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บทคัดย่อ 
ในบทความนี้ปัญหาสองปัญหาซึ่งน าไปสู่จุดเริ่มต้นของทฤษฎีความน่าจะเป็นที่ อองตวน กอม 

โบด ถาม เบลส ์ปาสกาล ในปี ค.ศ.1654 ได้ถูกน าเสนอ 
ค าส าคัญ:  ทฤษฎีความน่าจะเป็น ปัญหาลูกเต๋า ปญัหาการแบ่งเงินเดิมพัน 

ABSTRACT 
In this article, two problems leading to the origin of probability theory that Antoine 

Gombaud asked Blaise Pascal in AD 1654 are presented. 
Keywords:  Probability theory, Dice problem, Problem of division of the stakes 
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1. บทน า 
แหล่งอ้างอิงต่าง ๆ ที่เกี่ยวกับประวัติศาสตร์ของทฤษฎีความน่าจะเป็น เช่น [1, 2, 3, 4, 5]  

ช้ีตรงกันว่าทฤษฎีความน่าจะเป็นมีจุดเริ่มต้นในปี ค.ศ.1654 จากการที่ อองตวน กอมโบด (Antoine 
Gombaud) หรืออีกช่ือหนึ่งที่คนทั่วไปเรียกคือ เชอวาลิเยร์ เดอ เมเร (Chevalier de Méré)  
นักพนันชาวฝรั่งเศสที่มีช่ือเสียงในยุคนั้นได้ถาม เบลส ์ปาสกาล (Blaise Pascal) เกี่ยวกับปัญหาเกม
การพนันสองปัญหาที่เขาพบเจอจากประสบการณ์การพนัน ท าให้ปาสกาลเขียนจดหมายไปปรึกษา
ปัญหาเหล่าน้ีกับ ปีแยร์ เดอ แฟร์มา (Pierre de Fermat) และนั่นท าให้เกิดการเขียนจดหมายโต้ตอบ
กันระหว่างนักคณิตศาสตร์ชาวฝรั่งเศสที่มีช่ือเสียงแห่งยุคทั้งสอง ซึ่งนับเป็นจุดเริ่มต้นของการศึกษา
ทฤษฎีความน่าจะเป็นอย่างจริงจังเป็นครั้งแรก แม้ ว่าจะมีการศึกษาเกมการพนันบางเกม 
มาบ้างแล้วก่อนหน้านั้น แต่ก็ยังไม่มีการศึกษาในแง่ทฤษฎีทั่ วไปของความน่าจะเป็นก่อนเหตุการณ์
ส าคัญครั้งนี้ 

อันที่จริงแล้วทั้งสองปัญหาดังกล่าวที่กอมโบดถามปาสกาลนั้น ไม่ได้มาจากประสบการณ์การ
พนันส่วนตัวของเขาเองทั้งหมด ปัญหาแรกเป็นปัญหาที่เกี่ยวกับการโยนลูกเต๋า ซึ่งเขารู้สึกสับสนใน
ค าตอบที่ได้จากการทดลองในการเล่นพนันจริงที่ขัดแย้งกับหลักการในการพนันที่ยึดถือกันมานาน
หลักการหนึ่งซึ่งเขาถือว่าเป็นทฤษฎีทางคณิตศาสตร์ ปัญหาที่สองเป็นปัญหาที่เกี่ยวกับการแบ่งรางวัล
ในการแข่งขันที่ต้องจบลงก่อนที่จะได้ผู้ชนะ ซึ่งส าหรับปัญหานี้ ได้มีหลายความพยายามในการหา
ค าตอบ แต่ยังไม่มีใครที่สามารถให้ค าตอบที่เป็นที่ยอมรับได้ แม้แต่กอมโบดเองก็ยังไม่รู้ค าตอบของ
ปัญหาน้ีด้วย ปาสกาลและแฟร์มาช่วยกันคิดหาค าตอบของปัญหาน้ีโดยผ่านการเขียนจดหมายโต้ตอบ
กัน คนแรกที่หาค าตอบของปัญหานี้ได้ ก็คือ แฟร์มา แต่วิธีการหาค าตอบของปาสกาลนั้นง่ายกว่าวิธี
ของแฟร์มามาก และค าตอบนั้นยังน าไปสู่การศึกษาทฤษฎีความน่าจะเป็นอย่างจริงจังในเวลาต่อมา 

