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บทคัดย่อ 
จุดมุ่งหมายของบทความนี้คือการศึกษาแนวความคิดของไบเบสของกึ่งไฮเพอร์กรุป โดยแนะน า

และอธิบายพัฒนาการของไบเบสของกึ่งไฮเพอร์กรุป ผลการวิจัยได้จากการขยายแนวคิดบนกึ่งกรุป 
ค าส าคัญ:  กึ่งไฮเพอร์กรุป ไบไฮเพอร์ไอดีล ไบเบส ควอซีออเดอร์ 

ABSTRACT 
The aim of this paper is to study the concept of bi-bases of a semihypergroup.  

The notions of bi-base of semihypergroups are introduced and described. The results 
obtained extend the results on semigroup. 
Keywords:  Semihypergroup, Bi-hyperideal, Bi-base, Quasi-order 
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1. Introduction and Preliminaries 
Hyperstructure theory was born in 1934 by a French mathematician, Marty [9]. He 

defined hypergroups, began to analyze their properties and applied them to groups 
and rational algebraic function. Many mathematicians have studied hypergroups from 
a theoretical perspective due to the applicability to many subjects of pure and 
applied mathematics. Fabrici [4] introduced the concepts of a two-sided base 
semigroup and Fabrici’s results extended to ordered semigroups by Changpas and 
Summaprab [2]. In 2017, Changpas and Kummoon studied the notion of bi-base of a 
semigroup and bi-base of a   semigroup [7 - 8]. The purpose of this paper is to 
introduce the concept of bi-base of a semihypergroup and extend the results in [7] 
to semihypergroups. Let H  be a nonempty set. A mapping  : H H P H   
where  P H  denotes the family of all nonempty subsets of .H  If A  and B  are 
two nonempty subsets of H , then, we denote 

1. 
,a A b B

A B a b
 

 , { }x A x A , { }A x A x  for all ,x H  

2. 
1 times

m

m

A A A A


  for all m , 

3. 
1 times

n

n

a a a a


  for all n  and a A . 

A system  ,H  is called a semihypergroup if for all , , , ( ) ( ).x y z H x y z x y z   
A nonempty subset A  of a semihypergroup H  is called a subsemihypergroup of H  if 
A A A . A subsemihypergroup A  of a semihypergroup H  is called a bi-hyperideal 
of H  if A H A A . 

Proposition 1.1 Let H  be a semihypergroup and , , ,A B C D  be nonempty subsets 
of .H  

(1) If A B  and ,C D  then .A C B D  
(2) ( )A B C A B A C    and ( ) .B C A B A C A    
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Proof. (1) Assume that A B  and .C D  Let .x A C  Hence, x a c  for some 
a A  and .c C  Since A B  and ,C D  x a c  for some a B  and .c D  
Hence, .x B D  Therefore, .A C B D  
(2) Let ( ).x A B C   Hence, x s t  for some s A  and .t B C   There are 
three cases to be considered. 

Case 1 t B  and .t C   
Hence, x s t  for some s A  and .t B  Thus, .x A B A B A C    

Case 2 t B  and .t C   
Hence, x s t  for some s A  and .t C  Thus, .x A C A B A C    

Case 3 t B  and .t C   
Hence, x s t  for some ,s A t B   and .t C  Thus, .x A B A C   
This implies that ( ) .A B C A B A C    Similarly, ( ) .B C A B A C A    

From Proposition 1.1, if a A  and b A , then 2.a b A A A   

Proposition 1.2 Let H  be a semihypergroup and 
iB  be a bi-hyperideal of H  for 

each i  in an indexed set .I  If i

i I

B


  , then i

i I

B


 is a bi-hyperideal of .H  

Proof. Assume that .i

i I

A B


    Let .a A H A  We have 
1 2a b h b  for some 

1 2,b b A  and .h H  From 1 2, ,i

i I

b b A B


   so 
1 2, ib b B  for all .i I  Since 

iB  is a  

bi-hyperideal for all ,i I  we have 
1 2 ia b h b B   for all .i I  Thus, 

.i

i I

a B A


  Therefore, i

i I

A B


  is a bi-hyperideal of .H         

Definition 1.3 Let A  be a nonempty subset of a semihypergroup .H  Then, the 
intersection of all bi-hyperideals of H  containing A  is the smallest bi-hyperideal of 
H  generated by A  and is denoted by ( ) .bA  

Proposition 1.4 Let A  be a nonempty subset of a semihypergroup .H  Then, 

( ) .bA A A A A H A    
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Proof. Let .B A A A A H A    Consider, 
( ) ( )

.

