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ABSTRACT
The aim of this paper is to study the concept of bi-bases of a semihypergroup.
The notions of bi-base of semihypergroups are introduced and described. The results
obtained extend the results on semigroup.
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1. Introduction and Preliminaries

Hyperstructure theory was born in 1934 by a French mathematician, Marty [9]. He
defined hypergroups, began to analyze their properties and applied them to groups
and rational algebraic function. Many mathematicians have studied hypergroups from
a theoretical perspective due to the applicability to many subjects of pure and
applied mathematics. Fabrici [4] introduced the concepts of a two-sided base
semigroup and Fabrici’s results extended to ordered semigroups by Changpas and
Summaprab [2]. In 2017, Changpas and Kummoon studied the notion of bi-base of a
semigroup and bi-base of a I'—semigroup [7 - 8]. The purpose of this paper is to
introduce the concept of bi-base of a semihypergroup and extend the results in [7]
to semihypergroups. Let H be a nonempty set. A mapping o:HxH — P*(H)
where P*(H) denotes the family of all nonempty subsets of H. If A and B are

two nonempty subsets of H, then, we denote

1. AocB= [J acb, xeA={x}oA, Aox=Ao{x} forall xeH,

aeA,beB

2. A" =AocAoc---0 A forall meN,
%/—J

m —1times

3.a"=acaoc---0a forall neN and ae A.

n —Ltimes
A system (H,o) is called a semihypergroup if for all X,y,zeH, (Xoy)oz=Xo(yo2z).
A nonempty subset A of a semihypergroup H is called a subsemihypergroup of H if
AoAc A. A subsemihypergroup A of a semihypergroup H is called a bi-hyperideal
of H if AcHoACA.

Proposition 1.1 Let H be a semihypergroup and A, B,C, D be nonempty subsets
of H.

(1) f AcB and Cc D, then AcC cB-D.

(2) Ae(BUC)c AcBUA-C and (BUC)ocAcBoAUCOoA

15
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Proof. (1) Assume that Ac B and C < D. Let xe A-C. Hence, xeaoc for some
ace A and ceC. Since AcB and Cc D, xeaoc for some aeB and ceD.
Hence, X e BoD. Therefore, AcC = BoD.

(2) Let xe Ao(BUC). Hence, xesot for some se A and te BUC. There are

three cases to be considered.

Case 1 teB and t«C.

Hence, Xesot for some se A and teB. Thus, Xe AcBc AcBU A-C,

Case 2 t¢B and teC.

Hence, Xesot for some se A and teC. Thus, Xe AcCc AcBUA-C.

Case3teB and teC.
Hence, XeSot for some se A, teB and teC. Thus, Xxe AcBuUA-C.
This implies that Ao(BUC) < AcBuU AoC. Similarly, (BUC)ocAcBoAUC-A O

From Proposition 1.1, if a€ A and be A, then achc Ao A= A%

Proposition 1.2 Let H be a semihypergroup and B, be a bi-hyperideal of H for
each 1 in an indexed set I. If ﬂBi #(J, then ﬂBi is a bi-hyperideal of H.

iel iel
Proof. Assume that A= ﬂ B, #J. Let ae AcH oA We have aeb ohob, for some

iel
b,b, € A and heH. From bl,bzeAzﬂBi, so b,b, eB, forall iel. Since B, isa
iel

bi-hyperideal for all iel, we have aebohob,cB for all iel. Thus,
ae ﬂ B, = A.Therefore, A= ﬂ B, is a bi-hyperideal of H. O

iel iel
Definition 1.3 Let A be a nonempty subset of a semihypergroup H. Then, the
intersection of all bi-hyperideals of H containing A is the smallest bi-hyperideal of
H generated by A and is denoted by (A),.

Proposition 1.4 Let A be a nonempty subset of a semihypergroup H. Then,
(A), =AUAcAUAH-A

16
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Proof. Let B=AUA- AU A-H o A Consider,
BoB=(AUAcAUAcHoA)o(AUAcAUAcH 0 A)
c AcAUAoH-AcCB.
Hence, B is a subsemihypergroup of H. Consider,
BoHoB=(AUAcAUAocH-A)oHo(AUAcAUAcH 0 A)
CAcHoAUAoHoA* UAocH o AcHo AUA*oH o A
UAoHo A2UA’cHoAoHo AUAcH o Ao H o A
UAocHoAoHoA*UAocHoAocHoAoH 0 A
cAocHoAUAoHoHoAUAocHoHoHoAUAoHoH oA
UAoHoHoHoAUAocHoHoHoHoAUAocHoHoH A
UAocHoHoHoHoAUAocHoHoHoHoH A
c AocHoAcC B.
Therefore, B is a bi-hyperideal of H containing A.
Let C be a bi-hyperideal of H containing A Clearly, AcC. Since C is a
subsemihypergroup of H, AcAcC-C cC. Consider, AcHoAcCoH-CcC.
Thus, B=AUAcAUAcH-AcC. Hence, B is a smallest bi-hyperideal of H
containing A. Therefore, (A), = AUAcAUAcHA. O

Definition 1.5 Let H be a semihypergroup. A subset B of H is called a bi-base of
H if it satisfies the following two conditions:

(1) H=(B), (le, H=BUB-BUB-H-B).

