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บทคัดยอ 

ให R  เปนริงสลับที่จํากัดพรอมเอกลักษณ เราศึกษาการสงไดกราฟกําลังสาม ( )G R  ซึ่งใช 

จุดยอดใน R  และมีทิศทางจาก a  ไป b  ก็ตอเมื่อ 3a b=  เราไดศึกษาโครงสรางของไดกราฟและ

ไดทฤษฎีที่เก่ียวของกับจุดตรึง วัฏจักรความยาวที และความเปนเซมิเรกูลา นอกเหนือจากน้ัน 

เราไดศึกษาโครงสรางของไดกราฟสําหรับสองและสามคอมโพเน็น 

คําสําคญั:  ริงเฉพาะที ่วัฏจักรความยาวที เซมิเรกูลา 

ABSTRACT 

Let R  be a finite commutative ring with identity. We study the cubic mapping 

digraphs ( )G R  whose vertex set is R  and there is a directed edge from a  to b  if and 

only if 3a b= . We investigate the structure of digraph and establish theorems about 
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fixed points, t − cycles and semiregularity. In addition, we work on the structure of 

digraphs for 2 and 3 components. 

Keywords:  Local rings, t − cycles, Semiregular  

1. Introduction 

A local ring is a commutative ring with identity which has a unique maximal ideal. 

The exponent of a finite group G , denoted by expG  is the least positive integer n  

such that ng e=  for all g G∈ . It is easy to see that expG  divides G . In particular, 

exp lcm{ ( ) : }G o a a G= ∈ , where ( )o a  is the order of a  in G . Moreover, if 

1 2G G G= ∪ , then 1 2exp lcm{exp , exp }G G G= . The exponent of a finite commutative 

ring R  with identity is defined to be the exponent of the unit group R×  of R . We 

write ( )Rλ  for the exponent of R , that is, ( ) expR Rλ ×= . The order of k  modulo d  

is the least positive integer t  such that | 1td k − , denoted by ordd k . 

This research is motivated by Tocharoenirattisai and Meemark [4] who used 

( ) expR Rλ ×=  to study the digraph ( ) ( )kG R , where R  is a local extension of the 

Galois ring and Su, Tang and Wei [6] who studied the square mapping graphs of finite 

commutative rings.  

Now, we study the cubic mapping digraphs over the finite commutative ring with 

identity and recall some definitions of structure of digraphs. Let R  be a finite 

commutative ring with identity 1. For 2k ≥ , the thk  power mapping digraph over R , 

denoted by ( ) ( )kG R , is the graph whose vertex set is R  and there is a directed edge 

from a  to b  if and only if ka b= . 

A component of a digraph is a subdigraph which is a maximal connected subgraph 

of the associated nondirected graph. We consider two disjoint subdigraphs ( )
1 ( )kG R  

and ( )
2 ( )kG R  of ( ) ( )kG R  induced on the set of vertices which are in the unit group R×  

and induced on the remaining vertices which are not invertible, respectively. They are 

called the unit subdigraph and the zero divisor subdigraph, respectively. Observe that 
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there are no edges between ( )
1 ( )kG R  and ( )

2 ( )kG R , that is, 

( ) ( ) ( )
1 2( ) ( ) ( )k k kG R G R G R= ∪ . 

A cycle of length 1t ≥   is said to be a t − cycle and we assume that all cycles are 

oriented counterclockwise. We call a cycle of length one a fixed point. The distance 

from a vertex g R∈  to a cycle is the length of the directed path from g  to a vertex 

in the cycle. 

The indegree (respectively, outdegree) of a vertex a R∈  of ( ) ( )kG R , is the 

number of directed edges entering (respectively, leaving) to a , and denoted by 
( )kindeg a  (respectively, ( )koutdeg a ). The definition of ( ) ( )kG R  implies that the 

outdegree of each vertex is equal to 1. For any fixed point such that its indegree is 

equal to 1, it is called an isolated fixed point. Moreover, the definition of ( ) ( )kG R  

implies that each component of the digraph ( ) ( )kG R  has exactly one cycle, that is 

the number of components and the number of its cycles are equal.  