B B A A A A H A A A A A H A

A A A H A B

    

  
  

Hence, B  is a subsemihypergroup of .H  Consider,  

2 2

2 2 2

2

( ) ( )B H B A A A A H A H A A A A H A

A H A A H A A H A H A A H A

A H A A H A H A A H A H A

A H A H A A H A H A H A

A H A A H H A A H H H A A H H A

A H H H A A H H H H A A H H H A

A H H H H A A H

    

   

  

 

   

  

 

.

H H H H A

A H A B 

 

Therefore, B  is a bi-hyperideal of H containing .A   
Let C  be a bi-hyperideal of H  containing .A  Clearly, .A C  Since C  is a 
subsemihypergroup of ,H  .A A C C C   Consider, .A H A C H C C   
Thus, .B A A A A H A C     Hence, B  is a smallest bi-hyperideal of H  
containing .A  Therefore, ( )bA A A A A H A   .          

Definition 1.5 Let H  be a semihypergroup. A subset B  of H  is called a bi-base of 
H  if it satisfies the following two conditions: 

(1) ( )bH B  (i.e., H B B B B H B   ). 
(2) If A  is a nonempty subset of B  and ( ) ,bH A  then, .A B  

Example 1.6 Let { , , , , }H a b c d e . The hyperoperation is defined by 

{ } { } { , , } { } { , , }

{ } { } { , , } { } { , , }

{ } { } { , , } { } { , , }

{ , , } { , , } { , , }

{ , , } { , , } { , , }

a b c d e

a a a a b c a a b c

b a a a b c a a b c

c a a a b c a a b c

d a b d a b d H a b d H

e a b d a b d H a b d H
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From [6], ( , )H  is a semihypergroup. Consider 
1 { }B e  and 

2 { , }.B c d  Thus, 1B  
and 

2B  are bi-bases of .H  

2.  Main Results 
In this section, we characterize bi-bases of semihypergroups and find a condition 

that a bi-base is a subsemihypergroup. 

Lemma 2.1 Let B  be a bi-base of a semihypergroup H  and , .a b B  
If ,a b b b H b   then .a b  
Proof. Assume that .a b b b H b   Suppose that .a b  Consider \{ }.A B a  
Thus, .A B  Since ,A B  we have ( ) ( ) .b bA B H   Hence, ( ) .bA H  From 
( ) ,bB H so x B B B B H B    for all .x H  Let .x H  There are three 
cases to be considered. 

Case 1 .x B  
Subcase 1.1 .x a  Thus, \{ } ( ) .bx B a A A    
Subcase 1.2 .x a  By assumption, 

( ) .bx a b b b H b A A A H A A       

Case 2 x B B . Hence, 
1 2x b b  for some 

1 2, .b b B  There are four subcases to 
be considered. 

Subcase 2.1 
1b a  and 

2 .b a  We have 

1 2

4 3 3 2

4 3 3 2

2 3 3 4

( ) ( )

( ) .b

x b b

a a

b b b H b b b b H b

b b H b b H b b H b H b

A A H A A H A A H A H A

A H A A H A A H A A H A

A H A

A





  

   

   

   





 

Subcase 2.2 
1b a  and 

2 .b a  We have 
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1 2

1

3 2

2

( \{ }) ( )

( \{ }) ( \{ })

( ) .b

x b b

b a

B a b b b H b

B a b b B a b H b

A A H A

A H A A H A

A H A

A





 

 

 

 





 

Subcase 2.3 
1b a  and 

2 .b a  We have 
1 2

2

3 2

2

( ) ( \{ })

( \{ }) ( \{ })

( ) .b

x b b

a b

b b b H b B a

b b B a b H b B a

A A H A

A H A A H A

A H A

A





 

 

 

 





 

Subcase 2.4 
1b a  and 

2 .b a  By assumption, \{ }.A B a  We have 

1 2

( \{ }) ( \{ })

( ) .b

x b b

B a B a

A A

A









 

Case 3 .x B H B  Hence, 
3 4x b h b  for some 

3 4,b b B  and .h H  There are 
four subcases to be considered. 

