DOI: 10.14456/mj-math.2019.4 Msesedineans USun 64 Laufl 697 unsiey — ey 2562

2M58715ANAANENST Mathematical Journal 64(697) unsias - wwiew 2562

lng avpuadaansuitUszmalne lunssususgudug

http://www.mathassociation.net Email: MathThaiOrg@gmail.com

ASANNUULLE UL DUDEINNITARTTTIINTIRUNAUVDINTIN
p,0C, was W,(2,n)
Reverse Super Edge-Magic Labelings of P, C,, and W,(2,n)

(%
a W [

VAT 1B TRINA way SATUN UgAFeu

Wasinee Auwerawuttanawong® and Ratinan Boonklurb?

“?Department of Mathematics and Computer Science,

Faculty of Science, Chulalongkorn University

Email: ‘'wasinee so@hotmail.com ‘ratinan.b@chula.ac.th

UNANED
A5l G = (V(G), E(6)) il [V(6)| = p waz |E(G)| = q WJunsmlurrassdeindeiu-
nduilefifleituautendadenia £ 990 V(6) UE(G) W1 {1,2,3, ..., p + ) waziiAnssh
1) ARTH ¢ () = fFuv) — (F() + F(v)) d1viunn w € E(G) wag f(V(6)) =
(1,23, ..., p} Beniteiduaudenisionds £ Gi1nsifuegrauirassdendeiundures 6

WAZAIINEAUDY ¢~ (f) Mmaefnlaann1siiueguuirassdeInglunaunnLuuYes

(%
av

G NAMULUDYNUAATITODINDIRUNSUVDY G LHULNUAIY rsems(G) UNAINITETATS

Asiiveg1auirassdeandatundulyt P, O C, wag W,(2,n) 1o n WJuswiuaf n > 3

a 6 1 3n—-1 S5n—
Lazfigaudn rsems(P, OC,) = —— way =
AT n > 3

5n-1

- vile n 1y

2< rsems(W,(2,n)) <

\Y

(Y [ 1

ANEIA: NNSANNUBENNUIARTITLINDINUNGU AINUINDENINAADTTILINDIRUNSU

v

30



MIANSAMAFMENS USH1 64 LEUN 697 UNTIAN — LUWEU 2562

ABSTRACT

A graph G = (V(G),E(G)) with |V(G)| =pand |E(G)| = q, is called reverse super
edge-magic if there exists a bijection f from V(G) U E(G) onto {1,2,3,...,p + q} and
a constant ¢71(f) such that ¢ (f) = f(uv) — (f(w) + f(v)) for all uv € E(G) and
f(V(G)) ={1,2,3,...,p}. This bijection f is called a reverse super edge-magic labeling
for G and the minimum of all constants ¢~1(f) taken over all reverse super edge-
masgic labelings of G is called the reverse super edge-magic strength of G and denoted
by rsems(G). This article constructs reverse super edge-magic labelings for P, O C,

and W,(2,n) for an odd integer n such that n > 3 and prove that rsems(P, O C,) =
3n—1

and ? < rsems(W,(2,n)) < Snz—_l for an odd integer n such that n > 3.

Keywords: Reverse super edge-magic labeling, Reverse super edge-magic strength

1. Introduction

Graph labeling is an assignment of integers to the vertices or edges or both of the
graph which satisfies certain conditions. There are many kinds of labeling such as
graceful labeling, magic labeling. Most of the labelings and examples are collected in
a dynamic survey [2]. Several situations can be modeled as labeled graphs. For
examples, we can use graph labeling to design missile guidance codes, good radar
type codes and convolution codes with optimal autocorrelation properties. We can
also use the idea of graph labeling to assign each user terminal a node labeled subject
to the constraint that all connecting edges receive distinct labels. Besides that, it can
be applied widely in ambiguities in X-ray crystallography, communication network
labeling, finite additive number theory and the Golomb’s ruler problems, circuit
layout, etc., see [1].

In 2013, the concept of a reverse super edge-magic labeling and reverse super

edge-magic strength of a graph G was introduced by Hungund and Akka [3]. A Graph
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G = (V(G),E(G)) is said to be reverse super edge-magic if there exists a bijection
fV(G)UVE(G) — {1,2,3,..,p + q} and a constant ¢~ 1(f) such that
) =fw) - F@ + f)

forall uv € E(G) and f(V(G)) = {1,2,3, ..., p}. This bijection f is called a reverse super
edge-magic labeling and the constant ¢~1(f) is called a reverse super edge-magic
(rsem) constant. The minimum of all rsem constants ¢™1(f) of a graph G, where the
minimum is taken over all rsem labelings of G, is called a reverse super edge-magic
strength of the graph G, rsems(G). They proved the following property for an rsem
labeling of G.