บทความนี้จะเล่าถึงทั้งสองปัญหาดังกล่าว พร้อมทั้งให้ค าตอบที่ปาสกาลและแฟร์มาช่วยกันคิด
โดยใช้ภาษาปัจจุบันของทฤษฎีความน่าจะเป็นที่ท่านผู้อ่านคุ้นเคยในการอธิบายประกอบ ขอให้ผู้อ่าน
พึงระลึกว่า ณ เวลา ค.ศ.1654 นั้นยังไม่มีเครื่องมือทางคณิตศาสตร์เหมือนที่ใช้กันทั่วไปในปัจจุบัน 
เช่น ลอการิทึมฐานธรรมชาติ อนุกรมเทเลอร์ เมเชอร์ความน่าจะเป็น เป็นต้น แม้แต่ค าว่า “ความ
น่าจะเป็น” ก็ยังไม่มีการนิยาม และความน่าจะเป็นไม่ได้เป็นตัวเลขที่มีค่าอยู่ระหว่าง 0 และ 1 และไม่
มีสูตรที่เกี่ยวกับการค านวณความน่าจะเป็นต่าง ๆ อีกด้วย 
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2. ปัญหาลูกเต๋า 
ปัญหาแรกที่กอมโบดถามปาสกาลเป็นปัญหาที่เกี่ยวกับการโยนลูกเต๋า ปัญหามีอยู่ว่า “ในการ

โยนลูกเต๋า 2 ลูกพร้อมกัน ต้องโยนอย่างน้อยกี่ครั้ง โอกาสที่จะได้แต้มคู่ 6 อย่างน้อย 1 ครั้งจึงจะ
มากกว่าครึ่ง” [5] ส าหรับปัญหาลูกเต๋านี้มีผู้คิดค าตอบได้ก่อนหน้านั้นแล้วซึ่งรวมถึงกอมโบดด้วย  
แต่สิ่งที่ท าให้เขาสับสนจนต้องมาถามปาสกาลคือ ค าตอบที่ได้นี้ไม่สอดคล้องกับหลกัการในการพนัน
อันเก่าแก่หลักการหนึ่งที่ตัวเขาคิดว่าเป็นทฤษฎีทางคณิตศาสตร์ ค าตอบส าหรับปัญหาน้ีที่ปาสกาลได้
ให้ไว้ ท าให้เกิดสูตรทางทฤษฎีความน่าจะเป็นที่ท่านผู้อ่านคุ้นเคยในเวลาต่อมาน่ันคือ 

 ( ) 1 ( )cP A P A   ส าหรับเหตุการณ์ A  ใด ๆ 

ซึ่งการใช้สูตรความน่าจะเป็นน้ีจะช่วยให้การหาค าตอบส าหรับปัญหาน้ีง่ายข้ึนอย่างมาก ดังนี้ 
ส าหรับจ านวนเต็มบวก n  ใด ๆ ให้ np  แทนความน่าจะเป็นที่จะได้แต้มคู่ 6 อย่างน้อย 1 ครั้ง

ในการโยนลูกเต๋า 2 ลูกพร้อมกัน n  ครั้ง และให้ nq  แทนความน่าจะเป็นที่จะไม่ได้แต้มคู่ 6 เลยใน
การโยนลูกเต๋า 2 ลูกพร้อมกัน n  ครั้ง จะได้ว่า 

 1 35
1 1 1 1

36 36

n n

n np q
   

         
   

  (1) 

สังเกตว่า 35
1

36

n

 
 