(2) If A is a nonempty subset of B and H =(A),, then, A=B.

Example 1.6 Let H ={a,b,c,d,e}. The hyperoperation is defined by
° a b C d e
{a} {a {abc} {a} {ab.c}
{a} {a {abc} {a} {ab.c}
{a} {a {abc} {a} {ab.c}
{a,b,d} {a,b,d} H {a,b,d} H
{a,b,d} {a,b,d} H {a,b,d} H

D O O T o
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From [6], (H,¢) is a semihypergroup. Consider B, ={e} and B, ={c,d}. Thus, B

and B, are bi-bases of H.

2. Main Results
In this section, we characterize bi-bases of semihypergroups and find a condition

that a bi-base is a subsemihypergroup.

Lemma 2.1 Let B be a bi-base of a semihypergroup H and a,b e B.

If aebobuboHob, then a=h.

Proof. Assume that aebobwuboH ob. Suppose that a#b. Consider A=B\{a}.
Thus, Ac B. Since Ac B, we have (A), < (B),=H. Hence, (A), < H. From
(B),=H,so xeBuBoBUBcH-B for all xeH. Let xeH. There are three

cases to be considered.

Case 1 xeB.
Subcase 1.1 X #a. Thus, xe B\{a}=Ac (A),.
Subcase 1.2 x=a. By assumption,
Xx=aebobuUboHobc Ac AUAcH o Ac (A),.
Case 2 xe BoB. Hence, xeb, ob, for some b,b, € B. There are four subcases to
be considered.
Subcase 2.1 b =a and b, =a. We have
Xeb oh,
=aca
c(bobuboHob)e(bebuboH ob)
=b*Ub’oH obuUboH ob®* UboH ob?oH ob
c A" UAcHo AUAoH o A>UAcH o A?oHo A
CAoH?0c AUASH o AUAoH® 0 AUAH 0 A
cAcHoA
< (A
Subcase 2.2 b #a and b, =a. We have
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XEQOQ

=boa
c(B\{a})o(bebubeoH ob)
=(B\{a})obobu(B\{a})cboH b
cAUA’HoA
CAcHoAUAoH?0 A
cAocHoA

< (A)y-

Subcase 2.3 b =a and b, #a. We have

Xeb ob,

:aoQ

c (bobuboHob)o(B\{a})
=bobo(B\{a})uboHbo(B\{a})
c AP UAoH o A?

c AcHoAUAoH?0 A
cAoHoA

< (A)y-

Subcase 2.4 b #a and b, #a. By assumption, A=B\{a}. We have

Xeb ob,

< (B\{a})-(B\{a})

=AcA

< (A)y-

Case 3 Xe BoH oB. Hence, xeb,ohob, for some b;,b, B and heH. There are

four subcases to be considered.

Subcase 3.1 by=a and b, =a. We have
Xeb,ohob,
=achoa
c(bobuboHob)oHo(boebuboH ob)
=boboHobobuUboboHoboHocbuUboH ocboH obob
UboHoboH oboHob

19
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cAcAcHoAocAUAcAcHoAcHo AUAoH o AcHoACA
UAcHoAocHoAoH oA
cAcHoA
Q(A)b-
Subcase 3.2 b, #a and b, =a. We have
Xeb,ohob,
:bsohoa
c(B\{a})oHo(bobuboH ob)
=(B\{a})cHobobu(B\{a})cHohoH b
cAcHoAocAUAcHoAoH oA
c AoHoA
< (A)y.
Subcase 3.3 b,=a and b, #a. We have
Xeb;ohob,
=achob,
c (bobuboHob)oH o (B\{a})
=boboHo(B\{a})uboHoboH-(B\{a})
c AcAcHoAUAocHoAoH oA
cAoHoA
< (A)y-
Subcase 3.4 b, #a and b, #a. By assumption, A=B\{a}. We have
Xeb,ohob,
< (B\{a})oH-(B\{a})
=AocHoA
Q(A)b-
This implies that (A), =H. This is a contradiction. Therefore, a=h. a

Lemma 2.2 Let B be a bi-base of a semihypergroup H and a,b,c € B.
If aecobucoHob, then a=b or a=c.
Proof. Assume that aecobucoH ob. Suppose that a=b and a#c.