Theorem 1.1 [3] Let G = (V(G), E(G)) be a graph with |E(G)| = q and f be a reverse
super edge-magic labeling of G with its rsem constants ¢~ 1(f). Then,
4= ) fE@— ) degv) f).
e€E(G) vev(G)

In [3], they established reverse super edge-magic labelings and rsems(G) of some
well-known graphs such as the y-tree Y,,, the odd cycle Cy,41, the generalized
Petersen graph P(m, k) and the disconnected graph (2m + 1)Cs. The following results
have been proved:

(1) rsems(Y,,) =n—1, forn > 2 and rsems(Y,,_1) =n, forn = 2;

(2) rsems(Cypyq) =n, forn > 1,

(3) rsems((2m+1)C;) =3m+ 1, form > 1.

In our article, we construct rsem labelings for the Cartesian product graph P, O C,,
and the generalized web graph without center W, (2,n) for an odd integer n such
that n > 3. The article is organized in the following manner. In Section 2, definitions of
P, O C,, an rsem labeling for P, O C, and its rsems are presented. In Section 3,
definitions of W,(2,n) and the construction of an rsem labeling for W,(2,n) and its
rsems bounds for an odd integer n such thatn > 3 are provided. Finally, conclusion

and some discussion are given in Section 4.
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2. RSEM labelings for P, O C,,
In order to define P, O C,, let us recall the definitions of path graphs B, and cycle

graphs C,, as follows.

Definition 2.1 [4] A path graph P, is a graph whose n vertices can be ordered in such

a way that two vertices are adjacent if and only if they are consecutive in the list.

® L 9
Figure 2.1 The path P

Definition 2.2 [4] A cycle C, is a graph with an equal number of n vertices, vy, v,,
V3, ..., Up, and n edges whose vertices can be placed around a circle in such a way that

two vertices are adjacent if and only if they appear consecutively along the cycle.

In this article, we usually write a cycle C,, as v,v,v;3 ... 1, and we name the vertices

in the clockwise direction.

Figure 2.2 The cycle C,

Definition 2.3 [4] The Cartesian product of G = (V(G),E(G)) and H = (V(H),E(H))
written by ¢ O H, is the graph with vertex set V(G) x V(H) specified by putting (u, v)
adjacent to (u,v") if and only if (1) u=u" and vw' € E(H), or (2) v=v" and

uu' € E(G).

Figure 2.3 P, O P,
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Figure 2.4 P, O C5

In some literature, P, O C,, is called the prism of C,,. Note that, for large n, to draw
a diagram represented P, O C,,, we can regard P, O C,, as two copies of “inner” cycle
Ch = V11V12V13 .. V1, and “outer” cycle Cp = v,1V;,v53 ... V2, and edges joining

each corresponding vertices vy ; of C, to v,; of Cy forall i € {1,2,3,...,n}.

Figure 2.5 P, O C5

We are now ready to construct an rsem labeling and find the rsems of P, O C,,.

Note that p = |V(P, O C,)| =2nand q = |E(P, O C,)| = 3n

Algorithm 2.1 Let n be an odd integer such that n > 3.
Define f:V(P, O C,)UE(P, O C,) - {1,2,3,...,5n} by

i. f(vl’zi_l) =1 fOI’ i € {1,2,3, ...,nTH},

i f(v120) = 5 +1i forie{1,23,...=},

iii. f(von)=n+1,

iv. f(ve0) =n+1+i for i € {1,2,3, "T‘l}

V. f(vg0i-1) = 3n2+1 +i fori € {1,2,3, nT_l},
3n—-1

vi. f(rs) = +(f(r)+ f(s) forrs € E(P, O Cy).

2
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Example 2.1 From Algorithm 2.1, we can label all vertices and edges of P, O Cs as

shown in Figure 2.6.

®) 25 (10)

Figure 2.6 A labeling for P, O C5 using Algorithm 2.1

Theorem 2.1 Letn be an odd integer such that n > 3. The edge labeling f of

P, 0 C, given by Algorithm 2.1 is an rsem labeling with c¢™1(f) = 3n2_1.

Proof. Let n be an odd integer such that n > 3. To show that f is a bijection, first, we
illustrate each vertex with its corresponding labels by using Algorithm 2.1.

