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ABSTRACT
Let R be a finite commutative ring with identity. We study the cubic mapping
digraphs G(R) whose vertex setis R and there is a directed edge from a to b if and

only if @’ =b. We investigate the structure of digraph and establish theorems about
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fixed points, ¢ —cycles and semiregularity. In addition, we work on the structure of
digraphs for 2 and 3 components.

Keywords: Local rings, ¢ —cycles, Semiregular

1. Introduction

A local ring is a commutative ring with identity which has a unique maximal ideal.
The exponent of a finite group G, denoted by exp G is the least positive integer n
such that g" =e for all geG. It is easy to see that expG divides |G| In particular,
expG =lcmi{o(a) : ae G} , where o(a) is the order of a in G . Moreover, if
G=G,uG,, then expG =lem{expG,, exp G, } . The exponent of a finite commutative
ring R with identity is defined to be the exponent of the unit group R* of R. We
write A(R) for the exponent of R, thatis, A(R)=expR*. The order of k modulo d
is the least positive integer ¢ such that d | k' —1, denoted by ord, & .

This research is motivated by Tocharoenirattisai and Meemark [4] who used
A(R) =expR* to study the digraph G*’(R), where R is a local extension of the
Galois ring and Su, Tang and Wei [6] who studied the square mapping graphs of finite
commutative rings.

Now, we study the cubic mapping digraphs over the finite commutative ring with
identity and recall some definitions of structure of digraphs. Let R be a finite
commutative ring with identity 1. For k£ >2, the k™ power mapping digraph over R,
denoted by G*(R), is the graph whose vertex set is R and there is a directed edge
from a to b ifand only if a* =b.

A component of a digraph is a subdigraph which is a maximal connected subgraph
of the associated nondirected graph. We consider two disjoint subdigraphs G*'(R)
and GV (R) of G*(R) induced on the set of vertices which are in the unit group R”
and induced on the remaining vertices which are not invertible, respectively. They are

called the unit subdigraph and the zero divisor subdigraph, respectively. Observe that
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there are no edges between G*®(R) and GP(R) , that s,
GP(R) =G (RYUGP(R).

A cycle of length £ >1 s said to be a  —cycle and we assume that all cycles are
oriented counterclockwise. We call a cycle of length one a fixed point. The distance
from a vertex g € R to a cycle is the length of the directed path from g to a vertex
in the cycle.

The indegree (respectively, outdegree) of a vertex ae R of G*(R), is the
number of directed edges entering (respectively, leaving) to a, and denoted by
indegWa (respectively, outdega ). The definition of G*(R) implies that the
outdegree of each vertex is equal to 1. For any fixed point such that its indegree is
equal to 1, it is called an isolated fixed point. Moreover, the definition of G*(R)
implies that each component of the digraph G*’(R) has exactly one cycle, that is
the number of components and the number of its cycles are equal.

For convenience, we use the notation G(R) for G®(R). In this paper, we discover
some theorems about fixed points in G(R), existence of ¢ —cycles in G*'(R) which
better [2] and the number of 7 —cycles in Section 2. The semiregularity is investigated
in Section 3. Finally, we establish some theorems on the digraph G(R) for 2 and 3

components in the last section.

2. The Structure of G(R)

In this section, we study the fixed points, ¢ —cycles and the number of ¢ —cycles
which are the important structures of G(R).

Let R be a finite commutative ring with identity. It is well-known that R is a finite

direct product of finite local rings, that is,

R=R xR, x---xR_, (1)
for some s€Z", where R, is a finite local ring for any 1<i<s.

The following theorem on finite local rings is needed for this research.
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Theorem 2.1. (Theorem 6.1.2 in [1]) Let R be a finite local ring with the unique
maximal ideal M . Then |R|=p"’, M|=p(”‘1)’, M" ={0} and char R = p* for some

prime p and some positive integers n, r, k (1<k <n).

Lemma 2.2. Let R be as in (1). Then the following statements hold.