For convenience, we use the notation ( )G R  for (3) ( )G R . In this paper, we discover 

some theorems about fixed points in ( )G R , existence of t − cycles in ( ) ( )kG R  which 

better [2] and the number of t − cycles in Section 2. The semiregularity is investigated 

in Section 3. Finally, we establish some theorems on the digraph ( )G R  for 2 and 3 

components in the last section. 

2. The Structure of ( )G R  

In this section, we study the fixed points, t − cycles and the number of t − cycles 

which are the important structures of ( )G R .  

Let R  be a finite commutative ring with identity. It is well-known that R  is a finite 

direct product of finite local rings, that is,  

     1 2 sR R R R≅ × × × ,                              (1) 

for some s +∈ , where iR  is a finite local ring for any 1 i s≤ ≤ . 

The following theorem on finite local rings is needed for this research. 
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Theorem 2.1. (Theorem 6.1.2 in [1]) Let R  be a finite local ring with the unique 

maximal ideal M . Then { }( 1), , 0nr n r nR p M p M−= = =  and kchar R p=  for some 

prime p  and some positive integers , , (1 )n r k k n≤ ≤ . 

Lemma 2.2. Let R  be as in (1). Then the following statements hold. 
(1) There are 3s  fixed points in ( )G R . 

(2) If 1s =  then 2 ( )G R  has the tree attached to 0 . 

(3) 2 ( )G R  has exactly one component if and only if 1s = . 

(4) Let ,a b R×∈ . If a  and b  are in the same cycle in 1( )G R , then ( ) ( )o a o b= . 

Proof. (1) For any fixed point a  in ( )iG R , 3a a= , so 0, 1, 1a = − . Then ( )iG R  has 3  

fixed points. Hence ( )G R  has 3s  fixed points. 

(2) For 1s = , we have R  is a finite local ring with unique maximal ideal, so we are 

done. 

(3) Assume that 2 ( )G R  has exactly one component. Since 30 0= , so any vertex in 

2 ( )G R  is attached to the 0 . Consider the set { }3\ , 0
n

M a R R n a×= ∈ ∃ ∈ = . It is 

not difficult to show that M  is an ideal of R . This means that the set of all nonunit 

of R  forms an ideal. This implies that R  is a local ring, that is 1s = . The converse is 

clear by (2). 

(4) Let ,a b R×∈  and let ( ) , ( )o a l o b l′= = . Without loss of generality, we let l l′ ≤ . 

Since a  and b  are in the same cycle, so 3 j
b a=  for some 1j ≥ . Since 31 ( )

j l lb a′ ′= =

, so |l l′ . This forces that l l′= .       

Theorem 2.3. Let R  be as in (1). The element 0  is an isolated fixed point in 2 ( )G R  

if and only if iR  is a field. 

Proof. Suppose that 1s = . If R  is a field, then it is clear that 0  is an isolated fixed 

point. Conversely, by Lemma 2.2(2), the unique maximal ideal of R  is { }0 . Thus R  

is a field. Now assume that 1s > . Suppose that 0  is an isolated fixed point. If iR  is 

not a field for some i , then there is 0 i iRα≠ ∈  such that 3 0iα = . 
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Let (0, , , ,0)i Rα α= ∈  . Then 3 0α =  which is a contradiction since 0  is an 

isolated fixed point. Hence, each iR  is a field for all i . Conversely, if every iR  is a 

field, then it is clear that 0  is an isolated fixed point.      

Lemma 2.4. Let R  be as in (1). If a nonidentity b  is a vertex of a t − cycle ( 1)t >  in 

1( )G R , then ( )gcd ( ),3 1o b = . 

Proof. Let a nonidentity b  be a vertex of a t − cycle ( 1)t >  in 1( )G R . Then t  is the 

least positive integer such that 3t
b b= . Since 3 1, 1

t
b R b× −∈ = . Thus ( ) 3 1to b −  and 

( )gcd ( ),3 1o b = .          

Lemma 2.5. Let R  be as in (1). If a nonidentity , ( ) 2b R o b×∈ ≠  and ( )gcd ( ),3 1o b = , 

then b  is a vertex of a t − cycle ( 1)t >  in 1( )G R .  