Consider A=B\{a}, we have AcB. Since a#b and a#c, we have b,ce A

20
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Since Ac B, we have (A), < (B), =H. Hence, (A), < H. Since (B),=H, we
have xeBuUBoBUWBcHoB forall xeH. Let xe H. There are three cases to be
considered.
Case 1 xeB.
Subcase 1.1 X #a.Thus, X € B\{a}=Ac (A),.
Subcase 1.2 X =a. By assumption,
X=aecCobucoHobc AcAUAcH o Ac (A),.

Case 2 xe BeoB. Hence, xeb, ob, for some b,b, € B. There are four subcases to be

considered.

Subcase 2.1 b =a and b, =a. We have
Xeb, oh,
=aca
c(cobucoHoob)o(cobuwcoH ob)
cAoHoA
< (A)y.
Subcase 2.2 b #a and b, =a. We have
Xeb b,
:Qoa
c (B\{a})o(cobucoH ob)
cAcHoA
< (A)y.
Subcase 2.3 b =a and b, #a. We have
Xeb ob,
=aobh,
c(cobuceoHob)o(B\{a})
c AcHoA
< (A)y-
Subcase 2.4 b #a and b, #a. By assumption, A=B\{a}. We have
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Xeb ob,
c(B\{a})-(B\{a})
=AcA
< (A)y-
Case 3 Xxe BoHoB. Hence, xeb,ohob, for some b,,b, e B and he H. There are

four subcases to be considered.

Subcase 3.1 b,=a and b, =a. We have

Xeb,ohob,
=achea
c(cobucoHob)oHo(CobwcoH ob)
c AcHoA
< (A)y.

Subcase 3.2 b, #a and b, =a. We have

Xeb,ohob,
:Qohoa
c(B\{a})cHo(cobucoH ob)
cAoHoA
< (A)y.

Subcase 3.3 b,=a and b, #a. We have

Xeb,ohob,
=achob,
c(CobuceoHob)oH o (B\{a})
cAoHoA
< (A)y-

Subcase 3.4 b, #a and b, #a. By assumption, A=B\{a}. We have

Xeb,ohob,
c(B\{ah)oH-(B\{a})
=AocHoA
< (A)y-

This implies that (A), = H. This is a contradiction. Therefore, a=b or a=c.

22
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Definition 2.3 Let H be a semihypergroup. For any a,b € H, define a quasi-order
on H by
a<, b ifand only if (a), < (b),.

From Definition 2.3, a %, b if and only if (a), & (b),. The following example shows

that the relation <, defined above is not a partial order.

Example 2.4 Let H ={a,b,c,d}. The hyperoperation is defined by
o| a b C d

a|{a} {b} {3 {d}

b|{b} {ac} {bc} {d}

c|{c} {pb.c} {ab} {d}

d{d} {d} {d} H

From [5], (H,0) is a semihypergroup. We have that the singleton sets consisting of an

element of H.

Consider (a), =avacauvacHoa=H and (b), =bubobuboHob=H. We
have (a), < (b), and (b), =(a),. Hence, a<, b and b<, a. But a=b. Therefore,

<, is not a partial order on H.

Lemma 2.5 Let B be a bi-base of a semihypergroup H. If a,b e B such that b # a,
then neither a<, b nor b<, a.

Proof. Assume that a,b e B such that a=b.

Case 1 a<,b. Thus, (a), = (b),. Consider ae(a), = (b), ={b} UbeobuUboH ob.

Since a#b, aebobuboHoob. By Lemma 2.1, a=b. This is a contradiction.

Case 2 b <, a. This can be proved similarly. O

Lemma 2.6 Let B be a bi-base of a semihypergroup H. Forall a,b,ce B and he H,
(1) if aebocu(boc)* UbocoH oboc, then a=b or a=c;
(2) if aebohocu(bohoc)* UbohocoH obohoc, then a=b or a=c.
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Proof. (1) Assume that aebocu(boc)’ UbocoHoboc. Suppose that a=b
and a=#c. Consider A=B\{a}, we have AcB. Since a#b and a#c, b,ce A
Since Ac B, we have(A), c (B), =H. Hence, (A), < H. Since (B), =H,
xeBuUBoBUBocH-B forall xeH. Let xe H. There are three cases to be
considered.
Case 1 xeB.
Subcase 1.1 x#a. Thus, Xxe B\{a}=Ac (A),.
Subcase 1.2 x=a. By assumption,
x=aebhocu(boc)*UbecoHoboc
c AcAUAocHOoA
Q(Mv
Case 2 xeBoB. Hence, xeb, ob, for some by,b, € B. There are four subcases to be
considered.