By Algorithm 2.1 (i),

f . n+1
{vl,l' v1,3, v1‘5, ey vl,Zi—l' ey 1.71 2(n_+1)_1(= vl,n)} d {1,2,3, P ,_2 }
’ 2

By Algorithm 2.1 (ii),

f (m+1 n+1 n+1
{171,2: V1,4: V1,65 ++-» V1,205 =) vl,Z(nT_l) (= vl,n—l)} - {—2 + 1,—2 + 2,—2 +
n+1 , n+1 n-1
3, ...,T+ i ...,T+T(= n)}

By Algorithm 2.1 (iii), {vy.,} A {n+1}.
By Algorithm 2.1 (iv),
f
{vz’z, 172'4, 172'6, ey vz’zi, ey 172 Z(n_—l) (= vzrn_l)} d {(n + 1) + 1, (n + 1) +
! 2

. n-—1 3n+1
2,(n+1)+3,....(n+D+i,...(n+ 1)+7(= > )}

By Algorithm 2.1 (v),

f (3n+1 3n+1
{U2,1'”2,3'”2.5'---»Vz,zi—1:---,VZ'Z(nT-l)_l(= Uz,n—z)}—’{ S tlL——+
3n+1 3n+1 , 3n+l | n-1
2,043, 0 4, R (= 2
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Next, since |[E(P, O C,)| = |{2n + 1,2n + 2,2n + 3, ...,5n}|, it is enough to show that
frE(P,OC,) - {2n+12n+2,2n+ 3, ...,5n} is a surjection.
letae{2n+12n+2,2n+3,...,5n}.
Casela€e{2n+1,2n+22n+3,..,3n}.
Casella=2n+1.
Then, by Algorithm 2.1 (), f(vy41) + f(v1n) 4t
Case 1.2 a = 2n + 2a for some a € {1,2,3, 71}
Then, by Algorithm 2.1 (i) and (ii),
f(v12a-1) + fF(V12a) +
Case1l3a=2n+2a+1 for some a € {1,2,3, ,Tl}
Then, by Algorithm 2.1 (i) and (ii),

(171 Za) + f(vl 2a+1) +
Case2a€e{3n+1,3n+2,3n+3,..,4n}.

n+1

—2n+1.

3n-— 1 n+1 = 2n + 2a.

3n1—n+1 —2n+2a+1.

Case 2.1 a=3n+1.
Then, by Algorithm 2.1 (i) and (iii),
(Uln)+f('|]2n)+3n 1 _n+1

Case 2.2 a = 3n+ 2p for some B € {1,2,3, Tl}

—3n+1.

Then, by Algorithm 2.1 (i) and (v),

f(v12p-1) + f(Va2p-1) + 2o = B+ + f + 20— = 3n + 2.
Case 23 a=3n+2B+ 1 forsome B € {1,2,3, 71}

3n-1 3n+1

Then, by Algorithm 2.1 (i) and (iv),
f(v1zﬁ)+f(vzzﬁ)+3n 1=n+1 —3n+2ﬁ+1.

Case3a€e{4n+1,4n+ 2,4n+ 3,...,5n}.

Case3.la=4n+1.
Then, by Algorithm 2.1 (iii) and (iv),

f(VZn)+f(V2n 1) +

3n-1 3n—-1 =4n+1.
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Case 3.2 a =4n + 2.
Then, by Algorithm 2.1 (iv) and (v),

(172 1)+f(172n)+3n 1 __ 3n+1

Case33a—4n+2y+1forsomeye{123 n21}.

+1+n+1+—_4 +2.

Then, by Algorithm 2.1 (iv) and (v),

f(lez-y) + f(vzjzy_l) + 3712 =n+1+ Y + ntl + Y + 31’12—1 =4n + 2]/ + 1.

Case 3.4 a=4n+ 2y + 2 forsome y € {1,2,3, 73}
Then, by Algorithm 2.1 (iv) and (v),
3 3
f(va,2y41) + f(V22y) + —— =
Thus, f defined in Algorithm 2.1 is an rsem labelmg for P, O C,,. Flnally, from Algorithm
2.1 (vi), it is clear that ¢~ 1(f) = 2222 O

—4n+2y+2.

Theorem 2.2 Let n be an odd integer such that n = 3. Then,

rsems(P, 0 C,) = 3n-1

Proof. Let n be an odd integer such that n > 3 and f be any rsem labeling of

P, O C,. Since deg(v) = 3 forall v e V(P, O C,,), by Theorem 1.1, we have
nc(A)=(Cn+1+Cn+2)+@2n+3)+-+50) =31 +2+3++2n).

