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บทคัดย่อ 
ส าหรับจ านวนนับ 𝑛 ที่ 𝑛 ≥ 2 บทความฉบับนี้ให้สูตรจ านวนจุดตรึงของไดกราฟ Γ(𝑛, 6) ที่มี 

จุดยอดเป็นเซต 𝑉 = { 0, 1, 2, … , 𝑛 − 1 } และเส้นเชื่อมแสดงทิศทาง (𝑎, 𝑏) ∈ 𝐸 ⊆ 𝑉 × 𝑉 ก็ต่อเมื่อ 
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𝑎6 ≡ 𝑏 (mod 𝑛) โดยอาศัยความรู้เกี่ยวกับการแยกตัวประกอบของพหุนามไซโคลโตมิก และขยาย
ผลไปสู่สูตรจ านวนจุดตรึงของ Γ(𝑛, 𝑘) เมื่อ 𝑘 เป็นจ านวนนับที่ 𝑘 ≥ 4 และ 𝑘 − 1 เป็นจ านวนเฉพาะ 
ค าส าคัญ:  ไดกราฟ จุดตรึง พหุนามไซโคลโตมิก  

ABSTRACT 
For an integer 𝑛 such that 𝑛 ≥ 2, this article provides a formula for number of fixed 

points of the digraph Γ(𝑛, 6) which has the vertex set 𝑉 = { 0, 1, 2, … , 𝑛 − 1 } and 
directed edges (𝑎, 𝑏) ∈ 𝐸 ⊆ 𝑉 × 𝑉 if and only if 𝑎6 ≡ 𝑏 (mod 𝑛) by using the knowledge 
about the factorization of the cyclotomic polynomial and extend the result to formula 
for number of fixed points of digraph Γ(𝑛, 𝑘) where 𝑘 is an integer such that 𝑘 ≥ 4 and 
𝑘 − 1 is a prime number. 
Keywords:  Digraph, Fixed point, Cyclotomic polynomial 

1. บทน า  
บทความฉบับนี้พิจารณาให้จ านวนนับสองจ านวนเป็นเสมือนจุดยอด แล้วน าความสัมพันธ์สมภาค

ระหว่างจ านวนนับสองจ านวนมาสร้างเป็นเสมือนเส้นเชื่อมระบุทิศทางระหว่างจ านวนนับทั้งสอง ซึ่ง
บรรดาจุดยอดและเส้นเชื่อมระบุทิศทางเหล่านี้ จะเรียกรวมกันว่า กราฟระบุทิศทาง หรือ ไดกราฟ 

บทนิยาม 1.1 [6] กราฟระบุทิศทาง หรือ ไดกราฟ 𝐺 = (𝑉, 𝐸) ประกอบด้วยเซตจ ากัด 𝑉 ที่ไม่ใช่ 
เซตว่าง เรียกว่า เซตของจุดยอด และ 𝐸 เป็นเซตของคู่อันดับที่เป็นสับเซตของ 𝑉 × 𝑉 โดยเรียก 𝐸 ว่า
เซตของเส้นเชื่อมระบุทิศทาง 

ทั้งนี้ ส าหรับไดกราฟ 𝐺 = (𝑉, 𝐸) ถ้า (𝑎, 𝑏) ∈ 𝐸 หมายความว่า มีเส้นเชื่อมจากจุดยอด 𝑎 ไปยัง
จุดยอด 𝑏 เรียกจุดยอด 𝑎 ว่า จุดเริ่มต้น และเรียกจุดยอด 𝑏 ว่า จุดปลายของเส้นเชื่อมระบุทิศทาง 
และมักเขียนลูกศรก ากับทิศทางไว้ ในขณะที่ถ้า (𝑎, 𝑎) ∈ 𝐸 จะหมายถึง มีเส้นเชื่อมม้วนเป็นวง
กลับมาที่จุดยอด 𝑎 โดยเรียกเส้นเชื่อมลักษณะนี้ว่า วงวน และเรียกจุดยอด 𝑎 ว่าเป็น จุดตรึงของ 
ไดกราฟ 𝐺 นอกจากนี้ จุดยอด 𝑣 ของไดกราฟ 𝐺 จะเป็น จุดตรึงเอกเทศ เมื่อจุดยอด 𝑣 เป็นจุดตรึง
ของ 𝐺 ที่ไม่มีเส้นเชื่อมระบุทิศทางจากจุดยอดอ่ืนของ 𝐺 มาเชื่อมกับจุดยอด 𝑣 
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ตัวอย่าง 1.1 ให้ 𝐺 = (𝑉, 𝐸) โดยที่ 𝑉 = { 0, 1, 2, … , 22 } และ 𝐸 = { (0, 0), (1, 1), (2, 18), (3,16) 
(4, 2), (5, 8), (6, 12), (7, 4), (8, 13), (9, 3), (10, 6), (11, 9), (12, 9), (13, 6), (14, 3), (15,13), 

(16, 4), (17, 12), (18, 8), (19, 2), (20, 16), (21, 18), (22, 1) }  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
รูปที่ 1.1 ไดกราฟ 𝐺 ในตัวอย่างที่ 1.1 

สังเกตว่าใน 𝐺 มี (0, 0), (1, 1) ∈ 𝐸 ดังนั้น 0 และ 1 เป็นจุดตรึงของ 𝐺 ซึ่งในแผนภาพจะแทน
ด้วยเส้นเชื่อมแสดงทิศทางที่มีลักษณะเป็นวงวนดังรูปที่ 1.1 แต่ 0 เป็นจุดตรึงเอกเทศ และ 1 ไม่เป็น
จุดตรึงเอกเทศ และมี (2, 18), (18, 8), (8, 13), (13, 6), (6, 12), (12, 9), (9, 3), (3, 16), (16, 4), 
(4, 2) ∈ 𝐸 ซึ่งในแผนภาพแทนด้วยเส้นเชื่อมแสดงทิศทางสิบเส้นที่เชื่อมจุดยอด 2, 18, 8, 13, 6, 12,  
9, 3, 16 และ 4 เข้าด้วยกันเป็นวง เรียกเส้นเชื่อมแสดงทิศทางทั้งสิบเส้นที่เชื่อมจุดยอดเหล่านี้เข้า
ด้วยกันว่า วง 

