = (iii)) = (iv) are
clear. We shall prove (iv)= (i) via a
contrapositive approach. Suppose that [ is
not Archimedean, i.e., there is a positive
element a in that dominates 1, 2, 3,... Then
for all natural numbers n, we have a > k" and

hence 0 < 1/a < 1/k* - This shows that
(1/k"),. does not converge to 0.

The last job is to show the equivalences
between (ii) and (v). Denote the nth partial
sum 1+7+r>+...+r"of this series by s,
then (1 — r)s, = 1

numbers n. If the sequence (r"),, con-

— /! for all natural
verges to 0, then the sequence 1 — "
converges to 1 and the sequence s, con-
verges to 1/(1—r). On the other hand, if the
sequence s, converges, then the sequence

n+l

r"" =s ., —s, converges to 0.
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