Subcase 3.1 
3b a  and 

4 .b a  We have 

3 4

( ) ( )

x b h b

a h a

b b b H b H b b b H b

b b H b b b b H b H b b H b H b b

b H b H b H b





  

  


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( ) .b

A A H A A A A H A H A A H A H A A

A H A H A H A

A H A

A

  







 

Subcase 3.2 
3b a  and 

4 .b a  We have 
3 4

3

( \{ }) ( )

( \{ }) ( \{ })

( ) .b

x b h b

b h a

B a H b b b H b

B a H b b B a H b H b

A H A A A H A H A

A H A

A





 

 

 





 

Subcase 3.3 
3b a  and 

4 .b a  We have 
3 4

4

( ) ( \{ })

( \{ }) ( \{ })

( ) .b

x b h b

a h b

b b b H b H B a

b b H B a b H b H B a

A A H A A H A H A

A H A

A





 

 

 





 

Subcase 3.4 
3b a  and 

4 .b a  By assumption, \{ }.A B a  We have 

3 4

( \{ }) ( \{ })

( ) .b

x b h b

B a H B a

A H A

A









 

This implies that ( ) .bA H  This is a contradiction. Therefore, .a b      

Lemma 2.2 Let B  be a bi-base of a semihypergroup H  and , , .a b c B   
If ,a c b c H b   then a b  or .a c  
Proof. Assume that .a c b c H b   Suppose that a b  and .a c   
Consider \{ },A B a  we have .A B  Since a b  and ,a c  we have , .b c A   
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Since ,A B  we have ( ) ( ) .b bA B H   Hence, ( ) .bA H  Since ( ) ,bB H  we 
have x B B B B H B    for all .x H  Let .x H  There are three cases to be 
considered. 

Case 1 .x B  
Subcase 1.1 .x a Thus, \{ } ( ) .bx B a A A    
Subcase 1.2 .x a  By assumption,  

( ) .bx a c b c H b A A A H A A       

Case 2 .x B B  Hence, 
1 2x b b  for some 

1 2, .b b B  There are four subcases to be 
considered. 

Subcase 2.1 
1b a  and 

2 .b a  We have 

1 2

( ) ( )

( ) .b

x b b

a a

c b c H b c b c H b

A H A

A





  





 

Subcase 2.2 
1b a  and 

2 .b a  We have 

1 2

1

( \{ }) ( )

( ) .b

x b b

b a

B a c b c H b

A H A

A





 





 

Subcase 2.3 
1b a  and 

2 .b a  We have 

1 2

2

( ) ( \{ })

( ) .b

x b b

a b

c b c H b B a

A H A

A





 





 

Subcase 2.4 1b a  and 2 .b a  By assumption, \{ }.A B a  We have 
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1 2

( \{ }) ( \{ })

( ) .b

x b b

B a B a

A A

A









 

Case 3 x B H B . Hence, 
3 4x b h b  for some 

3 4,b b B  and .h H  There are 
four subcases to be considered. 

Subcase 3.1 
3b a  and 

4 .b a  We have 

3 4

( ) ( )

( ) .b

x b h b

a h a

c b c H b H c b c H b

A H A

A





  





 

Subcase 3.2 
3b a  and 

4 .b a  We have 
3 4

3

( \{ }) ( )

( ) .b

x b h b

b h a

B a H c b c H b

A H A

A





 





 

Subcase 3.3 
3b a  and 

4 .b a  We have 

3 4

4

( ) ( \{ })

( ) .b

x b h b

a h b

c b c H b H B a

A H A

A





 





 

Subcase 3.4 
3b a  and 

4 .b a  By assumption, \{ }.A B a  We have 

3 4

( \{ }) ( \{ })

( ) .b

x b h b

B a H B a

A H A

A









 

This implies that ( ) .bA H  This is a contradiction. Therefore, a b  or .a c    
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Definition 2.3 Let H  be a semihypergroup. For any , ,a b H  define a quasi-order 
on H  by 

ba b  if and only if ( ) ( ) .b ba b  

From Definition 2.3, 
ba b  if and only if ( ) ( ) .b ba b  The following example shows 

that the relation 
b  defined above is not a partial order. 