ในปี ค.ศ.1992 นักคณิตศาสตร์ชื ่อ Szalay [9] ได้สร ้างไดกราฟ Γ(𝑛, 2) = (𝑉, 𝐸) ส าหรับ 
จ านวนนับ 𝑛 ที่ 𝑛 ≥ 2 โดยที่ 𝑉 = { 0, 1, 2, … , 𝑛 − 1 } และ (𝑎, 𝑏) ∈ 𝐸 ก็ต่อเมื่อ 𝑎2 ≡ 𝑏 (mod 𝑛) 

แล้วศึกษาโครงสร้างของ Γ(𝑛, 2) โดยเฉพาะอย่างยิ่งจ านวนจุดตรึงของ Γ(𝑛, 2) ต่อมา Skowronex-
KaziÓw [7] และ Ju และ Wu [3] ได้ศึกษาโครงสร้างและจ านวนจุดตรึงของไดกราฟลักษณะเดียวกับ 
Szalay [9] คือ Γ(𝑛, 3) และ Γ(𝑛, 5) โดยเปลี่ยนเงื่อนไขของการมีเส้นเชื่อมระบุทิศทาง (𝑎, 𝑏) ใน 
ไดกราฟเป็น 𝑎3 ≡ 𝑏 (mod 𝑛) และ 𝑎5 ≡ 𝑏 (mod 𝑛) ตามล าดับ ในปี ค.ศ.2011 Somer และ 
Křížek [8] ได้ขยายแนวคิดของ Szalay [9] ศึกษาไดกราฟ Γ(𝑛, 𝑘) ที่เงื ่อนไขการมีเส้นเชื่อมระบุ
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ทิศทาง (𝑎, 𝑏) ในไดกราฟเป็น 𝑎𝑘 ≡ 𝑏 (mod 𝑛) เมื่อ 𝑘 เป็นจ านวนนับที่ 𝑘 ≥ 2 แต่พิสูจน์ได้เพียง
ขอบเขตล่างของจ านวนจุดตรึงของไดกราฟ Γ(𝑛, 𝑘) เท่านั้น เมื่อเร็ว ๆ นี้ รตินันท์ และ ธัญพิชชา [1] 
ได้ให้สูตรที่เด่นชัดของจ านวนจุดตรึงของไดกราฟ Γ(𝑛, 4) โดยอาศัยความรู้เกี่ยวกับส่วนตกค้างก าลัง
สอง และสัญลักษณ์ของเลอช็องดร์  

สังเกตว่าที่ผ่านมา งานวิจัยส่วนหนึ่งมุ่งความสนใจไปที่โครงสร้างและสูตรของจ านวนจุดตรึงของ 
Γ(𝑛, 𝑘) เมื่อ 𝑘 เป็นจ านวนเฉพาะ หรือจ านวนในรูปก าลังของสอง ดังนั้นในงานวิจัยนี้  จึงได้สนใจ
ศึกษา Γ(𝑛, 6) ซึ่ง 6 เป็นจ านวนประกอบที่ไม่ใช่ก าลังของสอง และหาสูตรที่เด่นชัดของจ านวน 
จุดตรึงทั้งหมดของ Γ(𝑛, 6) โดยอาศัยความรู้เกี่ยวกับรากปฐมฐาน ซึ่งความรู้นี้สามารถขยายไปสู่  
สูตรของจ านวนจุดตรึงทั้งหมดของ Γ(𝑛, 𝑘) เมื่อ 𝑘 เป็นจ านวนนับ ที่ 𝑘 ≥ 4 และ 𝑘 − 1 เป็นจ านวน
เฉพาะ  

2. สูตรส าหรับจ านวนจุดตรึงของไดกราฟ 𝚪(𝒏, 𝟔) ทีเ่กิดจากความสัมพันธ์ 𝒂𝟔 ≡ 𝒃 (𝐦𝐨𝐝 𝒏)  
ให้ 𝑛 เป็นจ านวนนับ ที่ 𝑛 ≥ 2 และ 𝑉 = { 0, 1, 2, … , 𝑛 − 1 } นิยามไดกราฟ Γ(𝑛, 6) = (𝑉, 𝐸) 

โดย (𝑎, 𝑏) ∈ 𝐸 ก็ต่อเมื่อ 𝑎6 ≡ 𝑏 (mod 𝑛) 

ตัวอย่าง 2.1  
(i) ให้ 𝑛 = 5  

จะได้ว่า 𝑉 = {0, 1, 2, 3, 4} เนื่องจาก 06 ≡ 0 (mod 5), 16 ≡ 1 (mod 5),  26 ≡ 4 (mod 5),  
36 ≡ 4 (mod 5) และ 46 ≡ 1 (mod 5) ดังนั้น Γ(5, 6) จะมีแผนภาพดังรูปที่ 2.1 

 
 
 
 
 
 
 
 
 

รูปที่ 2.1 ไดกราฟ Γ(5, 6) 
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(ii) ให้ 𝑛 = 12  

ด้วยแนวคิดเดียวกันกับ (i) ท าให้ได้ว่า Γ(12, 6) มีแผนภาพดังรูปที่ 2.2  
 
 
 
 
 

 
รูปที่ 2.2 ไดกราฟ Γ(12,6) 

จากตัวอย่าง 2.1 จะเห็นว่า 0 เป็นจุดตรึงเอกเทศของ Γ(5,6) แต่ไม่เป็นจุดตรึงเอกเทศของ 
Γ(12,6) ทฤษฎีบทต่อไปจะเป็นการบอกเงื่อนไขที่จ าเป็นและเพียงพอที่จะรับประกันว่าเมื่อใด 0 จะ
เป็นจุดตรึงเอกเทศของ Γ(𝑛, 6) ซ่ึงเง่ือนไขและบทพิสจูนเ์หมือนกับกรณี Γ(𝑛, 4) ที่พิสูจน์โดยรตินันท์ 
และธัญพิชชา [1] แต่เพ่ือความสมบูรณ์ผู้เขียนขอน าเสนอบทพิสูจน์ทฤษฎีบทนี้อีกครั้ง 