Subcase 2.1 b =a and b, =a. We have
Xeb ob,
=aca
c(bocu(bec)* UbecoHeboc)e(bocu(bec)® UbocoH oboc)
c AocHoA
< (A)y-
Subcase 2.2 b #a and b, =a. We have
Xeb ob,
:bloa
c(B\{a})o(bocu(boc)> UbocoH oboc)
cAoHoA
Q(Mv
Subcase 2.3 b =a and b, #a. We have
XEQO@
:ao@
c(bocu(boc)* UbocoH oboc)o(B\{a})

24
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c AocHoA
- (A)b'
Subcase 2.4 b #a and b, #a. By assumption, A=B\{a}. We have

XEQOQ
< (B\{a})-(B\{a})
c AcA
c (A)b'

Case 3 xe BoH oB. Hence, xeb,ohob, for some b,,b, B and ke H. There are

four subcases to be considered.

Subcase 3.1 b, =aand b, =a. We have
Xeb,okob,
=aokoa
c(bocu(boc)* UbocoH oboc)oH o
(bocu(boc)* UbocoH oboc)
cAoHoA
< (A)y-
Subcase 3.2 b, #a and b, =a. We have
Xeb,okob,
:b3okoa
< (B\{a})oH (becu(bec)* UbecoH oboc)
cAcHoA
Q(A)b-
Subcase 3.3 b,=a and b, #a. We have
Xeb,okoh,
=aokob,
c(bocu(boc)* UbocoH obec)oH o (B\{a})
cAcHoA
Q(A)b-
Subcase 3.4 b, #a and b, #a. By assumption, A=B\{a}. We have
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Xeb,okob,
c (B\{a})-H-(B\{a})
=AoHo-A
< (A)y-
This implies (A), =H. This is a contradiction. Therefore, a=b or a=c.
(2) Assume that aebohocu(bohoc)®> UbohocoH obohoc. Suppose that a#b
and a=#c. Consider A=B\{a}. We have AcB. Since a#b and a=c, b,ceA
Since Ac B, we have (A),c (B),=H. Hence, (A),c H. Since (B),=H,
XxeBuUBoBUBoH-B for all xeH. Let xeH. There are three cases to be

considered.

Case 1 xeB.
Subcase 1.1 x#a. Thus, xe B\{a}=Ac (A),.

Subcase 1.2 x=a. By assumption,

X=aebohocuU(bohoc)’> UbohocoH obohoc
cAoHoA
< (A)y-

Case 2 xe BoB. Hence, xeb, ob, for some b,b, € B. There are four subcases to be

considered.
Subcase 2.1 b =a and b, =a. We have
Xeb ob,
—aoa
g(bOhOCU(bOhOC)ZUbOhOCOHObOhOC)
O(bOhOCU(DOhOC)ZUbOhOCOH ObOhOC)
c AocHoA
< (A)y.
Subcase 2.2 b #a and b, =a. We have
Xeb ob,
:bloa
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< (B\a})o(bohocu(bohoc)’ UbohocoH obohoc)

cAocHoA
< (A
Subcase 2.3 b =a and b, #a. We have
Xeb oh,
=aobh,
g(bohocu(bohoc)zubohocoHobohoc)o(B\{a})

cAoHoA
< (A)b'
Subcase 2.4 b #a and b, #a. By assumption, A=B\{a}. We have

Xeb ob,
c (B\{a})-(B\{a})
=AcA
< (A)y-

Case 3 xeBoHoB. Hence, xeb,okob, for some by,b, € B and k e H. There are

four subcases to be considered.
Subcase 3.1 b,=a and b, =a. We have
Xeb,okob,
=aokoa
c (bohocu(bohoc)* UbohocoH obohoc)
oHo(bohocu(bohoc)* UbohocoH ocbohoc)
c AocHoA
Q(A)b-
Subcase 3.2 b, #a and b, =a. We have
Xeb,okoh,
:onoa
< (B\{a})oH o(behocu(behec)’ UbohocoH obohoc)
cAoHoA
Q(A)b-
Subcase 3.3 b,=a and b, #a. We have
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Xeb,okob,
:aokom
c(bohocu(behec)* UbohocoH ebohoc)oH o(B\{a})
cAoHoA
Q(A%-

