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ABSTRACT
In this research, we obtain a new derivation of the closed-form solution of a Mobius

sequence defined by
_az,+b
cz, +d

n+1

where a,0,C and d are real numbers with ad —bc = 0.

Keywords: Mobius, Sequence

1. Introduction

A Mobius sequence is a sequence defined by using iterated applications of a single
Mobius transformation to an initial point on the real line (or more generally, on the
extended complex plane). It is a common sequence appeared in many literatures yet
a complete set of solutions are still rare to find. Many authors studied Mobius
sequences in terms of their dynamical properties [1, 2, 5]. It is also applied in the study
of continued fractions [3]. The complete set of solutions, in nontrivial cases, can be
found in [4]. Liebeck [4] obtained the solution to the Mobius sequence by assuming
that the sequence must converge to some complex number and constructing an
auxiliary equation from this recurrence relation. He also explained the behavior of the
solution in each case. See Theorem 2R in [4] for more details.

The aim of this paper is to collect, with proof different from [4], the closed-form
solution of Mobius sequences defined on the real line. The novelty of our method is
to define another auxiliary sequence which later becomes a homogeneous linear
recurrence relation of degree 2 and can be easily solved. Our main result is

summarized in Theorem 1 below.

2. Mobius Sequences and Their Closed-Form
A Mobius sequence is a sequence of real numbers {zn}, with initial value z,,

defined for any ne N by the recurrence relation
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_az,+b
cz,+d

(1)

where @,b,C and d are real numbers with ad —bc = 0. The closed-form solution of

n+1

a Mobius sequence is summarized in the following theorem.

Theorem 1 Let {7z} be a Mobius sequence defined recursively by (1).
(1) If c=0 and a=d, then z, :zl+(n—1)§ forall neN.

(2) If c=0 and a#d, then
al"” b (a™-d"*
Z”:(Ej Zl+d”‘1[ a—d J
forall neN.

(3) If ¢ 0 and (a—d)®+4bc >0, then

[ac_dj(ﬂ—d —czl)a“‘1+(ﬂ;d j(czl+d —a)p™t
o= (B—d—cz)a" +(ct,+d—a)f"

forall Ne N, where

_ _ 2 _ 2
=a+d (a—d)” +4bc andﬂ=a+d+‘/(a d) +4bc.

2 2
(@ If c20 and (a—d)®+4bc=0, then
1|(a—d)(2cz,+d-a)n+(a—d)*+4cdz,
"2 (2cz,+d-a)n+2(a-cz,)

(24

forall neN.

(5) If =0 and (a—d)®+4bc <0, then

, (cz,+d)sinng—rsin(n-1)0 d
"¢ (cz,+d)sin(n-2)@-rsin(n-2)6

C

d
forall Ne N, where r =+ad —bc and 6’=COS'1(LJ.
2yJad —bc
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Proof. We consider the following cases:

Case 1 ¢=0. Then, ad =0 and (1) reduces to

a b
Z.,=—17 +—. 2
n+l d I’]+d ( )
From (2), we get
a b
7. =—7 , +—. 3
n d n-1 d ( )

Substituting (3) in (2) and continuing in the same manner, we have

ala b b
Zn+l:_ _Zn—l+_ +—

d\d d d

2
_| 2 znl+§(§+lj
’la b b(a
azn72+a +a a"‘l
* b((a) (a
zn_2+a 4 + q +1

ol ol o

Thus, we have the following results.

(1) If c=0 and a=d, then Zn+1=zl+t;—n. Hence, z, =zl+%(n—1) for all

neN.

a n
a)_ b (dj -
(2) If c=0 and a=d, then ZM:(—) Z,+—| —%——|. Hence,
d dl a

z —(Ejn_lz+ b & -d™ for all
"=l g T | orall neN.
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Case 2 ¢ 0. Define a sequence {x,} by
X, =(cz, +d)Xx,. (4)
Since ¢z, +d =0, x, #0 forall neN. Then, we have
X, d
z =" — 5
"ox, (5)
Substituting (5) in (1), we get
a %y 0 +b
X .o _9_ cX, ¢
Xy C I M_g +d
X, ¢

Xop — Xy _ @X,,, —adx, +bex,
CXn+1
+(ad —bc)x, =0. (6)

an+l
X2 _(a+ d ) Xii1

The auxiliary equation of (6) is
x* —(a+d)x+(ad —bc)=0.

Solving for x, we get
a+d=+.(a-d) +4bc

X =
2

— —d)? Y
a+d—4/(a—d) +4bc anOI'H=a+d4m/(a d) +4bc.

2

Let o =
2

We consider 3 subcases.
Case 2.1 (a—d)*+4bc>0. Since ad-bc#0, we have @, f#0. Also, a#

because (a—d)?+4bc > 0. Thus, the solution of (6) is
X, = ka" +k,3" (7)

where k; and k, are constants.
Putting N=1 2 in (7). we get the system of equations
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(8)

ok, + Kk, =X,
a’k + Bk, = X,.