Proof. Let ( ) 2o b l= ≠  and ( )gcd ,3 1l = . Then there is the least positive integer t  

such that | 3 1tl − . Since 2l ≠ , we have 1t ≠ , that is, 1t > . Says, 3 1tlk = − . Then 
3 1 1
tlkb b −= = , that is, t  is the least positive integer such that 3t

b b= . Thus b  is a 

vertex of a t − cycle ( 1)t >  in 1( )G R .       

Next, we display the existence of a t − cycle with 1t ≥  in ( ) ( )kG R , such that these 

results are better [6] which displayed a t − cycle on ( )
1 ( )kG R . For a finite commutative 

ring R  with identity, we set ( )R uvλ = , where u  is the largest divisor of ( )Rλ  

relatively prime to k . 

Theorem 2.6. Let R  be as in (1). Let t  be a positive integer, and 2k ≥ .  

The following statements are equivalent. 

(1) There exists a t − cycle in ( ) ( )kG R . 

(2) There exists b R×∈  where t  is the least positive integer such that ( ) 1to b k − . 

(3) dt ord k=  for some divisor d  of u . 

Proof. (1) ⇒  (2). Let a  be a vertex of a t − cycle. Then t  is the least positive integer 

such that 
tka a= , so ( )1 1 0

tka a − − = . If a R×∈ , then 1 1 0
tka − − = . Thus t  is the least 

positive integer such that 1 1
tka − = , and in this case, we are done by setting b a= . Next, 
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suppose that a R×∉ . Let ( ), ( )A a B Ann a= = , the annihilator of a  in R . Then 

{ }0AB =  and 1 1
tka B− − ∈ . Since ( )1 1 1 1

t tk ka a− −− − = , so A B R+ = and then 

{ }0A B AB∩ = = . Define the ring isomorphism ϕ  by : / /R R A R Bϕ → ×  such that 

( ) ( , )r r A r Bϕ = + +  for any r R∈ . Taking 11
tkb a a −= + − . Then ( ) (1 , )b A a Bϕ = + +

.   

Thus 
1 1( ) (1 , ) (1 , 1 )

t tk kb A a B A Bϕ − −= + + = + + . 

Since ϕ  is a ring isomorphism, 1 1
tkb − = , that is, t  is the least positive integer such that 

1 1
tkb − = . Hence, we have (2) as required. 

(2) ⇒  (3). Suppose there exists b R×∈  such that ( ) 1to b k − , but ( ) | 1lo b k −/ , for all 

1 l t≤ < . Then t  is the least positive integer such that 1 1
tkb − = , and gcd( ( ), ) 1o b k = , 

so ( )o b u . Set ( )d o b= . Thus dt ord k=  for some divisor d  of u . 

(3) ⇒  (1). Suppose dt ord k=  for some divisor d  of u . Since R×  is abelian, there 

exists a R×∈  such that ( ) ( )o a Rλ= . Set 
( )R
db a

λ

= . Since dt ord k= , t  is the least 

positive integer such that 
( 1) ( )

1 1
tk R

tk db a
λ−

− = = . This means that 1tkb b− = . Therefore, 

there exists a t − cycle in ( ) ( )kG R , where 1t ≥ .      

For the number of t − cycles in ( ) ( )kG R  is denoted by ( )( ) ( )k
tA G R . Next, we 

investigate the number of t − cycles in ( )G R . 

Theorem 2.7. Let R  be as in (1). Then the following statements hold. 

(1) ( )1 1 ( ) 2sA G R =  and ( )1 2 ( ) 3 2s sA G R = − . 

(2) For 1t > , if ( )2 ( ) 1tA G R ≥ , then ( )1 ( ) 1tA G R ≥ . 

Proof. Apply Lemma 2.2(1), we have that (1) is done. 

Let 1t > . Suppose that ( )2 ( ) 1tA G R ≥ . Let a  be a vertex of a t − cycle in 2 ( )G R . 

Then we set 3 11
t

b a a −= + − . By the proof of Theorem 2.6, b R×∈  and t  is the least 
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positive integer such that 3 1 1
t

b − = , that is, 3t
b b= , so b  is a vertex of a t − cycle in 

1 ( )G R . Hence ( )1 ( ) 1tA G R ≥ .        