 

 เป็นล าดับเพิ่ม ดังนั้นเราต้องการหา n  ที่เล็กที่สุดที่ท าให้ 1

2
np   ซึ่งจากการ

ค านวณพบว่า 24 0.4914p   และ 25 0.5055p   ดังนั้นค าตอบของปัญหานี้คือ 25n   ครั้ง
นั่นเอง 

ส าหรับที่มาของค าถามนี้ มาจากการที่ในตอนแรกนั้นกอมโบดเล่นการพนันโดยพนันว่า “ในการ
โยนลูกเต๋าหนึ่งลูก 4 ครั้ง เขาจะได้แต้ม 6 อย่างน้อย 1 ครั้ง” ซึ่งเขาชนะเกมการพนันนี้เป็นส่วนใหญ่ 
ต่อมาเขาเล่นการพนันใหม่โดยพนันว่า “ในการโยนลูกเต๋า 2 ลูกพร้อมกัน 24 ครั้ง เขาจะได้แต้มคู่ 6 
อย่างน้อย 1 ครั้ง” ซึ่งเขาเลือกใช้จ านวนในการโยนเป็น 24 ครั้ง เนื่องจากเขาใช้หลักการในการพนัน
อันเก่าแก่หลักการหนึ่งที่เขาเช่ือมั่นมาก ๆ แต่ในการเล่นพนันแบบใหม่นี้เขาคาดว่าตนเองจะเป็นฝ่าย
ที่แพ้พนันได้มากกว่า และจากการทดลองเล่นพนันมานานเขาพบว่า ต้องเปลี่ยนจ านวนในการโยน
เป็น 25 ครั้งจึงจะท าให้โอกาสที่จะชนะพนันนั้นมากกว่าครึ่ง แต่อย่างไรก็ตามกอมโบดเช่ือมั่นใน
หลักการในการพนันอันเก่าแก่นั้นเป็นอย่างมาก และประกาศว่าทฤษฎีทางคณิตศาสตร์ไม่สอดคล้อง
กัน [5] 
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หลักการในการพนันที่ว่าน้ีเกี่ยวกับการหาเลขวิกฤตของเกมการพนัน เลขวิกฤตของเกมการพนัน
คือจ านวนใน “การเล่นพนัน” ที่น้อยที่สุดที่ท าให้ความน่าจะเป็นที่ผู้พนันจะได้ “ความส าเร็จ” อย่าง

น้อยหนึ่งครั้งเป็น 1

2
 หรือมากกว่า ส าหรับการเล่นพนันของกอมโบดค าว่า “การเล่นพนัน” หมายถึง

การโยนลูกเต๋าลูกเดียวในการพนันแบบแรก หรือการโยนลูกเต๋าสองลูกในการพนันแบบที่สอง และ 
ค าว่า “ความส าเร็จ” หมายถึงการได้แต้ม 6 ส าหรับการโยนด้วยลูกเต๋าลูกเดียวในการพนันแบบแรก 
หรือการได้แต้มคู่ 6 ส าหรับการโยนด้วยลูกเต๋าสองลูกในการพนันแบบที่สอง หลักการพนันอันเก่าแก่
ที่กอมโบดยึดถือกล่าวว่า [5] ในเกมการพนันหนึ่งที่มีโอกาสในการเล่นพนัน 1 ครั้งได้ความส าเร็จเป็น 
1 ใน 1N  ให้ 1n  แทนเลขวิกฤตของเกมการพนันนี้ และส าหรับอีกเกมการพนันหนึ่งที่มีโอกาสในการ
เล่นพนัน 1 ครั้งได้ความส าเร็จเปน็ 1 ใน 2N  ให้ 2n  แทนเลขวิกฤตของเกมการพนันทีส่องนี้ จะได้ว่า 