Example 2.4 Let { , , , }.H a b c d  The hyperoperation is defined by 

{ } { } { } { }

{ } { , } { , } { }

{ } { , } { , } { }

{ } { } { }

a b c d

a a b c d

b b a c b c d

c c b c a b d

d d d d H

 

From [5], ( , )H  is a semihypergroup. We have that the singleton sets consisting of an 
element of .H   

Consider ( )ba a a a a H a H     and ( ) .bb b b b b H b H     We 
have ( ) ( )b ba b  and ( ) ( ) .b bb a  Hence, 

ba b  and .bb a  But .a b  Therefore, 

b  is not a partial order on .H  

Lemma 2.5 Let B  be a bi-base of a semihypergroup .H  If ,a b B  such that ,b a  
then neither ba b  nor .bb a  
Proof. Assume that ,a b B  such that a b . 

Case 1 .ba b  Thus, ( ) ( ) .b ba b  Consider  ( ) ( ) .b ba a b b b b b H b      
Since ,a b  .a b b b H b   By Lemma 2.1, .a b  This is a contradiction. 

Case 2 .bb a  This can be proved similarly.             

Lemma 2.6 Let B  be a bi-base of a semihypergroup .H  For all , ,a b c B  and ,h H  
(1) if 2( ) ,a b c b c b c H b c    then a b  or ;a c  
(2) if 2( ) ,a b h c b h c b h c H b h c    then a b  or .a c  
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Proof. (1) Assume that 2( ) .a b c b c b c H b c    Suppose that a b   
and .a c  Consider \{ },A B a  we have .A B  Since a b  and ,a c  , .b c A   
Since ,A B  we have ( ) ( ) .b bA B H   Hence, ( ) .bA H  Since ( ) ,bB H  
x B B B B H B    for all .x H  Let .x H  There are three cases to be 
considered. 
Case 1 .x B  

Subcase 1.1 x a . Thus, \{ } ( ) .bx B a A A    
Subcase 1.2 .x a  By assumption,  

2( )

( ) .b

x a b c b c b c H b c

A A A H A

A

   

 



 

Case 2 .x B B  Hence, 
1 2x b b  for some 

1 2, .b b B  There are four subcases to be 
considered. 

Subcase 2.1 
1b a  and 

2 .b a  We have 

   

1 2

2 2( ) ( )

( ) .b

x b b

a a

b c b c b c H b c b c b c b c H b c

A H A

A





    





 

Subcase 2.2 
1b a  and 

2 .b a  We have 

1 2

1

2( \{ }) ( ( ) )

( ) .b

x b b

b a

B a b c b c b c H b c

A H A

A





  





 

Subcase 2.3 1b a  and 2 .b a  We have 

 

1 2

2

2( ) ( \{ })

x b b

a b

b c b c b c H b c B a





  
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( ) .b

A H A

A




 

Subcase 2.4 
1b a  and 

2 .b a  By assumption, \{ }.A B a  We have 

1 2

( \{ }) ( \{ })

( ) .b

x b b

B a B a

A A

A









 

Case 3 .x B H B  Hence, 
3 4x b h b  for some 

3 4,b b B  and .k H  There are 
four subcases to be considered. 