Using Cramer’s rule, the solutions for (8) are

BX, — X%, X, —OX
k=222 and k,=—2 20
a(f-a) " T B(p-a)

e = ©)

Putting (9) in (5) and simplifying, we get

(a d)(ﬂ d-cz)a" +(ﬂ dj (cz,+d - a)ﬂ“’l
(

Thus,

S\ ¢
" (B-d-cz))a"" +(cz,+d —a) B"

forall neN.
a+d

Case 2.2 (a—d)*+4bc=0. Then a=f= . Thus, the solution of (6) is

= (k,+k,n)a", (10)
where k; and k, are constants.

Putting N=1, 2 in (10), we get the system of equations

ak, + ok, =x,
a’k, +2a°k, = X,.

(11)
Using Cramer’s rule, the solutions for (11) are

K, =%(2a—czl—d) and k, =ai(cz +d-a).
Thus,

2
o (24

xn=[i2(2a—czl—d) i(ncz +nd — na)}

=xa" {a cz,+Nncz, +— (d a)}
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=xa"? )(n—l)c21+(OI ;a)n+a}. (12)

Putting (12) in (5) and simplifying, we have
xa" [ncz + n+1)+a}

cxla” 2{( 1)cz, + a)n+a}

ncz, + n+1
a+d )

e N E=X

-a
n 1cz+ )n+a

1 )(2cz,+d —a)n+(a- d) +4cdz,
_2c (202 +d-a)n+2(a-cz)

forall neN.

Case 2.3 (a—d)2 +4bc <0. Then, @, B are nonreal complex numbers. Note that
ad — bc—4(a d) ——[(a d) +4bc] > 0.

We also have

a+d —i\—(a—d)>—4hc a+d+i/-(a—d)? —4bc
= and B = .
2 2
Let @ be the argument of £ and r=|4].

2
Then, r=+ad—bc and S‘“QZ\/_(Z(_S) ;L;bc >0. Thus, 8€(0,7) and hence,
ad —bc

a+d
0=cos'| ————|. Then, a =r(cos@—isin@) and B =r(cosO+isinH).
(zx/ad —bc} ( ) p=r )
Thus, the solution of (6) is
x, =r"(k,cosn@+k,sinng), (13)
where Kk, and Kk, are constants.

Putting N=1, 2 in (13), we get the system of equations
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(rcos@)k, + (rsiné)k, :xl,}
(14)

(r?cos20)k, +(r’sin 20)k, = x,.
Using Cramer’s rule and X, =(cz, +d)x,, the solutions for (14) are

rx, sin26 —x,sin @
k, = S
resing
_rxsin20—-x (cz, +d)sin @

r’sino

=5 :i1n e[rsin 20— (cz,+d)sin @]

and
_ X, €086 —TX, c0s 20
r’sing
x, (cz, +d)cos & —rx, cos 26

kZ

r’sino

X
- rzsing[(czl+d)cose—rc05249].

Substituting k;, k, and (13) in (5), we get

" c|  (cosnd)[rsin20—(cz,+d)sin@]+(sinnd)[(cz, +d)cos & —r cos 26]
ol (cz,+d)[sin(n+1)@cos®—cos(n+1)@sind |
_E_(czl+d)[sinnt9cos¢9—cosn<93in<9]+r[cosnesinze—sinnecosze]
r[ cos(n+1)@sin 20 -sin(n+1)Hcos 26 | } d
c

+
(cz, +d)[sinn@cos & —cosndsin 6]+ r[cosngsin 26 —sin nd cos 26 |
(

or cz,+d)sinnd—rsin(n-1)0 } d
-

c (cz,+d)sin(n-1)@-rsin(n-2)0 c

3. Examples

We illustrate the results in Theorem 1 by the following examples.
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l.Let a=1 b=l c=0, d=1and z =1

Then, (1) becomes z,, =2, +1. By Theorem 1 (1), we get z, =n forall neN.

2.leta=2, b=1 ¢=0, d=1and z, =2.
Then, (1) becomes z,,, =2z, +1. By Theorem 1 (2), we get z, =3-2"" —1 for all

neN.
3.Leta=1 b=4, c=1 d=1and z =1
2:3"+2(-1)"

—— for

z,+4
Then, (1) becomes Z,,, =———. By Theorem 1 (3), we get z, =
) "7, EEET

all neN.

4.let a=3, b=-1 c=1 d=1and z, =2

. By Theorem 1 (4), we get z, = n+3 forall neN.
1 n+1

Z
Then, (1) becomes Z,,; = Z"

n

5.let a=0, b=1 c=-1 d=1and z,=2.

Then, (1) becomes Z,, = . By Theorem 1 (5), we get

-z, +1
sin ( _32)” _sin %
Z, forall neN.
sin (n—2)7z +sin ( _1)”
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