Subcase 3.4 b, #a and b, #a. By assumption, A=B\{a}. We have

Xxeb,okob,
c (B\{a})-H-(B\{a})
=AoHo-A
Q(A%-

This implies (A), = H. This is a contradiction. Therefore, a=b or a=c. a

Lemma 2.7 Let B be a bi-base of a semihypergroup H.
(1) Forany a,b,ceB, if a#b and a=c, then a¥% boc.
(2) Forany a,b,ceB and heH, if a=b and a#=c, then a%, bohoc.
Proof. Let B be a bi-base of a semihypergroup H and a,b,ce B, heH.
(1) Suppose that a<, bec. Thus, (a), < (bec),.
We have ae(a), c(boc), =bocu(boc)* UbeocoH oboc.
By Lemma 2.6 (1), we have a=b or a=c.
(2) Suppose that a<, behoc. Thus, (a), < (boheoc),.
We have ae(a), c(boheoc), =bochocuUubohocobohociubohecoH obohoc.

By Lemma 2.6 (2), we have a=b or a=c. O

Theorem 2.8 A nonempty subset B of a semihypergroup H is a bi-base of H if and
only if B satisfies the following conditions:
(1) Forany xeH,
(1.1) there exists b e B such that x<, b, or
(1.2) there exist b,b, € B such that x<, b, ob,, or
(1.3) there exist b,,b, € B and he H such that x <, b,ohob,.

(2) Forany a,b,ceB, if a#b and a=c, then a%, boc.
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(3) Forany a,b,ceB and heH, if a#b and a#c, then a% bohoc.
Proof. Let B be a nonempty subset of a semihypergroup H. Assume that B is a
bi-base of H. Therefore, H =(B),. Suppose that xe H, so xe BuB-BUBo-H ¢B.
There are three cases to be considered.
Case 1 xeB. Thus, x=b for some beB. This implies that (x), < (b),. Hence,
X<, b.
Case 2 xeBoB. Thus, xebeobh, for some Db,b,eB. This implies that
(x), = (b ob,),. Hence, x<, b ob,.
Case 3 xeBoH oB. Thus, xeb,chob, for some by,b, eB and heH.
This implies (X), = (b,ohob,),. Hence, X<, byohob,.

The validity of (2) and (3) follows from Lemma 2.7 (1) and Lemma 2.7 (2), respectively.
Conversely, assume that B satisfies (1), (2) and (3). We show that B is a bi-base of
H. Clearly, (B), < H. Let xe H. From (1.1), it follows that x € (X), < (b), = (B), for
some b e B. From (1.2), it follows that
X € (X),
< (b ob,),
=h ob, Ub ob,ob ob, Ub ob, o Hob, ob,
chbob,UboHob,
c BOBUBOHOBQ(B)b
for some by,b, € B. From (1.3), it follows that
X € (X),
< (b,ohob,),
=b,ohob, Ub,ohob, ob,ohob, Ub,ohob, o Hob,ohob,
chb,eHob,
cBoHoB
<(B),
for some b,,b, € B and he H. It remains to show that B is a minimal subset of H

with the property H =(B),. Assume that H =(A), for some Ac B. There exists
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beB\A Since beBc H =(A),, we have be(A),. Thus, be AUAcAUA-H-A
Since bg A, be Ac AUAoH o A There are two cases to be considered.

Case 1 beAcA Thus, beaca, for some a,a, €A Since bg A, bza and
b=a,. Thus, (b), =(a,°a,),. Hence, b<a ca,. This contradicts (2).

Case 2 be AcHoA Thus, bea;chea, for some a;,a, €A and heH. Since
beA b=a, and b=a, Thus, (b),c(a;ohea,),. Hence, b<a,oheca,. This
contradicts (3).

Therefore, B is a bi-base of H and the proof is completed. O

In Example 1.6, we have that {e} is a bi-base of H. But {e} is not a subsemihyper-

group of H. So, we find a condition that a bi-base is a subsemihypergroup.

Theorem 2.9 Let B be a bi-base of a semihypergroup H.
Then, B is a subsemihypergroup of H if and only if B satisfies the conditions
beboc or ceboc forany b,ceB.
Proof. Assume that B is a subsemihypergroup of H. Let b,ceB.
Suppose that bgboc and cgboc. Let aebec. Thus, a=b and a=c.
Since aeboccbocubocobocoubocoH oboc and by Lemma 2.6 (1), we have
a=b or a=c. This is a contradiction.

Conversely, assume that beboc or ceboc for any b,ceB. Let aeB-B.
Thus, aeboc for some b,ceB. Since aebocuUbocobocuUbocoH oboc and by
Lemma 2.6 (1), a=b or a=c. Hence, ae{b,c}c B. Therefore, B is a subsemi-

hypergroup of H. O
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