ทฤษฎีบท 2.1  0 และ 1 เป็นจุดตรึงของ Γ(𝑛, 6) ยิ่งไปกว่านั้น 0 เป็นจุดตรึงเอกเทศของ Γ(𝑛, 6)  
ก็ต่อเมื่อ 𝑛 ปราศจากก าลังสอง นั่นคือ 𝑛 มีสมบัติว่าส าหรับจ านวนเฉพาะ 𝑝 ที่เป็นตัวประกอบของ 𝑛 
ถ้า 𝑝𝛼  | 𝑛 แล้ว 𝛼 = 1 

บทพิสูจน์ เนื่องจาก 𝑛 | (06 − 0) และ 𝑛 | (16 − 1) ส าหรับทุกจ านวนนับ 𝑛 จะได้ว่า 0 และ 1 
เป็นจุดตรึงของ Γ(𝑛, 6) 

ต่อมาจะพิสูจน์ว่า 0 เป็นจุดตรึงเอกเทศของ Γ(𝑛, 6) ก็ต่อเมื่อ 𝑛 ปราศจากก าลังสอง 
สมมติว่า 𝑛 ไม่ปราศจากก าลังสอง จะได้ว่า มีจ านวนเฉพาะ 𝑝 และจ านวนเต็ม 𝑘 ที่ 𝑛 = 𝑝2𝑘  

จะได้ว ่า (𝑛
𝑝
)
6
= 𝑛3𝑘3 ≡ 0 (mod 𝑛) ดังนั ้น (𝑛

𝑝
, 0) ∈ 𝐸 นั ่นคือ 0 ไม่เป็นจุดตรึงเอกเทศของ 

Γ(𝑛, 6) 
สมมติว่า 𝑛 ปราศจากก าลังสอง ท าให้ได้ว่า มีจ านวนเฉพาะ 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑙 ซึ่งแตกต่างกัน

ทั ้งหมด ที ่ 𝑛 = 𝑝1𝑝2𝑝3⋯𝑝𝑙 ต่อมาสมมติว่า 0 ไม่เป็นจุดตรึงเอกเทศ ฉะนั ้นจะมี 𝑘 ∈ 𝑉 และมี
จ านวนเต็ม 𝑠 ที่ 𝑘6 = 𝑝1𝑝2𝑝3⋯𝑝𝑙𝑠 เนื่องจาก 𝑘 เป็นจ านวนเต็ม ดังนั้นจะมีจ านวนเต็ม 𝑡 ทีท่ าให้  

𝑘6 = 𝑝1𝑝2𝑝3⋯𝑝𝑙(𝑝1𝑝2𝑝3⋯𝑝𝑙)
5𝑡6 

จะได้ว่า 𝑘 = 𝑝1𝑝2𝑝3⋯𝑝𝑙𝑡 ≥ 𝑛 ท าให้เกิดข้อขัดแย้ง       
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ข้อสังเกต 2.1 เนื่องจาก (𝑛 − 1)6 − (𝑛 − 1) = (𝑛 − 1)(𝑛5 − 5𝑛4 + 10𝑛3 − 10𝑛2 + 5𝑛 − 2) 
ท าให้ได้ว่า 𝑛 หาร (𝑛 − 1)6 − (𝑛 − 1) ลงตัว ก็ต่อเมื่อ 𝑛 = 2 ดังนั้นส าหรับจ านวนนับ 𝑛 ที่ 𝑛 ≥ 3 
จุดยอด 𝑛 − 1 ไม่เป็นจุดตรึงของ Γ(𝑛, 6) ซึ่งเหมือนกับไดกราฟ Γ(𝑛, 4) ใน [1] แต่แตกต่างจาก 
ไดกราฟที่ศึกษาใน [3] และ [7] ที ่𝑛 − 1 เป็นจุดตรึงของไดกราฟเสมอ 

ต่อมาในการหาสูตรส าหรับจ านวนจุดตรึงทั้งหมดใน Γ(𝑛, 6) จ าเป็นต้องมีความรู้พื้นฐานทาง
ทฤษฎีจ านวนเกี่ยวกับการมีอยู่ของผลเฉลยของสมภาค 𝑓(𝑥) ≡ 0 (mod 𝑚) 

ทฤษฎีบทประกอบ 2.2 [5] (ทฤษฎีบทประกอบของเฮนเซิล) ให้ 𝑓(𝑥) เป็นพหุนามในตัวแปร 𝑥 ที่มี
สัมประสิทธิ ์เป็นจ านวนเต็ม และ 𝑟 เป็นจ านวนนับ ถ้าจ านวนเต็ม 𝑚1, 𝑚2, 𝑚3, ..., 𝑚𝑟 เป็น 
จ านวนเฉพาะสัมพัทธ์ซ ึ ่งกันและกัน  และ 𝑚 = 𝑚1𝑚2𝑚3⋯𝑚𝑟 แล้ว 𝑓(𝑥) ≡ 0 (mod 𝑚) มี 
ผลเฉลย ก็ต่อเมื่อ 𝑓(𝑥) ≡ 0 (mod 𝑚𝑖) มีผลเฉลยทุก 𝑖 ∈ { 1, 2, 3, … , 𝑟 } ยิ่งไปกว่านั้น ถ้า 𝑣(𝑚) 
และ 𝑣(𝑚𝑖) เป็นจ านวนผลเฉลยของ 𝑓(𝑥) ≡ 0 (mod 𝑚) และ 𝑓(𝑥) ≡ 0 (mod 𝑚𝑖) ตามล าดับ 
แล้ว 𝑣(𝑚) = 𝑣(𝑚1)𝑣(𝑚2)𝑣(𝑚3)⋯𝑣(𝑚𝑟) 

นอกจากนี้ยังจ าเป็นต้องท าความรู้จักกับสัญลักษณ์ การค านวณ และบทนิยามที่เกี่ยวข้องกับ
ทฤษฎีจ านวนเพิ่มเติมดังนี้ 

บทนิยาม 2.1 ให้ 𝑝 เป็นจ านวนเฉพาะ  
(i) [2] ก าหนดให้ ℤ𝑝 = {0, 1, 2, … , 𝑝 − 1} และส าหรับ 𝑎, 𝑏 ∈ ℤ𝑝 นิยาม  

𝑎 ⊕ 𝑏 = (𝑎 + 𝑏)(mod 𝑝) และ 𝑎 ⨀ 𝑏 = (𝑎𝑏)(mod 𝑝) 