Lemma 2.8. Let R  be as in (1) and q  be an odd prime. Then | | ( 0)mR q m× = ≥  if 

and only if R  is a direct product of the rings where every direct product is isomorphic 

to 
1mq

F
+

. 

Proof. First, suppose that R  is local. By Theorem 2.1, ( 1)| | ( 1)n r r mR q p q× −= − = .  

If 2p > , then 1 1rp − = , this forces that 2p =  which is a contradiction. Thus 2p = . 

Then ( 1) 0n r− = , that is, 1n =  and 1r mp q− = . Hence 
1mq

R F
+

≅ . The converse is 

clear. Secondary, we suppose that R  is not local. Since | | mR q× = , so | | mi
iR q× =  for 

all 1 i s≤ ≤ . Then by above, the proof is completed. Again, the converse is clear.  

Theorem 2.9. Let R  be as in (1). 

(1) If ( )1 ( ) 0tA G R =  for any 1t > , then | | 2 3 ( , 0)l mR l m× = ≥ . 

(2) If | | 3 ( 0)mR m× = ≥ , then ( )1 ( ) 0tA G R =  for any 1t > . 

(3) If ( )2 ( ) 0tA G R =  for any 1t > , then | | 2 3 ( , 0)l mR l m× = ≥  or R  is local. 

(4) If | | 3 ( 0)mR m× = ≥  or R  is local, then ( )2 ( ) 0tA G R =  for any 1t > . 

Proof. (1) Suppose that ( )1 ( ) 0tA G R =  for any 1t > . Assume that there is a prime 

3p >  such that | |p R× . Since R×  is abelian, there is an element b R×∈  such that 

( )o b p= . And since 2p ≠  and gcd( , 3) 1p = , by Lemma 2.5, ( )1 ( ) 0tA G R ≠  ( 1)t > . 

This is a contradiction. Hence | | 2 3 ( , 0)l mR l m× = ≥ . 

(2) Suppose that | | 3 ( 0)mR m× = ≥ . Then any nonidentity element g R×∈ , ( ) 3io g =  

for some 1 i m≤ ≤ . Since gcd(3 , 3 1) 1i t − =  for any 1t > , by Theorem 2.6, 

( )1 ( ) 0tA G R =  for any 1t > . 

(3) Suppose that ( )2 ( ) 0tA G R =  for any 1t > . Assume that R  is not local. If there is 

a prime 3p >  such that | |p R× , then since R×  is abelian, there is an element 

g R×∈  such that ( )o g p= . Since gcd( , 3) 1p = , there is the least positive integer t  
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such that 3 1tp − , says 3 1tpk = − . Let ( , 0, 0, , 0)gα =  . Then 0 Rα ×≠ ∉ , that 

is, α  is a zero divisor of R  and 3 1 ( , 0, 0, , 0) (1, 0, 0, , 0)
t pk pkgα α− = = =  . Thus 

3t
α α= , that is, α  is a vertex of a t − cycle in 2 ( )G R  which is a contradiction. Hence 

| | 2 3 ( , 0)l mR l m× = ≥ . For another way, if we assume that | | 2 3l mR× ≠  for any 

, 0l m ≥ , then there is a prime 3p >  such that | |p R× . Above discussion forces that 

R  is local. 

(4) Suppose that | | 3 ( 0)mR m× = ≥ . By (2), ( )1 ( ) 0tA G R =  for any 1t > . If 1t > , 

( )2 ( ) 1tA G R ≥ , then by Theorem 2.7(2), ( )1 ( ) 1tA G R ≥  which is a contradiction. Thus 

( )2 ( ) 0tA G R =  for any 1t > . Another one for local ring R  is obvious.   

3. Semiregularity of ( ) ( )kG R  

In this section, we study the semiregularity of ( ) ( )kG R , where R  is a finite 

commutative ring with identity as in (1). Now, we recall the definition of semiregular. 

The digraph ( ) ( )kG R  is called semiregular if there is a positive integer d  such that for 

each vertex ( ), inde 0kg R g g∈ =  or ( )inde kg g d= . 