 1 2

1 2

n n

N N
  

ซึ่งส าหรับการพนันของกอมโบดนี้ เขาสามารถค านวณได้ว่าในการโยนด้วยลูกเต๋าลูกเดียวนั้น การโยน 
4 ครั้งจะท าให้การพนันว่าจะได้แต้ม 6 อย่างน้อย 1 ครั้งนั้นมีจ านวนผลลัพธ์ที่ชนะต่อผลลัพธ์ที่แพ้
เป็น 671 ต่อ 625 จากผลลัพธ์ในการโยนทั้งหมด 46 1296  รูปแบบ ส่วนการโยนที่น้อยกว่า 4 ครั้ง
จะท าให้ได้จ านวนผลลัพธ์ที่แพ้มากกว่าผลลัพธ์ที่ชนะ ดังนั้นเลขวิกฤตของการพนันที่ใช้การโยนด้วย
ลูกเต๋าลูกเดียวซึ่งมี 1 6N   คือ 1 4n   และส าหรับการโยนด้วยลูกเต๋า 2 ลูกพร้อมกันนั้น จะได้ว่า 

2 36N   และ 

 1
2 2

1

4
36 24

6

n
n N

N
       

ในความเป็นจริงแล้วหลักการหาเลขวิกฤตที่กอมโบดใช้นี้ไม่เป็นจริงในกรณีทั่วไป โดย อับราฮัม 
เดอ มัวร์ (Abraham de Moivre) ได้พิสูจน์ไว้ในเวลาต่อมาในปี ค.ศ.1718 ว่า “ผลคูณของเลขวิกฤต
และความน่าจะเป็นของความส าเร็จหนึ่งครั้งมีค่าประมาณเป็น  ln(2) 0.693  ส าหรับความน่า 
จะเป็นของความส าเร็จหนึ่งครั้งที่น้อยเพียงพอ” [3] จากแนวคิดเดียวกันกับสมการที่ (1) จะได้ว่าเกม
การพนันที่มีโอกาสในการเล่นพนัน 1 ครั้งแล้วได้ความส าเร็จเป็น p  จะมีค่าวิกฤต n  เป็น x    ซึ่ง
คือจ านวนเต็มที่น้อยที่สุดที่มากกว่าหรือเท่ากับ x  เมื่อ x  คือค่าที่ท าให้ 

  
1

1 1
2

x
p     
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ซึ่งสามารถแก้สมการได้ค่า x  เป็น 
 
ln 2

ln 1
x

p
 


 ดังนั้น 

 
 
ln 2

ln 1
n

p

 
  

 
  

จากการกระจายอนุกรมเทย์เลอร์ 

  
1

ln 1
m

m

p
p

m





     

ดังนั้นเมื่อ p  มีค่าน้อย ๆ จะได้ว่า  ln 1 p p    ท าให้ค่าประมาณของเลขวิกฤต n  คือ 

 ln 2 0.693
n

p p

   
    
   

  

ดังนั้นหลักการหาเลขวิกฤตที่กอมโบดใช้นั้นเป็นจริงเพียงในกรณีที่ความน่าจะเป็นที่จะชนะในการเล่น
พนัน 1 ครั้งมีค่าน้อย ๆ เท่านั้น ซึ่งสมมูลกับการที่ค่าของ 1N  และ 2N  มีค่ามาก ๆ เท่านั้น ส าหรับ 

1 6N   โอกาสในการเล่นพนัน 1 ครั้งแล้วชนะคือ 1

1

6
p   ดังนั้นค่าประมาณเลขวิกฤตที่ได้คือ 

0.693 6 5      ซึ่งไม่ตรงกับค่าจริงตามทฤษฎี 

 1

ln 2
4

1
ln 1

6

n

 
 
   

      

  

นั่นคือ 1 6N   นั้นไม่มากเพียงพอที่จะใช้ค่าประมาณนี้นั่นเอง แต่ส าหรับ 2 36N   จะได้
ค่าประมาณเลขวิกฤตเป็น 0.693 36 25     ซึ่งตรงกับค่าจริงตามทฤษฎี 