ซึ่งต่อไปจะเขียนแทน 𝑎 ⊕ 𝑏 ด้วย 𝑎 + 𝑏 และ 𝑎 ⨀ 𝑏 ด้วย 𝑎𝑏 
(ii) [2] ก าหนดสัญลักษณ์ ℤ𝑝[𝑥] เป็นเซตของพหุนามทั้งหมดที่มีสัมประสิทธิ์เป็นสมาชิกของ ℤ𝑝 

พร้อมการด าเนินการ ⊕ และ ⨀  
(iii) [4] ให้ 𝑛 เป็นจ านวนนับ สมาชิก 𝜔 ∈ ℤ𝑝 จะเรียกว่าเป็น รากที ่𝑛 ของหนึ่ง ถ้า 𝜔𝑛 (mod 𝑝) = 1 

และ จะเรียกว่าเป็น รากปฐมฐานที่ 𝑛 ของหนึ่ง ถ้า 𝜔𝑛 (mod 𝑝) = 1 และ 𝜔𝑚 (mod 𝑝) ≠ 1 
ทุกจ านวนนับ 𝑚 ที่ 1 ≤ 𝑚 < 𝑛 

(iv) [4] ให้ 𝑛 เป็นจ านวนนับ และ 𝜔 ∈ ℤ𝑝 เป็นรากปฐมฐานที่ 𝑛 ของหนึ่ง นิยาม พหุนามไซโคลโตมิก
อันดับที่ 𝑛 เขียนแทนด้วย Φ𝑛(𝑥) เป็นผลคูณในรูป  
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Φ𝑛(𝑥) =

(

 
 

∏ (𝑥 −𝜔𝑘)

𝑛

𝑘=1
ห.ร.ม.(𝑘,𝑛)=1 )

 
 
(mod 𝑝)  

จากบทนิยาม 2.1 (iv) จะเห็นว่า การนิยาม Φ𝑛(𝑥) ขึ้นอยู่กับการมีอยู่ของรากปฐมฐานที่ 𝑛 ของหนึ่ง
ใน ℤ𝑝 

ตัวอย่าง 2.2 ก าหนดให้ 𝑝 = 11 จะได้ว่า 310 (mod 11) = 1 ดังนั้น 3 เป็นรากที่ 10 ของหนึ่ง แต่ 
35 (mod 11) = 1 และทราบว่า 31 (mod 11) = 3, 32 (mod 11) = 9, 33 (mod 11) = 5 และ 

34 (mod 11) = 4 ท าให้ได้ว่า 3 ไม่เป็นรากปฐมฐานที่ 10 ของหนึ่ง แต่เป็นรากปฐมฐานที่ 5 ของ
หนึ่ง จึงได้ว่าพหุนามไซโคลโตมิกอันดับที่ 5 คือ  

Φ5(𝑥) = (𝑥 − 3)(𝑥 − 3
2)(𝑥 − 33)(𝑥 − 34) (mod 11) 

              = (𝑥 − 3)(𝑥 − 9)(𝑥 − 5)(𝑥 − 4) (mod 11) 
              = (𝑥4 − 21𝑥3 + 155𝑥2 − 483𝑥 + 540) (mod 11) 

                             = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 

นอกจากนี้ยังสามารถตรวจสอบได้โดยง่ายว่า 102 (mod 11) = 1 และ 10 (mod 11) = 10 ท าให้
ได้ว่า 10 เป็นรากปฐมฐานที่ 2 ของหนึ่ง จึงได้ว่าพหุนามไซโคลโตมิกอันดับที่ 2 คือ 

Φ2(𝑥) = (𝑥 − 10) (mod 11) = 𝑥 + 1 
ในทางกล ับก ันเราสามารถตรวจสอบได ้ว ่ าถ ้ า 𝑎 ∈ ℤ11 แล ้ว 𝑎3 (mod 11) ≠ 1 และ 

𝑎7 (mod 11) ≠ 1 นั่นคือจะไม่สามารถสร้าง Φ3(𝑥) และ Φ7(𝑥) ด้วยบทนิยาม 2.1 (iv) ได ้

ตัวอย่าง 2.3 ก าหนดให้ 𝑝 = 7 จะได้ว่า 23 (mod 7) = 1 และทราบว่า 21 (mod 7) = 2 และ 

22 (mod 7) = 4 ท าให้ได้ว่า 2 เป็นรากปฐมฐานที่ 3 ของหนึ่ง จึงได้ว่าพหุนามไซโคลโตมิกอันดับที่ 
3 คือ Φ3(𝑥) = (𝑥 − 2)(𝑥 − 22) (mod 7) = (𝑥2 − 6𝑥 + 8) (mod 7) = 𝑥2 + 𝑥 + 1  

จากตัวอย่างทั้งสองนี้ จะเห็นว่าส าหรับจ านวนเฉพาะ 𝑝 ถ้าสามารถสร้าง Φ𝑞(𝑥) เมื่อ 𝑞 เป็นจ านวน
เฉพาะด้วยบทนิยาม 2.1 (iv) ได้แล้ว Φ𝑞(𝑥) จะมีลักษณะพิเศษกล่าวคือ 

Φ𝑞(𝑥) = 𝑥
𝑞−1 + 𝑥𝑞−2 + 𝑥𝑞−3 +⋯+ 𝑥 + 1 

ในความเป็นจริงแล้ว ℤ𝑝 ในบทนิยาม 2.1 (iii) และ (iv) จะสามารถแทนท่ีด้วยฟีลด์ใด ๆ ก็ได้ เช่น 
เซตของจ านวนเชิงซ้อน ซึ่งไม่มีข้อจ ากัดในการสร้าง Φ𝑛(𝑥) โดยส าหรับฟีลด์ใด ๆ Φ𝑛(𝑥) จะเป็น 
พหุนามที่มีสัมประสิทธิ์เป็นจ านวนเต็มเสมอ [4] และยังสามารถพิสูจน์ได้เช่นเดียวกันว่า ส าหรับ
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จ านวนเฉพาะ 𝑞 ใด ๆ จะได้ว ่า Φ𝑞(𝑥) = 𝑥𝑞−1 + 𝑥𝑞−2 + 𝑥𝑞−3 +⋯+ 𝑥 + 1 ซึ ่งท าให้ได้ว่า 
พหนุนามในรูป Φ𝑞(𝑥) = 𝑥𝑞−1 + 𝑥𝑞−2 + 𝑥𝑞−3 +⋯+ 𝑥 + 1 มองเป็นพหุนามหนึ่งใน ℤ𝑝[𝑥] ได ้