(1) There are 3’ fixed points in G(R).

(2) If s=1 then G,(R) has the tree attached to 0.

(3) G,(R) has exactly one component if and only if s=1.

(4) Let a, be R*. If a and b are in the same cycle in G,(R), then o(a)=o0(b).
Proof. (1) For any fixed point a in G(R,), @’ =a,so a=0,1,—1.Then G(R,) has 3
fixed points. Hence G(R) has 3° fixed points.

(2) For s =1, we have R is a finite local ring with unique maximal ideal, so we are
done.

(3) Assume that G,(R) has exactly one component. Since 0° =0, so any vertex in

G,(R) is attached to the 0. Consider the set M ={a eR\R"|IneN, a =0}. It is
not difficult to show that M is an ideal of R. This means that the set of all nonunit
of R forms an ideal. This implies that R is a local ring, that is s =1. The converse is
clear by (2).

(4) Let a, be R* and let o(a) =1, o(b)=1". Without loss of generality, we let I'<[.

Since @ and b areinthe same cycle, so b* =a forsome j>1.Since 1=(" ) =d"

,s0 [|I'. This forces that I =1". O

Theorem 2.3. Let R be as in (1). The element 0 is an isolated fixed point in G, (R)
if and only if R, is a field.

Proof. Suppose that s=1. If R is a field, then it is clear that 0 is an isolated fixed
point. Conversely, by Lemma 2.2(2), the unique maximal ideal of R is {O} Thus R
is a field. Now assume that s >1. Suppose that 0 is an isolated fixed point. If R, is

not a field for some i, then there is 0# , € R, such that af =0.
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Let ¢ =(0,...,,,...,0)e R . Then a’ =0 which is a contradiction since 0 is an
isolated fixed point. Hence, each R, is a field for all i. Conversely, if every R is a

field, then it is clear that 0 is an isolated fixed point. O

Lemma 2.4. Let R be as in (1). If a nonidentity b is a vertex of a t —cycle (¢>1) in
G,(R), then gcd(o(b),3) =1.

Proof. Let a nonidentity b be a vertex of a t—cycle (>1) in G,(R). Then t is the
least positive integer such that b* =b. Since be R*, b* "' =1. Thus o(b) |3'~1 and
ged(o(b),3)=1. O

Lemma 2.5. Let R be as in (1). If a nonidentity be R*, o(b)#2 and ged(o(b),3) =1,
then b is a vertex of a t—cycle (t>1) in G,(R).
Proof. Let o(b)=[+#2 and gcd(l,3):1. Then there is the least positive integer ¢
such that /|3 —1. Since [ #2, we have t#1, that is, t>1. Says, lk=3"—1. Then
p* =b"" =1, that is, f is the least positive integer such that 5* =b. Thus b is a
vertex of a t—cycle (t>1) in G,(R). O
Next, we display the existence of a # —cycle with £ >1 in G* (R), such that these
results are better [6] which displayed a ¢ —cycle on G/*'(R). For a finite commutative
ring R with identity, we set A(R)=uv, where u is the largest divisor of A(R)

relatively prime to k.

Theorem 2.6. Let R be as in (1). Let ¢ be a positive integer, and k>2.

The following statements are equivalent.
(1) There exists a ¢ —cycle in G*(R).
(2) There exists b e R* where t is the least positive integer such that 0(b)| k' —1.
(3) t=ord, k for some divisor d of u.

Proof. (1) = (2). Let a be a vertex of a t—cycle. Then t is the least positive integer

such that " =a, so a(akl1 —1)=0. If ae R*, then a* ' —=1=0. Thus ¢ is the least

positive integer such that a“ ! = 1, and in this case, we are done by setting b = a . Next,

a5



nsdalansnindsauyesSaEdunInia

suppose that ag R*. Let A=(a), B= Ann(a), the annihilator of a in R. Then
ABz{O} and " '—1eB . Since akt_l—(akt_l—l)zl, so A+B=R and then
AN B=A4B={0}. Define the ring isomorphism ¢ by @:R— R/AxR/B such that
o(r)=(r+ A, r+B) for any re R . Taking b=1+a—a"". Then ob)=(1+4, a+B)