 2

ln 2
25

1
ln 1

36

n

 
 
   

      

 

ดังนั้นกอมโบดเข้าใจผิดไปเองว่าหลักการในการพนันที่เขายึดถือนั้นคือทฤษฎีทางคณิตศาสตร์ที่
ถูกต้องเสมอ อย่างไรก็ตามปัญหานี้ก็ถือเป็นตัวอย่างที่ท าให้นักคณิตศาสตร์รุ่นต่อมาได้วิเคราะห์ว่า
หลักการนั้นผิดอย่างไร และท าให้เกิดการพัฒนาทางด้านทฤษฎีความน่าจะเป็นต่อมา 
 
 



ปัญหาที่น าไปสู่จุดเร่ิมต้นของทฤษฎีความน่าจะเป็น 

6 

3. ปัญหาการแบ่งเงินเดิมพัน 
ปัญหาที่สองที่กอมโบดถามปาสกาลเปน็ปัญหาเกี่ยวกับการแบ่งเงนิเดิมพันในการแข่งที่ต้องจบลง

กลางคันก่อนที่จะได้ผู้ชนะ ซึ่งเป็นที่รู้จักกันในช่ือของ problem of points หรือ problem of  
division of the stakes กล่าวว่า “ในเกมที่มีผู้เล่น 2 คน ซึ่งแต่ละคนมีโอกาสที่จะชนะในแต่ละเกม
เท่า ๆ กัน ทั้งสองคนตกลงกันว่าผูท้ี่ชนะได ้ N  เกมเป็นคนแรกจะเปน็ผู้ชนะในที่สดุและได้เงนิเดิมพนั
ไปทั้งหมดคนเดียว แต่ปรากฏว่าเมื่อผู้เล่นคนแรกชนะได้ a  เกม และผู้เล่นคนที่สองชนะได้ b  เกม 
ก็มีเหตุที่ท าให้ต้องหยุดเล่น จึงเกิดปัญหาว่าควรจะแบ่งเงินเดิมพันอย่างไรจึงจะยุติธรรม” [5] 

พิจารณากรณีตัวอย่างเช่น ส าหรับ 6, 4, 3N a b    จะเห็นได้ว่าผู้เล่นคนแรกต้องการชนะ
อีก 2 เกม และผู้เล่นคนที่สองต้องการชนะอีก 3 เกม แฟร์มาได้ให้วิธีคิดไว้ว่าถ้าหากให้ทั้งสองคนเล่น
ต่อไปอีก 4 เกมจะต้องมีผู้ที่ชนะครบ 6 เกมอย่างแน่นอน ในแต่ละเกมที่เล่นน้ีสมมติให้สัญลักษณ์ W 
แทนการชนะของผู้เล่นคนแรก และ L แทนการแพ้ของผู้เล่นคนแรก ดังนั้นในการเล่นต่อไปอีก 4 เกม
จะมีผลลัพธ์ได้ 16 รูปแบบได้แก่ 

WWWW,  WWWL,  WWLW,  WWLL,  WLWW,  WLWL,  WLLW,  WLLL, 
LWWW,  LWWL,  LWLW,  LWLL,  LLWW,  LLWL,  LLLW,  LLLL 

โดยที่สัญลักษณ์ในแต่ละต าแหน่งแทนการชนะหรือแพ้ของผู้เล่นคนแรกในเกมที่ 1 ถึงเกมที่ 4 
ตามล าดับ จากผลลัพธ์ทั้ง 16 รูปแบบที่ได้ มีอยู่ 11 รูปแบบที่ผู้เล่นคนแรกจะชนะครบ 6 เกมได้ก่อน
ผู้เล่นคนที่สอง ได้แก่ 

WWWW,  WWWL,  WWLW,  WWLL,  WLWW,  WLWL, 

WLLW,  LWWW,  LWWL,  LWLW,  LLWW 
เนื่องจากผู้เล่นทั้งสองมีโอกาสที่จะชนะในแต่ละเกมเทา่ ๆ  กัน ดังนั้นเราจึงควรแบ่งสัดส่วนเงินเดิมพนั