ดังนั้นจากตัวอย่าง 2.2 จึงอาจสามารถมองเป็นว่าพหุนาม Φ5(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 ที่
สร้างจากฟีลด์ใด ๆ สามารถแยกตัวประกอบเป็นผลคูณของพหุนามเชิงเส้นใน ℤ11[𝑥] ได้ และ 
Φ3(𝑥) = 𝑥

2 + 𝑥 + 1 ที ่สร้างจากฟีลด์ใด ๆ ไม่สามารถแยกตัวประกอบเป็นผลคูณของพหุนาม 
เชิงเส้นใน ℤ11[𝑥] ได ้แตส่ามารถแยกตัวประกอบเป็นผลคูณของพหุนามเชิงเส้นใน ℤ7[𝑥] ได ้

ทฤษฎีบทต่อไปจะเป็นทฤษฎีบทที่รับประกันว่า เมื่อใดทีพ่หุนามไซโคลโตมิกซึ่งสร้างจากฟีลด์ใด ๆ 
จะแยกตัวประกอบเป็นผลคูณของพหุนามเชิงเส้นใน ℤ𝑝[𝑥] ได้บ้าง 

ทฤษฎีบทประกอบ 2.3 [4] พหุนามไซโคลโตมิก Φ𝑛(𝑥) สามารถแยกตัวประกอบเป็นผลคูณของ 
พหุนามเชิงเส้นอย่างสมบูรณ์ใน ℤ𝑝[𝑥] ได้ ก็ต่อเมื่อ 𝑝 ≡ 1 (mod 𝑛) 

อย่างไรก็ด ีในหัวข้อที่ 2 ของบทความฉบับนี้ จะน าทฤษฎีบทประกอบ 2.3 ไปใช้ในกรณีที่ 𝑛 = 5 
และในหัวข้อที่ 3 จึงจะน าทฤษฎีบทประกอบ 2.3 ไปใช้ในกรณีทั่วไปยิ่งข้ึน  

ต่อไปจะเป็นการน าทฤษฎีบทประกอบต่าง ๆ ข้างต้นมาช่วยในการพิสูจน์ทฤษฎีบทหลักเกี่ยวกับ
จ านวนจุดตรึงทั้งหมดของ Γ(𝑛, 6) 

ทฤษฎีบท 2.4 ให้ 𝑠 และ 𝑛 เป็นจ านวนนับ โดยที่ 𝑛 ≥ 2 และ 𝑛 แยกตัวประกอบได้ในรูป 

𝑛 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3⋯𝑝𝑠

𝛼𝑠 

โดย 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑠 เป็นจ านวนเฉพาะ 𝛼𝑖 เป็นจ านวนเต็มที่ไม่เป็นลบและไม่เป็นศูนย์
พร้อมกันทั้งหมด ถ้า 𝜋(𝑛) แทนจ านวนของจ านวนเฉพาะ 𝑝𝑖 ทีแ่ตกต่างกันทั้งหมดที่เป็นตัวประกอบ
ของ 𝑛 ซ่ึง 𝑝𝑖 ≡ 1 (mod 5) แล้วจ านวนจุดตรึงทั้งหมดใน Γ(𝑛, 6) คือ 2𝑠3𝜋(𝑛) จุด 

บทพิสูจน์ ก าหนดให้ 𝐿(𝑛) เป็นจ านวนจุดตรึงทั้งหมดใน Γ(𝑛, 6) ดังนั้น 𝐿(𝑛) เป็นจ านวนผลเฉลยใน 
𝑉 = { 0, 1, 2, … , 𝑛 − 1 } ของสมภาค 

𝑓(𝑥) = 𝑥6 − 𝑥 = 𝑥(𝑥 − 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) ≡ 0 (mod 𝑛) 

กรณี 1 𝑠 = 1  
โดยไม่เสียนัยทั่วไปให้ 𝑛 = 𝑝𝛼 เมื่อ 𝑝 เป็นจ านวนเฉพาะและ 𝛼 เป็นจ านวนนับ  
จะได้ว่า 𝑉 = { 0, 1, 2, … , 𝑝𝛼 − 1 }  
สมมติให้ 𝑥 ∈ 𝑉 − { 0, 1 } เป็นผลเฉลยของ 𝑓(𝑥) ≡ 0 (mod 𝑝𝛼)  
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เนื่องจาก 𝑝 | 𝑝𝛼 ท าให้ได้ว่า 𝑝 | 𝑥 หรือ 𝑝 | (𝑥 − 1) หรือ 𝑝 | (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) 
กรณี 1.1 𝑝 | 𝑥 
สมมติว่า 𝑝 | (𝑥 − 1) หรือ 𝑝 | (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) จะได้ว่า 𝑝 | 1 ท าให้เกิดข้อขัดแย้ง 

ดังนั้น 𝑝 ∤ (𝑥 − 1) และ 𝑝 ∤ (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) ท าให้ได้ด้วยว่า 𝑝𝛼 ∤ (𝑥 − 1) และ 
𝑝𝛼 ∤ (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) และเนื่องจาก 2 ≤ 𝑥 ≤ 𝑝𝛼 − 1 ท าให้ได้ว่า 𝑝𝛼 ∤ 𝑥 เช่นกัน  
ดังนั้นกรณ ี1.1 นี้ไม่เกิดขึ้น 

กรณี 1.2 𝑝 | (𝑥 − 1) 
สมมติว่า 𝑝 | 𝑥 จะได้ว่า 𝑝 | 1 ท าให้เกิดข้อขัดแย้ง 
ต่อมา สมมติว่า 𝑝 | (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) เนื่องจาก 𝑝 | (𝑥 − 1) จะได้ว่ามีจ านวนเต็ม 𝑡 ที่ 

𝑥 = 𝑝𝑡 + 1 ท าให้ได้ว่า  
𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = (𝑝𝑡 + 1)4 + (𝑝𝑡 + 1)3 + (𝑝𝑡 + 1)2 + (𝑝𝑡 + 1) + 1 