Subcase 3.1 
3b a and 

4 .b a  We have 

 

 

3 4

2

2

( )

( )

( ) .b

x b k b

a k a

b c b c b c H b c H

b c b c b c H b c

A H A

A





  

 





 

Subcase 3.2 
3b a  and 

4 .b a  We have 

 

3 4

3

2( \{ }) ( )

( ) .b

x b k b

b k a

B a H b c b c b c H b c

A H A

A





  





 

Subcase 3.3 
3b a  and 

4 .b a  We have 

 

3 4

4

2( ) ( \{ })

( ) .b

x b k b

a k b

b c b c b c H b c H B a

A H A

A





  





 

Subcase 3.4 
3b a  and 

4 .b a  By assumption, \{ }.A B a  We have 
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3 4

( \{ }) ( \{ })

( ) .b

x b k b

B a H B a

A H A

A









 

This implies ( ) .bA H  This is a contradiction. Therefore, a b  or .a c  

(2) Assume that 2( ) .a b h c b h c b h c H b h c    Suppose that a b  
and .a c  Consider \{ }.A B a  We have .A B  Since a b  and ,a c  , .b c A  
Since ,A B  we have ( ) ( ) .b bA B H   Hence, ( ) .bA H  Since ( ) ,bB H  
x B B B B H B    for all .x H  Let .x H  There are three cases to be 
considered. 

Case 1 x B . 
Subcase 1.1 .x a  Thus, \{ } ( ) .bx B a A A    
Subcase 1.2 .x a  By assumption,  

2( )

( ) .b

x a b h c b h c b h c H b h c

A H A

A

   





  

Case 2 .x B B  Hence, 
1 2x b b  for some 

1 2, .b b B  There are four subcases to be 
considered. 

Subcase 2.1 
1b a  and 

2 .b a  We have 

 

 

1 2

2

2

( )

( )

( ) .b

x b b

a a

b h c b h c b h c H b h c

b h c b h c b h c H b h c

A H A

A





  

 





 

Subcase 2.2 1b a  and 2 .b a  We have 

1 2

1

x b b

b a




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 2( \{ }) ( )

( ) .b

B a b h c b h c b h c H b h c

A H A

A

  





 

Subcase 2.3 
1b a  and 

2 .b a  We have 

 

1 2

2

2( ) ( \{ })

( ) .b

x b b

a b

b h c b h c b h c H b h c B a

A H A

A





  





 

Subcase 2.4 
1b a  and 

2 .b a  By assumption, \{ }.A B a  We have 

1 2

( \{ }) ( \{ })

( ) .b

x b b

B a B a

A A

A









 

Case 3 .x B H B  Hence, 
3 4x b k b  for some 

3 4,b b B  and .k H  There are 
four subcases to be considered. 

Subcase 3.1 
3b a  and 

4 .b a  We have 
3 4

2

2

( ( ) )

( ( ) )

( ) .b

x b k b

a k a

b h c b h c b h c H b h c

H b h c b h c b h c H b h c

A H A

A





  

 





 

Subcase 3.2 
3b a  and 

4 .b a  We have 

 

3 4

3

2( \{ }) ( )

( ) .b

x b k b

b k a

B a H b h c b h c b h c H b h c

A H A

A





  





 

Subcase 3.3 3b a  and 4 .b a  We have 
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 

3 4

4

2( ) ( \{ })

( ) .b

x b k b

a k b

b h c b h c b h c H b h c H B a

A H A

A





  





 

Subcase 3.4 
3b a  and 

4 .b a  By assumption, \{ }.A B a  We have 

3 4

( \{ }) ( \{ })

( ) .b

x b k b

B a H B a

A H A

A









 

This implies ( ) .bA H  This is a contradiction. Therefore, a b  or .a c     

Lemma 2.7 Let B  be a bi-base of a semihypergroup .H  
(1) For any , , ,a b c B  if a b  and ,a c  then .ba b c  
(2) For any , ,a b c B  and ,h H  if a b  and ,a c  then .ba b h c  

Proof. Let B  be a bi-base of a semihypergroup H  and , , , .a b c B h H   
(1) Suppose that .ba b c  Thus, ( ) ( ) .b ba b c  
We have 2( ) ( ) ( ) .b ba a b c b c b c b c H b c       
By Lemma 2.6 (1), we have a b  or .a c   
(2) Suppose that .ba b h c  Thus, ( ) ( ) .b ba b h c  
We have ( ) ( ) .b ba a b h c b h c b h c b h c b h c H b h c      
By Lemma 2.6 (2), we have a b  or .a c             

