
DOI: 10.14456/mj-math.2021.13 วารสารคณิตศาสตร์ ปริมา 66 เล่มที่ 705 กันยายน – ธันวาคม 2564 

25 

วารสารคณิตศาสตร์ Mathematical Journal 66 (705) กันยายน – ธันวาคม 2564 

โดย สมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์ 
http://www.mathassociation.net        Email: MathThaiOrg@gmail.com 

 

อัตราส่วนจ านวนเตม็ของอนุกรมที่เรียงติดกัน 
Integer Ratios of Some Consecutive Series 

 

เสฎฐวุฒิ เพชรแก้ว1 และ สุภาวดี พฤกษาพิทักษ์2, 

หน่วยวิจัยพีชคณิตและการประยกุต์ สาขาวิทยาศาสตร์การค านวณ คณะวิทยาศาสตร์ 
มหาวิทยาลยัสงขลานครินทร์ สงขลา 90110 

 

Sesthawuth Petchkaew1 and Supawadee Prugsapitak2, 

Algebra and Applications Research Unit, Division of Computational Science,  
Faculty of Science, Prince of Songkla University, Songkhla 90110 

 

Email: 16010210276@psu.ac.th, 2supawadee.p@psu.ac.th 
 

วันที่รับบทความ : 7 มกราคม 2564 วันที่แก้ไขบทความ : 29 พฤษภาคม 2564 วันที่ตอบรับบทความ : 3 สิงหาคม 2564 
 

บทคัดย่อ 
ในบทความนี้ ผู้ประพันธ์ได้หาเงื่อนไขที่จ าเป็นและเพียงพอที่ท าให้อัตราส่วนของอนุกรมที่เรียง

ติดกันต่อไปนี้เป็นจ านวนเต็ม โดยอนุกรมที่สนใจได้แก่ 
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ABSTRACT 
In this article, we establish necessary and sufficient conditions for the ratio of some 

consecutive series to be integers.  The series that we investigate in the article are as 
follows: 
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1. Introduction 
The ratios of two consecutive powers were studied by many mathematicians [1, 3]. 

One of the unsolved problems is to find all positive integers k  and 1n   such that 

the ratio of the power sum 1 2 3
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 is an integer.  In 2019, Ioulia N. 

Baoulina [ 2]  studied a ratio for consecutive alternating power sums.  Namely, he gave  
a necessary and sufficient condition for  
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to be an integer.  From the mentioned result, it is natural to investigate the ratios for 
other series. In this paper, we establish necessary and sufficient conditions for the ratio 
of the following consecutive series to be integers:  
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2. Main Results 

Theorem 2. 1 Let k  and n  be positive integers.  Then ( 1)
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Since k  is a positive integer, we can see that (2)
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We next consider arithmetic series. 

Theorem 2. 2 Let ,a d  and n  be positive integers.  Then ,
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Thus 1(1 ).n nr m r r      If p  is a prime divisor of ,r  p  does not divide 
1.1 nr r     Thus p  divides .m  Since all prime divisors of r  divides m  and   

1gcd( ,1 ) 1,nr r r     we have .nr m   Thus 11 1nr r       and this 
implies that 2 1 0nr r r      or 2 1 2nr r r      . If 2 1 0nr r r      then 

2 2(1 ) 0.nr r r r       Thus 0r   or 2 21 0.nr r r      The latter case 
implies that r  divides 1  and this is a contradiction. If 2 1 2nr r r        
then 1r    or 2.r    Since  and 2 1 2 0,nr r r      2.r    Thus 

2 1 .nr r r r     So 2 3 1 0.nr r r      Therefore, 0r   or 31 0.nr r      
Since 4,n   the latter case implies that r  divides 1 which is a contradiction.  
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