                              ≡ 1 + 1 + 1 + 1 + 1 = 5 (mod 𝑝) 
แต่ 𝑝 | (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) จึงท าให้ 𝑝 | 5 ดังนั้น 𝑝 = 5 นั่นคือ 𝑝 | (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) 
ท าให้เกิดสมภาค 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 ≡ 0 (mod 5) เมื่อ 𝑥 ≠ 0 และ 1 อย่างไรก็ดีเมื่อค านวณ
โดยตรงพบว่า  

24 + 23 + 22 + 2 + 1 = 31 ≢ 0 (mod 5) 
34 + 33 + 32 + 3 + 1 = 121 ≢ 0 (mod 5) 
44 + 43 + 42 + 4 + 1 = 341 ≢ 0 (mod 5) 

จึงท าให้เกิดข้อขัดแย้ง ท าให้ได้ว่า 𝑝 ∤ 𝑥 และ 𝑝 ∤ (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) จึงได้ด้วยว่า 𝑝𝛼 ∤ 𝑥 
และ 𝑝𝛼 ∤ (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) และเนื่องจาก 1 ≤ 𝑥 − 1 ≤ 𝑝𝛼 − 2 ท าให้ได้ว่า 𝑝𝛼 ∤ 𝑥 − 1 
เช่นกัน ดังนั้นกรณี 1.2 นี้ไม่เกิดข้ึน   

กรณี 1.3 𝑝 | (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)  
นั่นคือสมภาค 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 ≡ 0 (mod 𝑝) สังเกตว่า 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 คือ 

Φ5(𝑥) และโดยทฤษฎีบทประกอบ 2.3 จะได้ว่า Φ5(𝑥) แยกตัวประกอบได้เป็นผลคูณของพหุนาม
เชิงเส้นอย่างสมบูรณ์ 4 พหุนามได้ใน ℤ𝑝[𝑥] ได้ ก็ต่อเมื่อ 𝑝 ≡ 1 (mod 5)  

ดังนั้นสมภาคในกรณีย่อยนี้มีผลเฉลย 4 ตัว สมมติว่าเป็น 𝑎, 𝑏, 𝑐 และ 𝑑 ก็ต่อเมื่อ 𝑝 ≡ 1 (mod 5) 
จากทฤษฎีบท 2.1 และ กรณี 1.1, 1.2 และ 1.3 จะได้ว่า  

𝐿(𝑛) = {
| { 0, 1, 𝑎, 𝑏, 𝑐, 𝑑 } | = 6 เมื่อ 𝑝 ≡ 1 (mod 5)
| { 0, 1 } | = 2                  เมื่อ 𝑝 ≢ 1 (mod 5)
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กรณี 2 𝑠 ≥ 2 

โดยทฤษฎีบทประกอบ 2.2 จะได้ว่า  
𝐿(𝑛) = 𝐿(𝑝1

𝛼1)𝐿(𝑝2
𝛼2)𝐿(𝑝3

𝛼3)⋯𝐿(𝑝𝑠
𝛼𝑠) 

ดังนั้นจากกรณี 1 จะได้ว่า 𝐿(𝑛) = 6𝜋(𝑛) ∙ 2𝑠−𝜋(𝑛) = 2𝑠3𝜋(𝑛)     

ตัวอย่าง 2.3 ให้ 𝑛 = 11 หรือ 𝑛 = 31 จะได้ว่า 𝑠 = 1 และ 𝑝1 = 11 ≡ 1 (mod 5) หรือ 

𝑝1 = 31 ≡ 1 (mod 5) ดังนั้น 𝜋(11) = 𝜋(31) = 1 และ 𝐿(11) = 2131 = 6 

 
 
 

 

 
 
 
 
 
 

รูปที่ 2.3 ไดกราฟ Γ(11, 6) 

ข้อสังเกต 2.2 (i) ใน ℤ11 จากตัวอย่าง 2.2 ท าให้ทราบว่า 3 เป็นรากปฐมฐานที่ 5 ของหนึ่ง และ
ส ั ง เกตจากร ูปที่  2 .3  ได้ ว ่ า  31 (mod 11) = 3, 32 (mod 11) = 9, 33 (mod 11) = 5 และ 
34 (mod 11) = 4 เป็น 4 จุดตรึงในบรรดา 6 จุดตรึงทั้งหมดของ Γ(11, 6)  

(ii) ในท านองเดียวกัน ใน ℤ31 สามารถตรวจสอบได้ว่า 2 เป็นรากปฐมฐานที่ 5 ของหนึ่ง และ
ส ังเกตจากร ูปท ี ่  2 .4 ได้ว ่ า  21 (mod 31) = 2, 22 (mod 31) = 4, 23 (mod 31) = 8 และ
 24 (mod 31) = 16 เป็น 4 จุดตรึงในบรรดา 6 จุดตรึงทั้งหมดของ Γ(31, 6) 

ดังนั้นโดยบทนิยามของรากปฐมฐานที่ 5 ของหนึ่ง บทนิยามของ Φ5(𝑥) และข้อสังเกต 2.2 ท า
ให้ได้บทแทรกดังต่อไปนี้ 

บทแทรก 2.5 ให้ 𝑝 เป็นจ านวนเฉพาะที่ 𝑝 ≡ 1 (mod 5) และ 𝜔 เป็นรากปฐมฐานที่ 5 ของหนึ่งใน 
ℤ𝑝 จะได้ว่า Γ(𝑝, 6) มีจุดตรึง 6 จุด ได้แก่ 0, 1, 𝜔 (mod 𝑝), 𝜔2 (mod 𝑝), 𝜔3 (mod 𝑝) และ 
𝜔4 (mod 𝑝) 
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รูปที่ 2.4 ไดกราฟ Γ(31, 6) 

ตัวอย่าง 2.4 ให้ 𝑛 = 341 จะได้ว่า 𝑠 = 2, 𝑝
1
= 11 ≡ 1 (mod 5) และ 𝑝2 = 31 ≡ 1 (mod 5) 

ดังนั้น 𝜋(341) = 2 และ 𝐿(341) = 2232 = 36 
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รูปที่ 2.5 ไดกราฟ Γ(341, 6) 
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รูปที่ 2.5 (ต่อ) ไดกราฟ Γ(341, 6) 

หมายเหตุ เนื่องจากข้อจ ากัดของโปรแกรมส าเร็จรูปที่ใช้ในการสร้างแผนภาพ ในที่นี้ขอใช้กรอบหนาเพื่อเน้น
จุดที่มีวงวน 