Theorem 3.1. Let R  be as in (1). Then ( )
1 ( )kG R  is semiregular. 

Proof. We want to show that for any g R×∈ , if ( )inde 0kg g ≠ , then 
( ) ( )inde inde 1k kg g g= . Suppose that ( )inde 0kg g ≠ . Then there is h R×∈  such that 

kh g= . Since, for any s R×∈ , ks g=  if and only if 1( ) 1kh s− = . Thus 
( ) ( )inde inde 1k kg g g= .          

It is clear to see that the digraph 1 ( )G R  is semiregular by taking 3k =  in Theorem 

3.1 which is shown below. 

Corollary 3.2. Let R  be as in (1). Then 1 ( )G R  is semiregular. 

Theorem 3.3. Let R  be a finite local ring with unique maximal ideal M . If 0kM = , 

then ( )
2 ( )kG R  is semiregular. 
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Proof. Suppose that 0kM = . Then it is clear that any element in M  is a vertex in 
( )
2 ( )kG R  attaching to a fixed point 0 . Thus ( )

2 ( )kG R  is semiregular.    

Again, it is clear that the digraph 2 ( )G R  is semiregular by taking 3k =  in Theorem 

3.3 which is shown below. 

Corollary 3.4. Let R  be a finite local ring with the unique maximal ideal M . If 3 0M = , 

then 2 ( )G R  is semiregular. 

4. The Digraphs ( )G R  with Two and Three Components  

In last section, we work on the structure of digraphs ( )G R  with two and three 

components. First of all, we will talk about some theorems on the digraph over a finite 

cyclic group in [3]. 

Lemma 4.1. Let nC  be a finite cyclic group of order n  and 2k ≥ . 

(1) If gcd( , ) 1n k = , then ( )( )

|
( ) terms

( ) ( ) ( )

d

k
n d d

d n
d

ord k

G C ord k ord k
ϕ

σ σ= ∪ ∪ 



, 

where ( )lσ  is an l − cycle and ϕ  is the Euler ϕ − function. 

(2) If gcd( , 3) 1n = , then ( )
|

( )( )
3t n

d n d

dA G C
ord
ϕ

=∑  for 1t ≥  and 

( )
|
1,2

( )( )
3t n

d n d
d

dA G C
ord
ϕ

≠

= ∑  for 1t > . 

Proof. The proof of (1) can be seen in Proposition 4.2 (1) in [3]. 

For (2), we apply (1) by taking 3k = . Then we have that ( )
|

( )( )
3t n

d n d

dA G C
ord
ϕ

=∑  for 

1t ≥ . Since 3 1dord =  if and only if 1, 2d =  , so ( )
|
1,2

( )( )
3t n

d n d
d

dA G C
ord
ϕ

≠

= ∑  for 1t > .  

Theorem 4.2. Let R  be as in (1). If ( )G R  has exactly two components, then R  is 

local, 2char R =  and | | 2 3 ( , 0)l mR l m× = ≥ . 

Proof. Suppose that ( )G R  has exactly two components. Since 0, 1, 1−  are fixed 

points of ( )G R , if follows that ( )( ) 0tA G R =  for any 1t >  and 1l = − , that is, 



การสงไดกราฟกําลังสามของริงสลับท่ีจํากัด 

50 

2char R = . Since ( )2 ( ) 0tA G R =  for any 1t > , by Lemma 2.2(3) and by Theorem 

2.9(3), R  is local and | | 2 3 ( , 0)l mR l m× = ≥ .       

Theorem 4.3. Let R  be as in (1). If R  is local, 2char R =  and | | 3 ( 0)mR m× = ≥ , 

then ( )G R  has exactly two components. 

Proof. It is obvious by Theorem 2.9.        

Theorem 4.4. Let R  be as in (1). If ( )G R  has exactly three components, then R  

satisfies one of the following statements. 

(1) R  is local, 2char R ≠  and | | 2 3 ( , 0)l mR l m× = ≥ . 

(2) R  is local, 2char R =  and | | 2 2 | |nR M= = . 

(3) 1qR F +≅ , where q  is a prime that 3, 2q char R> =  and 3  is a primitive root 

modulo q . 