Thus

o' Y =(+4,a" " +B)=(1+4,1+B).
Since ¢ is a ring isomorphism, p! =1, thatis, ¢ is the least positive integer such that
b =1. Hence, we have (2) as required.
(2) = (3). Suppose there exists b€ R* such that 0(b)| k' =1 ,but o(b)|k' -1, forall
1<I<t.Then ¢ is the least positive integer such that »* ' =1, and ged(o(b), k) =1,
SO 0(b)| u.Set d=0(b). Thus t =ord, k for some divisor d of u.

(3) = (1). Suppose t=ord, k for some divisor d of u. Since R* is abelian, there

AR)
exists a € R such that o(a)=A(R). Set b=a ¢ . Since t=ord, k, t is the least

(' -DA(R)
positive integer such that b'=a ¢ =1.This means that b =b. Therefore,

there exists a £ —cycle in G*(R), where ¢>1. O
For the number of f—cycles in G*(R) is denoted by A,(G””(R)). Next, we
investigate the number of ¢ —cycles in G(R).
Theorem 2.7. Let R be as in (1). Then the following statements hold.
(1) 4(G, (R))=2" and 4(G,(R))=3"-2".
(2) For t>1,if 4,(G,(R)) 21, then 4,(G, (R))=1.
Proof. Apply Lemma 2.2(1), we have that (1) is done.
Let #>1. Suppose that At(Gz(R))Zl. Let a be a vertex of a t—cycle in G,(R).

Then we set b=l+a—a° "', By the proof of Theorem 2.6, be R* and t is the least
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positive integer such that b7 =1, thatis, b =bh, so b is a vertex of a ¢ —cycle in

G, (R). Hence 4,(G, (R))21. O

Lemma 2.8. Let R be as in (1) and ¢ be an odd prime. Then |R* | =¢" (m>0) if
and only if R is a direct product of the rings where every direct product is isomorphic

to F
q

m +1

(n-1)r

(P =D=4q".
If p>2,then p"—1=1, this forces that p=2 which is a contradiction. Thus p=2.

Proof. First, suppose that R is local. By Theorem 2.1, |R* | =¢

Then (n—=1)r=0, that is, n=1 and p"—-1=¢". Hence R=F , .- The converse is
q +

clear. Secondary, we suppose that R is not local. Since | R*|=¢",so |R*|=¢q"" for

all 1<i<s. Then by above, the proof is completed. Again, the converse is clear. O

Theorem 2.9. Let R be as in (1).

(1) If 4, (G] (R)): 0 forany ¢>1, then |R*|=2'3" (I,m>0).

@ If |[R*|=3" (m>=0), then At(G] (R))=0 forany ¢>1.

(3)If 4, (G2 (R))= 0 forany ¢>1,then |R*|=2'3" (I,m>0) or R is local.

@ If |R*|=3" (m>0) or R is local, then 4, (G2 (R)) =0 forany t>1.
Proof. (1) Suppose that At<G1 (R))=O for any ¢t >1. Assume that there is a prime
p >3 such that p| | R*|. Since R" is abelian, there is an element b€ R such that
o(b)=p. And since p#2 and ged(p, 3)=1, by Lemma 2.5, 4, (Gl (R)) =0 (t>1).
This is a contradiction. Hence | R* | =2'3" (I,m>0).
(2) Suppose that | R*|=3" (m >0). Then any nonidentity element g e R, o(g)=3'
for some 1<i<m . Since gcd(3’,3 —1)=1 for any t>1, by Theorem 2.6,
A[(G] (R))=0 forany ¢ >1.
(3) Suppose that 4, (G2 (R)) =0 forany ¢>1. Assume that R is not local. If there is
a prime p>3 such that p| | R*|, then since R™ is abelian, there is an element