ตัวอย่าง 2.3 ให้ 𝑛 = 16 จะได้ว ่า 𝑠 = 1 และ 𝑝1 = 2 ≢ 1 (mod 5) ดังนั ้น 𝜋(16) = 0 และ 
𝐿(16) = 2130 = 2 

รูปที่ 2.6 ไดกราฟ Γ(16, 6) 

ตัวอย่าง 2.4 ให้ 𝑛 = 28 จะได้ว่า 𝑠 = 2, 𝑝
1
= 2 ≢ 1 (mod 5) และ 𝑝2 = 7 ≢ 1 (mod 5)  

ดังนั้น 𝜋(28) = 0 และ 𝐿(28) = 2230 = 4 

 
 

 

 
 
 

รูปที่ 2.7 ไดกราฟ Γ(28, 6) 
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3. การวางนัยท่ัวไป 
ดังที ่ได้กล่าวมาแล้วในหัวข้อที ่ 2 ว่า Kanoksing [4] สามารถพิสูจน์ได้ว่า ถ้า 𝑞 เป็นจ านวน 

เฉพาะใด ๆ แล้ว ส าหรับฟีลด์ใด ๆ  
Φ𝑞(𝑥) = 𝑥

𝑞−1 + 𝑥𝑞−2 + 𝑥𝑞−3 +⋯+ 𝑥 + 1 

และส าหรับจ านวนเต็ม 𝑘 ที่ 𝑘 ≥ 4 สมภาคท่ีเกี่ยวข้องกับการหาจ านวนจุดตรึงของ Γ(𝑛, 𝑘) คือ 

𝑥𝑘 − 𝑥 = 𝑥(𝑥 − 1)(𝑥𝑘−2 + 𝑥𝑘−3 + 𝑥𝑘−4 +⋯+ 𝑥 + 1) ≡ 0 (mod 𝑛) 
ซึ่งจะได้ว่า เมื่อ 𝑘 − 1 เป็นจ านวนเฉพาะ แล้ว Φ𝑘−1(𝑥) = 𝑥𝑘−2 + 𝑥𝑘−3 + 𝑥𝑘−4 +⋯+ 𝑥 + 1  

ต่อมาเม่ือพิจารณาบทพิสูจน์ของทฤษฎีบท 2.4 กรณีท่ี 1.3 จะพบว่า โดยทฤษฎีบทประกอบ 2.3 
จะได้ว่า Φ𝑘−1(𝑥) ≡ 0 (mod 𝑝) จะแยกตัวประกอบเป็นผลคูณของพหุนามเชิงเส้น 𝑘 − 2 ตัว อย่าง
สมบูรณ์ได้ใน ℤ𝑝[𝑥] และมีผลเฉลย 𝑘 − 2 ตัว ก็ต่อเมื่อ 𝑝 ≡ 1 (mod 𝑘 − 1) จึงสามารถวางนัย
ทั่วไปของทฤษฎีบท 2.4 และบทแทรก 2.5 ได้เป็น 

ทฤษฎีบท 3.1 ให้ 𝑠 และ 𝑛 เป็นจ านวนนับที่ 𝑛 ≥ 2 ซึ่งแยกตัวประกอบได้ในรูป 

𝑛 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3⋯𝑝𝑠

𝛼𝑠 

โดย 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑠 เป็นจ านวนเฉพาะ 𝛼𝑖 เป็นจ านวนเต็มที่ไม่เป็นลบและไม่เป็นศูนย์
พร้อมกันทั้งหมด ถ้า 𝑘 เป็นจ านวนนับที่ 𝑘 ≥ 4 และ 𝑘 − 1 เป็นจ านวนเฉพาะ แล้วจ านวนจุดตรึง
ทั้งหมดใน Γ(𝑛, 𝑘) คือ 𝑘𝜋(𝑛)2𝑠−𝜋(𝑛) จุด เมื่อ 𝜋(𝑛) แทนจ านวนของจ านวนเฉพาะ 𝑝𝑖 ทีแ่ตกต่างกัน
ทั้งหมดที่เป็นตัวประกอบของ 𝑛 ซ่ึง 𝑝𝑖 ≡ 1 (mod 𝑘 − 1) 

บทแทรก 3.2 ให้ 𝑘 เป็นจ านวนนับที่ 𝑘 ≥ 4 และ 𝑘 − 1 เป็นจ านวนเฉพาะ และ 𝑝 เป็นจ านวน
เฉพาะที่ 𝑝 ≡ 1 (mod 𝑘 − 1) ถ้า 𝜔 เป็นรากปฐมฐานที่ 𝑘 − 1 ของหนึ่งใน ℤ𝑝 จะได้ว่า Γ(𝑝, 𝑘) มี
จุดตรึง 𝑘 จุด ได้แก่ 0, 1, 𝜔 (mod 𝑝), 𝜔2 (mod 𝑝), 𝜔3 (mod 𝑝), …, 𝜔𝑘−2 (mod 𝑝) 

ตัวอย่าง 3.1 ให้ 𝑘 = 4 จะได้ว่า 𝑘 − 1 = 3 เป็นจ านวนเฉพาะ ดังนั้นจ านวนจุดตรึงทั้งหมดใน 
Γ(𝑛, 4) คือ 4𝜋(𝑛)2𝑠−𝜋(𝑛) = 2𝜋(𝑛)+𝑠 จุด เมื่อ 𝜋(𝑛) แทนจ านวนของจ านวนเฉพาะ 𝑝𝑖 ที่เป็นตัว
ประกอบของ 𝑛 ซ่ึง 𝑝𝑖 ≡ 1 (mod 3)  

ส ั ง เกตว ่ าส  าหร ับจ  านวนเฉพาะ 𝑝𝑖 จะได ้ว ่ า  ถ ้ า  𝑝𝑖 = 2 แล ้ว  𝑝𝑖 ≢ 1 (mod 3) และ  
𝑝𝑖 ≡ 1 (mod 3) ก็ต่อเมื่อ 𝑝𝑖 ≡ 1 (mod 12) หรือ 𝑝𝑖 ≡ 7 (mod 12) ท าให้จ านวนของจ านวน
เฉพาะ 𝑝𝑖 ที่เป็นตัวประกอบของ 𝑛 ซึ่ง 𝑝𝑖 ≡ 1 (mod 3) และจ านวนของจ านวนเฉพาะ 𝑝𝑖 ที่เป็นตัว
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ประกอบของ 𝑛 ซึ่ง 𝑝𝑖 = 2 หรือ 𝑝𝑖 ≡ 1 (mod 12) หรือ 𝑝𝑖 ≡ 7 (mod 12) มีจ านวนเท่ากัน ซึ่ง
สูตรจ านวนจุดตรึงในตัวอย่างนี้ตรงกับสูตรจ านวนจุดตรึงทั้งหมดใน Γ(𝑛, 4) ที่น าเสนอใน [1]  