That is, ¢c=2(f) = 222

Hence, rsems(P, 0 C,) =

E for odd integer n such that n > 3. O

Theorem 2.3. Let n be an even integer such that n = 4. Then, P, O C, is not rsem.
Proof. Let n be an even integer such that n > 4. Assume that P, O C, is rsem with a

rsem labeling f. Then, by the same calculation as shown in Theorem 2.2, we have

cH(f) = 3n2_1 which is not an integer, a contradiction. |

3. RSEM labelings for W,(2,n)
Let n = 3. The graph W, (2,n) is constructed by attaching a single pendant edge at

each vertex of an outer cycle of P, OC,. In some literature, W, (2,n) is called the
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generalized web g¢raph without center. Note that p = |V(W,(2,n))| =3n and
q =|E(W,(2,n))| = 4n.

Figure 3.1 W,(2,5)
In this section, we construct an rsem labeling f for W,(2,n) where n is an odd
integer such that n = 3 for which ¢71(f) is as small as we can. From that ¢~1(f) and
Theorem 1.1, we can give upper and lower bounds for rsems(W,(2,n)) where n is an

odd integer such that n > 3.

Algorithm 3.1 Let n be an odd integer such that n > 3.
Define f:V(W,(2,n)) U E(W,(2,n)) - {1,2,3,...,7n} by

i f(V12i1) = i for i € {1,2,3, "T“}
i f(v100) == +1i for i € {1,2,3, "T‘l}
il. f(vz‘n) =n+1,

v f(vap) =n+1+1i fori €{123,.., "},
V. f(Vai-1) = o 4 for i € {1,2,3, "T‘l}
Vi. f(V3’n_1) =2n+ 1,

Vi, f(v32i-1) = 2n+ 141 forie{1,23,...=},
Vill. f(v3,2) = o + i forie{1,23,...2},

ix. f(rs) = 5n2—1 + (f(r) + f(s)) for rs € E(W,(2,n)).

Example 3.1 From Algorithm 3.1, we can label all vertices and edges of W,(2,5) as

shown in Figure 3.2,
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(14)
(18)

(13)

Figure 3.2 A labeling for W, (2,5) using Algorithm 3.1

Theorem 3.1 Let n be an odd integer such that n = 3. The edge labeling of W,(2,n)

5n-1

given by Algorithm 3.1 is an rsem labeling with ¢~ 1(f) =

Proof. Let n be an odd integer such that n > 3. Since (i) - (v) of Algorithm 3.1 are the
same as (i) — (v) in Algorithm 2.1, we show the proof only on additional vertices
{v31,V32,V33, ..., V3 } Of W,(2,n) that are different from those in P, O C,.

By Algorithm 3.1 (i), {v3 -1} , {2n + 1}.

By Algorithm 3.1 (vii),

{vg,l,v3_3,v3_5, s V32021, o (n+1) (=3 n)} {(Zn +1)+1,02n+ 1)+
2,2n+1)+3,..,2n+ 1D +i,..,2n+1) + "—“(_ 5";3)}.
By Algorithm 3.1 (viii),

f (5n+3 5n+3 5n+43 |
{173,2, V34r V3,611 V3,20 w000 Vg 5(n-3) (= US,n—S)} { +1, +2,
! 2

3, ..., 5n2+3 +1,.. 5n+3 + —( 3n)}

Next, since |E(W,(2,n))| = |{3n+ 1,3n+2,3n+3,..,7n}|, it is enough to show that

frEW,(2,n)) - {3n+1,3n+ 2,3n+ 3,...,7n} is a surjection.
letae{3n+13n+2,3n+3,..,7n}.
Case la€e{3n+1,3n+23n+3,..,4n}.

Case l.1la=3n+1.

n+1

Then, by Algorithm 3.1 (i), =1 =3n+1
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Case 1.2 a =3n+ 2a for some a € {1 2,3,. n21}'
Then, by Algorithm 3.1 (i) and (ii),

n-1 n+1 5n—-1
=a+ - = 3n+ 2a.

Case 1.3 a=3n+2a+ 1forsome a € {1,2,3, nT_l}
Then, by Algorithm 3.1 (i) and (ii),

f(v12a)+f(1712a+1)+5n 1—n+1 l=3n+2a+1
Case2a€e{dn+14n+24n+3,..,5n }.
Case 2.1l a=4n+1.
Then, by Algorithm 3.1 (i) and (iii),
f(vln)+f(v2n)+5n 1—n+1 Lodn+1.
Case 2.2 a = 4n + 2 for some B € {1,2,3, 71}
Then, by Algorithm 3.1 (i) and (v),
f(vr2p-1) + f(va2p-1) + o = B+ 50+ f+ = = dn + 26,
Case 23 a=4n+ 2B + 1 for some B € {1,2,3, 71}
Then, by Algorithm 3.1 (i) and (iv),
f(v126) + f(vap) + 5 =" = 4n+2B8+1.
Case3a€e{5m+15n+25n+3,..,6n}
Case 3.1 a=5n+1.
Then, by Algorithm 3.1 (iii) and (iv),
f(vom) + f(Vano1) + 5 = Ml =5n+1.
Case 3.2 a =5n+ 2.
Then, by Algorithm 3.1 (iii) and (v),
fv20) + f(vom) + 5 =5+ 14n+ 1422 =5n+2.