g€ R such that o(g) = p. Since ged(p, 3) =1, there is the least positive integer ¢
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such that p|3'—1, says pk=3"-1. Let ¢ =(g,0,0,...,0). Then 0= a ¢ R", that
is, o is a zero divisor of R and & ' =a” =(g%, 0,0,...,0)=(1, 0, 0,..., 0). Thus
o =a ,thatis, a isavertexofa t—cyclein G,(R) which is a contradiction. Hence
|R*|=2'3" (I,m>0). For another way, if we assume that |R*|#2'3" for any
[,m>0, then there is a prime p >3 such that p | | R*|. Above discussion forces that
R is local.

(4) Suppose that |R*|=3" (m>0). By (2), At(G1 (R)) =0 for any t>1. If t>1,
A4 (G2 (R)) >1, then by Theorem 2.7(2), 4, (Gl (R)) >1 which is a contradiction. Thus

4 (G2 (R)) =0 for any ¢ >1. Another one for local ring R is obvious. O

3. Semiregularity of G*)(R)

In this section, we study the semiregularity of G*(R), where R is a finite
commutative ring with identity as in (1). Now, we recall the definition of semiregular.
The digraph G*(R) is called semiregular if there is a positive integer d such that for
each vertex geR, indeg” g=0 or indeg® g=d.

Theorem 3.1. Let R be as in (1). Then G (R) is semiregular.

Proof. We want to show that for any geR*, if indeg® g=#0 , then

inde g™ g =inde g’ 1. Suppose that inde g*’ g # 0. Then there is h € R* such that

W =g . Since, for any seR*, s*=g if and only if (h's)*=1. Thus

indeg® g =indeg™'1. O
It is clear to see that the digraph G, (R) is semiregular by taking &£ =3 in Theorem

3.1 which is shown below.
Corollary 3.2. Let R be as in (1). Then G, (R) is semiregular.

Theorem 3.3. Let R be a finite local ring with unique maximal ideal M . If M* =0,

then G\ (R) is semiregular.
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Proof. Suppose that M* =0. Then it is clear that any element in M s a vertex in
G{"(R) attaching to a fixed point 0. Thus G\ (R) is semiregular. O
Again, it is clear that the digraph G, (R) is semiregular by taking k£ =3 in Theorem

3.3 which is shown below.

Corollary 3.4. Let R be a finite local ring with the unique maximal ideal A . If M> =0,

then G,(R) is semiregular.

4. The Digraphs G(R) with Two and Three Components

In last section, we work on the structure of digraphs G(R) with two and three
components. First of all, we will talk about some theorems on the digraph over a finite
cyclic group in [3].
Lemma 4.1. Let C, be a finite cyclic group of order n and k>2.

(1) If ged(n, k)=1, then G“(C,)=U(o(ord, k) --Uo(ord, k)),
d|n

where o(/) is an [ —cycle and ¢ is the Euler ¢ —function.

(2) If ged(n, 3)=1, then 4,(G(C,))=>. p(d)

d|n or d

@(d)
A4(G(C)))= — for ¢t>1.
t( ) d%,,,zor .3

for t>1 and

Proof. The proof of (1) can be seen in Proposition 4.2 (1) in [3].

For (2), we apply (1) by taking £ =3. Then we have that At(G(Cn)):Z% for

dn ora,

t>1.Since ord,3 =1 ifand only if d =1,2 ,s0 4,(G(C,))= Z%‘” fort>1.0
d|n ora,
d#1,2

Theorem 4.2. Let R be as in (1). If G(R) has exactly two components, then R is
local, charR=2 and |R*|=2'3" (I,m>0).
Proof. Suppose that G(R) has exactly two components. Since 0,1, —1 are fixed

points of G(R), if follows that At(G(R))=O for any ¢t>1 and /=-1, that is,
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char R=2. Since A,(GZ(R))ZO for any t>1, by Lemma 2.2(3) and by Theorem
2.9(3), R is local and |R* | =2'3" (I,m>0). O

Theorem 4.3. Let R be as in (1). If R is local, char R=2 and |R*|=3" (m>0),
then G(R) has exactly two components.