ให้ผู้เล่นคนแรกเป็นจ านวน 11

16
 เท่าของเงินเดิมพัน ส าหรับเงินเดิมพันส่วนที่เหลอืเราจะให้ผู้เล่นคนที่

สองซึ่งคิดเป็นเงินจ านวน 11 5
1

16 16
   เท่าของเงินเดิมพัน 

วิธีการคิดของแฟร์มาส าหรับปัญหานี้ คือการเขียนผลลัพธ์ทั้งหมดที่เป็นไปได้ แล้วนับดูว่ามี
จ านวนผลลัพธ์ที่ท าให้ผู้เล่นแต่ละคนชนะครบ N  เกมก่อนเป็นสัดส่วนเท่าใดจากจ านวนผลลัพธ์
ทั้งหมด แล้วแบ่งเงินเดิมพันให้ผู้เล่นแต่ละคนตามสัดส่วนที่ได้ จะเห็นได้ว่าหากจ านวนผลลัพธ์ที่
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เป็นไปได้ทั้งหมดมีจ านวนมาก ๆ  การเขียนผลลัพธ์ทั้งหมดที่เป็นไปได้แล้วนับจ านวนผลลพัธ์ที่ผูเ้ลน่แต่
ละคนชนะจะท าได้ยาก ปาสกาลได้เสนอวิธีคิดที่เหมือนกับแฟร์มา เพียงแต่ไม่ต้องเขียนผลลัพธ์
ทั้งหมดที่เป็นไปได้ออกมา แต่ให้สนใจจ านวนสะสมในแต่ละรอบที่ผู้เล่นแต่ละคนชนะหรือแพ้ จาก
ตัวอย่างข้างต้นเราสามารถเขียนจ านวนการชนะสะสมของผู้เล่นคนแรกในการแข่งต่อไปอีก 4 เกม
ตามรูปที่ 3.1 และหาจ านวนรูปแบบของผลลัพธ์ที่ตรงกับจ านวนการชนะสะสมตามรูปที่ 3.2 ซึ่งเป็น
ที่มาของรูปสามเหลี่ยมปาสคาล (Pascal’s triangle) ที่เราใช้กันในปัจจุบันน่ันเอง 

 

รูปที่ 3.1 จ านวนการชนะสะสมของผูเ้ล่นคนแรกในการแข่งต่อไปอีก 4 เกม 

 

รูปที่ 3.2 จ านวนรปูแบบของผลลัพธ์ที่ตรงกบัจ านวนการชนะสะสมของผู้เล่นคนแรกในรูปที่ 3.1 

จากตัวอย่างที่ 6, 4, 3N a b    ผู้เล่นคนแรกจะชนะครบ 6 เกมก่อนถ้าเขาชนะมากกว่า
หรือเท่ากับ 2 เกมในการแข่งต่ออีก 4 เกม จากรูปที่ 3.1 และ 3.2 จะเห็นได้ว่าจ านวนของผลลัพธ์ที่ 
ผู้ เล่นคนแรกจะชนะมากกว่าหรือเท่ากับ 2 เกมคือ 6 + 4 + 1 = 11 รูปแบบ จากทั้ งหมด  
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1 + 4 + 6 + 4 + 1 = 16 รูปแบบ ดังนั้นเราจึงควรแบ่งสดัส่วนเงนิเดิมพันให้ผูเ้ลน่คนแรกเป็นจ านวน 
11

16
 เท่าของเงินเดิมพัน ซึ่งตรงกับค าตอบที่แฟร์มาได้ให้ไว้ แต่จะเห็นได้ว่าเราไม่จ าเป็นต้องเขียน