Case33a—5n+2y+1forsomeye{123 n21}.

Then, by Algorithm 3.1 (iv) and (v),

—=n+l+y+ ity + =2y + L

Case 3.4a=5n+2y+2forsomey € {1,2,3, 73}
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Then, by Algorithm 3.1 (iv) and (v)

5
f(”2,2y+1) + f(vz,zix) + 2=
Case d a € {6n+ 1,6n+ 2,6n+ 3, ...,7n}.

3n+1

—5n+2y+2.

If n =3, then a € {19,20,21}. We can see from the Algorithm 3.1 (v) and (viii); (iii) and

(vi); and (iii) and (vi) that
5(3) 1

f(v22) + f(vs2) + =5+74+7=19,
f(v3) + f(v 33)+5(3) l=4+9+7=20and
(1721)+f(v31)+5(3) l=6+8+7=21, respectively.

For n =5, we consider the following cases.
Case 4.1 a=6n+1.
Then, by Algorithm 3.1 (iv) and (vi),

f(UZn 1)+f(v3n 1)+5n 1=

Case 4.2 a =6n+ 2.

—6n+1.

Then, by Algorithm 3.1 (iii) and (vii),

n+1

L= 6n+2.

Case43a=6n+26+1forsomeé € {1,2,3, T}
Then, by Algorithm 3.1 (v) and (vii),

f(vzza 1) +f(17325 1) +
Case 4.4 a=6n+ 26+ 2 forsome 6 € {1,2,3, T}

5n-— 1 3n+1

L= 6n+25+1.

Then, by Algorithm 3.1 (iv) and (viii),

f(”225)+f(v325)+__n+1+6+5n+3

L _ on + 268 + 2.

Thus, f defined in Algorithm 3.1 is an rsem labeling for W,(2,n). Finally, from
Algorithm 3.1 (ix), it is clear that ¢~ 1(f) = 222 O

Theorem 3.2 Let n be an odd integer such that n = 3. Then,

5n-— 5n-1

2 < rsems(W,(2,n)) <
Proof. Let f be an rsem labeling of W, (2,n) with its rsem constant ¢~1(f). Then, by

Theorem 1.1, we have
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n

(D= ) fe-l+ Y Fo- Zf(vl,ﬂmif(vg,j)
=1 j=1

eeE(W,(2,n)) veV(W,(2,n)) j=

(Bn+1)+@Bn+2)+@Bn+3)+-+(3n+4n))

41 +2+3+-+3n)— Zf(vllj) + 3Zf(v3,j)
j=1 j=1

n n
=2n®—4n+ Zf(vl,j) + BZf(v&j) :
j=1 j=1
Consider

D F)+3) fo3) 2 ((+ D+ (1 +2) + (1+3) + =+ 2n)
j=1 j=1

+3(1 4243+ +n)
= 3n? + 2n.

That is,
4nc™(f) = 2n? — 4n+ (3n? + 2n) = 5n% — 2n.

5n-2
R

Thus, c™*(f) =

Therefore, rsems(W,(2,n)) =

5n-2
—
Next, by Theorem 3.1, the labeling defined by Algorithm 3.1 is an rsem labeling, we

5n—
2

L for an

can conclude that rsems(W,(2,n)) < ?. Hence, 5"4—'2 < rsems(W,(2,n)) <

odd integer n such that n > 3. O

4. Conclusion and Discussion

In this article, for an odd integer n such that n >3, we can find that
3n—-1
2

5n-1
2

rsems(P,0C,) = and ? < rsems(W,(2,n)) < . There are several open
problems that students may work as a mathematical project as follows.

(i) For an odd integer n such that n = 3, can we find the exact value of
rsems(W,(2,n)) or not ?

(i) For an even integer n such that n = 4, can we find a rsem labeling for W, (2,n)

or not ?
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(iii) For integers n and k such that n,k > 3, can we find a rsem labeling for P, O C,,

and W, (k,n) or not ?
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