Proof. It is obvious by Theorem 2.9. O

Theorem 4.4. Let R be as in (1). If G(R) has exactly three components, then R
satisfies one of the following statements.

(1) R islocal, char R#2 and |R*|=2'3" (I,m>0).

(2) R is local, charR=2 and |R|=2"=2|M|.

(3) R=F

v Where ¢ is a prime that ¢ >3, char R=2 and 3 is a primitive root

modulo ¢ .

(4) R is local, char R=2 with |R*|=23"¢q’ (m#0,i,j>1) or (i=0,m,j>1)

or (j=0, i;m=>1).

Proof. Suppose that G(R) has exactly three components. Since 0, 1, —1 are fixed
points of G(R), if char R#2, then 1# -1, we have 4(G(R))=O for any t>1.
Thus R is local and by Theorem 2.9, we have |R*|=2'3" (I,m>0). Now, we
consider if char R=2,then 1=—1. For s >1, we have that G(R) contains 2" fixed
points, that is, G(R) contains 2° components such that 2° >3 which is a
contradiction. Thus s =1, thatis, R is local and G(R) contains only two fixed points
and only one f—cycle for some ¢ >1 in G,(R).By Lemma 2.5, there is a nonidentity
be R, o(b)#2, and gcd(o(b), 3)=1. Now we will investigate the order of |R"|.
Suppose that there are distinct primes p, ¢ >3 such that p, q| |R*|. Since |R"| is
abelian, there are elements b, c € R* such that o(b)=p and o(c)=¢. By Lemma
2.2(4), b,c are in different t— cycles for some ¢>1 in G,(R) which is a
contradiction. Thus no distinct primes p, g >3 such that p,q| | R*|. By Lemma 2.4,

it is clear that | R* | # 3" for any m>0. Now, we consider the other cases of | R*|.
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Case 11If |R*|=2"" (i>1), thensince |R*|=2"""(2" -1)=2"", it follows that r =1
and|R*|=2"" = |M|. Hence |R|=2"=2|M|.

Case 2 If |R*| =g’ (j=1), where g is a prime that ¢ >3, then since |R*| =
207727 1) = ¢’ , we have (n—1)r=0, thatis, n=1 and 2" —1=¢’. Since

A4 (G(R))=0 (¢t>1) and R EFqu+1 = Cq‘/., by Lemma 4.1 (2), 1= 4, (G(qu))

= Z M This forces that j=1,d =q, and @(d)=o0rd, 3, thatis, 3 is a primitive
o

root modulo q. Thus R=F_,,.

Case3 |R*|=2'q’ (i,j>1).Since | R*|=2""" (2" -1)=2¢’, says R*=Q,xQ,, where
Q, is an abelian of order 2’ and Q, is a cyclic of order ¢’. Since q| | R*|, there is
b e R* such that o(b)=q. By Lemma 2.5, b is a vertex of a t—cycle (t>1) in G,(R).
If there is ¢ € R* such that o(c)=2' (/>2), then by Lemma 2.5, ¢ is a vertex of a
t—cycle (¢>1) in G/(R). Since o(b) #0(c), by Lemma 2.2(4), b, ¢ are in different ¢ —
cycles (¢>1) in G,(R) which is a contradiction. If there is ceR* such that
o(c)=¢q" (I=2) or o(c)=2'¢g’ (i, j>1), then we have a contradiction again by above
discussion. Thus |R*|#2'q’ for any i,j>1 . Hence, we have |R*|=23"q’

(m=#0,i,j>1) or (i=0,m,j>1) or (j=0, i,m=>1). O

Theorem 4.5. Let R be as in (1). If R=F,,, where g is a prime that ¢ >3,

+1
charR=2, and 3 is a primitive root modulo ¢, then G(R) has exactly three
components.

Proof. It is immediate from Lemma 2.5 and Lemma 4.1(2) O
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