ผลลัพธ์ทุกรูปแบบออกมาจรงิ ๆ  ซึ่งสามารถท าได้ง่ายกว่ามากในกรณีที่จ านวนผลลัพธ์มีจ านวนมาก ๆ 
สังเกตว่าเราสามารถใช้รูปสามเหลี่ยมปาสคาลนี้เขียนสัดส่วนเงินเดิมพันของผู้เล่นคนแรกได้เป็น 

 
4

4 4 4 4
2

4 1 1 1 1 11
6 4 1

2 2 2 2 16i i

       
             
      

   

ส าหรับในกรณี , ,N a b  ทั่วไปแล้ว ผู้เล่นคนแรกต้องการชนะอีก N a  เกม และผู้เล่นคนที่
สองต้องการชนะอีก N b  เกม ดังนั้นถ้าหากให้ทั้งสองคนเล่นต่อไปอีก     1M N a N b      
เกม จะต้องมีผู้ที่ชนะครบ N  เกมก่อนแน่นอน ถ้าเราสมมติให้มีการแข่งขันต่อไปอีก M  เกม 
จ านวนผลลัพธ์ที่ผู้เล่นคนแรกจะชนะครบ N  เกมก่อนคือ ผลรวมของจ านวนผลลัพธ์ที่ผู้เล่นคนแรก
ชนะต้ังแต่ N a  เกมจนถึง M  เกม ส่วนจ านวนผลลัพธ์ทั้งหมดที่เกดิจากการเลน่เกมต่อไปอีก M  
เกม คือ 2M  ดังนั้นสัดส่วนเงินเดิมพันของผู้เล่นคนแรกจึงเท่ากับ 

 1

2

M

M
i N a

M

i 

 
 
 

   

ปัญหาการแบ่งเงินเดิมพันน้ีเป็นที่มาของการแจกแจงทวินาม การแจกแจงทวินามที่มีพารามิเตอร์ 
คือ จ านวนในการทดลองที่เป็นอิสระต่อกันเป็น n  และอัตราส าเร็จในแต่ละการทดลองเป็น p  จะมี
ฟังก์ชันความน่าจะเป็น 

    1 , 0,1, ,
n xx

n
P X x p p x n

x

 
    

 
  

โดยที่ X  คือจ านวนครั้งของการทดลองที่ส าเร็จในการทดลอง n  ครั้งนั้น ส าหรับปัญหาการแบ่งเงนิ
เดิมพันนี้ จ านวนผลลัพธ์ที่ผู้เล่นคนแรกชนะในการแข่งต่ออีก M  เกม มีการแจกแจงทวินามด้วย

พารามิเตอร์ n M  และ 1

2
p   เราสามารถขยายโจทย์ปัญหานี้ให้ทั่วไปยิ่งข้ึน เช่นเปลี่ยนความ

น่าจะเป็นที่ผู้เล่นแต่ละคนจะชนะในการแข่งแต่ละครั้ง หรือแม้กระทั่งพิจารณาในกรณีที่มีผู้เล่น
มากกว่าสองคนด้วย ซึ่งเป็นที่มาของตัวแปรสุ่มพหุนามในเวลาต่อมาอีกด้วย 
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4. สรุป 
ปัญหาทั้งสองที่กอมโบดถามปาสกาลนั้นอาจจะดูไม่ยากส าหรับความรู้ในปัจจุบัน แต่ปัญหาทั้ง

สองนี้เองที่เป็นจุดเริ่มต้นของการศึกษาทฤษฎีความน่าจะเป็นอย่างจริงจัง และพัฒนามาเป็นทฤษฎี
ความน่าจะเป็นที่มีอยู่ในปัจจุบัน เราควรขอบคุณ กอมโบด ปาสกาล แฟร์มา และอีกหลายบุคคลที่
เกี่ยวข้องที่ไม่ได้กล่าวถึง ที่ช่วยกันริเริ่มสรรสร้างและพัฒนาทฤษฎีที่สวยงามและมีคุณประโยชน์
มากมายในปัจจุบัน 
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