Theorem 2.8 A nonempty subset B  of a semihypergroup H  is a bi-base of H  if and 
only if B  satisfies the following conditions: 

(1) For any ,x H  
(1.1) there exists b B  such that ,bx b  or 
(1.2) there exist 1 2,b b B  such that 1 2 ,bx b b  or 
(1.3) there exist 3 4,b b B  and h H  such that 3 4.bx b h b  

(2) For any , , ,a b c B  if a b  and ,a c  then .ba b c  
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(3) For any , ,a b c B  and ,h H  if a b  and ,a c  then .ba b h c  
Proof. Let B  be a nonempty subset of a semihypergroup .H  Assume that B  is a  
bi-base of .H  Therefore, ( ) .bH B  Suppose that ,x H  so .x B B B B H B    
There are three cases to be considered. 
Case 1 .x B  Thus, x b  for some .b B  This implies that ( ) ( ) .b bx b  Hence, 

.bx b  
Case 2 .x B B  Thus, 

1 2x b b  for some 
1 2, .b b B  This implies that 

1 2( ) ( ) .b bx b b  Hence, 
1 2.bx b b  

Case 3 .x B H B  Thus, 
3 4x b h b  for some 

3 4,b b B  and .h H  
This implies 

3 4( ) ( ) .b bx b h b  Hence, 
3 4.bx b h b   

The validity of (2) and (3) follows from Lemma 2.7 (1) and Lemma 2.7 (2), respectively.  
Conversely, assume that B  satisfies (1), (2) and (3). We show that B  is a bi-base of 

.H  Clearly, ( ) .bB H  Let .x H  From (1.1), it follows that ( ) ( ) ( )b b bx x b B    for 
some .b B  From (1.2), it follows that  

 

1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2

( )

( )

b

b

b

x x

b b

b b b b b b b b H b b

b b b H b

B B B H B B





  

 

  

 

for some 
1 2, .b b B  From (1.3), it follows that 

 

3 4

3 4 3 4 3 4 3 4 3 4

3 4

( )

( )

b

b

b

x x

b h b

b h b b h b b h b b h b H b h b

b H b

B H B

B





  







 

for some 
3 4,b b B  and .h H  It remains to show that B  is a minimal subset of H  

with the property ( ) .bH B  Assume that ( )bH A  for some .A B  There exists 
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\ .b B A  Since ( ) ,bb B H A    we have ( ) .bb A  Thus, .b A A A A H A    
Since ,b A  .b A A A H A   There are two cases to be considered. 
Case 1 .b A A Thus, 

1 2b a a  for some 
1 2, .a a A  Since ,b A  

1b a  and 

2.b a Thus, 
1 2( ) ( ) .b bb a a  Hence, 

1 2.b a a  This contradicts (2). 
Case 2 .b A H A  Thus, 

3 4b a h a  for some 
3 4,a a A  and .h H  Since 

,b A  
3b a  and 

4.b a  Thus, 
3 4( ) ( ) .b bb a h a  Hence, 

3 4.b a h a  This 
contradicts (3).  
Therefore, B  is a bi-base of H  and the proof is completed.        

In Example 1.6, we have that { }e  is a bi-base of .H  But { }e  is not a subsemihyper- 
group of .H  So, we find a condition that a bi-base is a subsemihypergroup. 

Theorem 2.9 Let B  be a bi-base of a semihypergroup .H   
Then, B  is a subsemihypergroup of H  if and only if B  satisfies the conditions 
b b c  or c b c  for any , .b c B  
Proof. Assume that B  is a subsemihypergroup of .H  Let , .b c B   
Suppose that b b c  and .c b c  Let .a b c  Thus, a b  and .a c   
Since a b c b c b c b c b c H b c     and by Lemma 2.6 (1), we have 
a b  or .a c  This is a contradiction.  

Conversely, assume that b b c  or c b c  for any , .b c B  Let .a B B  
Thus, a b c  for some , .b c B  Since a b c b c b c b c H b c    and by 
Lemma 2.6 (1), a b  or .a c  Hence, { , } .a b c B   Therefore, B  is a subsemi-
hypergroup of .H                    
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