ตัวอย่าง 3.2 ให้ 𝑘 = 8 จะได้ว่า 𝑘 − 1 = 7 เป็นจ านวนเฉพาะ ดังนั้น จ านวนจุดตรึงทั้งหมดใน 
Γ(𝑛, 8) คือ 8𝜋(𝑛)2𝑠−𝜋(𝑛) = 22𝜋(𝑛)+𝑠 จุด เมื่อ 𝜋(𝑛) แทนจ านวนของจ านวนเฉพาะ 𝑝𝑖 ที่เป็นตัว
ประกอบของ 𝑛 ซึ่ง 𝑝𝑖 ≡ 1 (mod 7) รูปที่ 3.1 3.2 และ 3.3 เป็นแผนภาพของ Γ(6, 8), Γ(30, 8)
และ Γ(43, 8) ซึ่งมีจุดตรึง 4, 8 และ 8 จุด ตามล าดับ สังเกตว่า 4 เป็นรากปฐมฐานที่ 7 ของ 1 ใน 
ℤ43 จึงได้ว่า 4 (mod 43) = 4, 42 (mod 43) = 16, 43 (mod 43) = 21, 44 (mod 43) = 41, 
45 (mod 43) = 35 และ 46 (mod 43) = 11 เป็นจุดตรึง 6 จุด ในบรรดา 8 จุดของ Γ(43, 8) 
 
 
 

 

รูปที่ 3.1 ไดกราฟ Γ(6, 8) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

รูปที่ 3.2 ไดกราฟ Γ(30, 8) 
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รูปที่ 3.3 ไดกราฟ Γ(43, 8) 

ตัวอย่าง 3.3 ให้ 𝑘 = 12 จะได้ว่า 𝑘 − 1 = 11 เป็นจ านวนเฉพาะ ดังนั้น จ านวนจุดตรึงทั้งหมดใน 
Γ(𝑛, 12) คือ 12𝜋(𝑛)2𝑠−𝜋(𝑛) = 2𝜋(𝑛)+𝑠3𝜋(𝑛) จุด เมื่อ 𝜋(𝑛) แทนจ านวนของจ านวนเฉพาะ 𝑝𝑖 ที่
เป็นตัวประกอบของ 𝑛 ซึ่ง 𝑝𝑖 ≡ 1 (mod 11) รูปที่ 3.4 3.5 และ 3.6 เป็นแผนภาพของ Γ(6, 12), 
Γ(30, 12) และ Γ(67, 12) ซึ่งมีจุดตรึง 4, 8 และ 12 จุด ตามล าดับ  

สังเกตว่า 9 เป็นรากปฐมฐานที่ 11 ของ 1 ใน ℤ67 จึงได้ว่า 9 (mod 67) = 9, 92 (mod 67) =
14, 93 (mod 67) = 59, 94 (mod 67) = 62, 95 (mod 67) = 22, 96 (mod 67) = 64,

97 (mod 67) = 40, 98 (mod 67) = 25, 99 (mod 67) = 24 และ  910 (mod 67) = 15 เ ป็ น
จุดตรึง 10 จุด ในบรรดา 12 จุดของ Γ(67, 12) 
 
 
 
 

 
 
 
 

รูปที่ 3.4 ไดกราฟ Γ(6, 12) 
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รูปที่ 3.5 ไดกราฟ Γ(30, 12) 

ในกรณีที่ 𝑘 = 3 จริงอยู่ที่ว่า 𝑘 − 1 = 2 เป็นจ านวนเฉพาะ แต่ Φ2(𝑥) = 𝑥 + 1 ซึ่งเป็นพหุนาม
เชิงเส้นอยู่แล้ว และจ านวนผลเฉลยของสมภาคที่เกี่ยวข้องกับการหาจ านวนจุดตรึงของ Γ(𝑛, 3) ซึ่ง
คือ 𝑥3 − 𝑥 = 𝑥(𝑥 − 1)(𝑥 + 1) ≡ 0 (mod 𝑛) ขึ้นอยู่กับก าลังของ 2 ที่เป็นตัวประกอบของ 𝑛 ท า
ให้สูตรของจ านวนจุดตรึงของ Γ(𝑛, 3) แตกต่างจากทฤษฎีบท 3.1 ซึ่งผู้ที่สนใจสามารถอ่านเพ่ิมเติมได้
ใน [6] 

จะเห็นว่าการน าความรู้เกี่ยวกับการแยกตัวประกอบของพหุนามไซโคลโตมิกมาร่วมพิจารณา 
ช่วยให้การหาสูตรจ านวนจุดตรึงของ Γ(𝑛, 6) ท าได้ง่ายขึ้น และยังขยายผลไปได้ยังกรณีท่ีทั่วไปกว่าได้
ด้วย ส าหรับผู้ที่สนใจอาจศึกษาเพิ่มเติมว่า จุดยอดใดบ้างจะเป็นจุดตรึงของ Γ(𝑛, 6) เมื่อ 𝑛 เป็น
จ านวนนับที่ 𝑛 ≥ 2 จุดยอดเหล่านี้มีความเกี่ยวข้องกับรากปฐมฐานหรือไม่ อย่างไร และสามารถ
ขยายผลนี้ไปยังกรณีที่ท่ัวไปกว่าได้หรือไม่  

กิตติกรรมประกาศ  
งานวิจัยนี้เป็นส่วนหนึ่งของโครงงานคณิตศาสตร์ที่ได้รับการสนับสนุนโดยทุนพัฒนาและส่งเสริม 

ผู้มีความสามารถพิเศษทางวิทยาศาสตร์และเทคโนโลยี (พสวท.) 
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รูปที่ 3.6 ไดกราฟ Γ(67, 12) 
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