(4) R  is local, 2char R =  with | | 2 3i m jR q× =  ( 0, , 1)m i j≠ ≥  or ( 0, , 1)i m j= ≥  

or ( 0, , 1)j i m= ≥ . 

Proof. Suppose that ( )G R  has exactly three components. Since 0, 1, 1−  are fixed 

points of ( )G R , if 2char R ≠ , then 1 1≠ − , we have ( )( ) 0tA G R =  for any 1t > . 

Thus R  is local and by Theorem 2.9, we have | | 2 3 ( , 0)l mR l m× = ≥ . Now, we 

consider if 2char R = , then 1 1= − . For 1s > , we have that ( )G R  contains 2s  fixed 

points, that is, ( )G R  contains 2s  components such that 2 3s >  which is a 

contradiction. Thus 1s = , that is, R  is local and ( )G R  contains only two fixed points 

and only one t − cycle for some 1t >  in 1( )G R . By Lemma 2.5, there is a nonidentity 

, ( ) 2b R o b×∈ ≠ , and gcd( ( ), 3) 1o b = . Now we will investigate the order of | |R× . 

Suppose that there are distinct primes , 3p q >  such that , | |p q R× . Since | |R×  is 

abelian, there are elements ,b c R×∈  such that ( )o b p=  and ( )o c q= . By Lemma 

2.2(4), ,b c  are in different t − cycles for some 1t >  in 1( )G R  which is a 

contradiction. Thus no distinct primes , 3p q >  such that , | |p q R× . By Lemma 2.4, 

it is clear that | | 3mR× ≠  for any 0m ≥ . Now, we consider the other cases of | |R× . 
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Case 1 If 1| | 2 ( 1)iR i× += ≥ , then since ( 1) 1| | 2 (2 1) 2n r r iR× − += − = , it follows that 1r =  

and ( 1)| | 2 | |nR M× −= = . Hence | | 2 2| |nR M= = . 

Case 2 If | | ( 1)jR q j× = ≥ , where q  is a prime that 3q > , then since | |R× =  
( 1)2 (2 1)n r r− − jq= , we have ( 1) 0n r− = , that is, 1n =  and 2 1r jq− = . Since 

( )1( ) 0tA G R =  ( 1)t >  and 1j jq q
R F C× ×

+
≅ = , by Lemma 4.1 (2), ( )1 ( )t jq

A G C=  

|
1,2

( )
3jd q d

d

d
ord
ϕ

≠

= ∑ . This forces that 1,j d q= = , and ( ) 3dd ordϕ = , that is, 3  is a primitive 

root modulo q . Thus 1qR F +≅ . 

Case 3 | | 2 ( , 1)i jR q i j× = ≥ . Since ( 1)| | 2 (2 1) 2n r r i jR q× −= − = , says 1 2R Q Q× ≅ × , where 

1Q  is an abelian of order 2i  and 2Q  is a cyclic of order jq . Since | |q R× , there is 

b R×∈  such that ( )o b q= . By Lemma 2.5, b  is a vertex of a t − cycle ( 1)t >  in 1( )G R . 

If there is c R×∈  such that ( ) 2 ( 2)lo c l= ≥ , then by Lemma 2.5, c  is a vertex of a  

t − cycle ( 1)t >  in 1( )G R . Since ( ) ( )o b o c≠ , by Lemma 2.2(4), ,b c  are in different t −

cycles ( 1)t >  in 1( )G R  which is a contradiction. If there is c R×∈  such that 

( ) ( 2)lo c q l= ≥  or ( ) 2 ( , 1)i jo c q i j= ≥ , then we have a contradiction again by above 

discussion. Thus | | 2i jR q× ≠  for any , 1i j ≥ . Hence, we have | | 2 3i m jR q× =  

( 0, , 1)m i j≠ ≥  or ( 0, , 1)i m j= ≥  or ( 0, , 1)j i m= ≥ .      

Theorem 4.5. Let R  be as in (1). If 1qR F +≅ , where q  is a prime that 3,q >

2char R = , and 3  is a primitive root modulo q , then ( )G R  has exactly three 

components. 

Proof. It is immediate from Lemma 2.5 and Lemma 4.1(2)      
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