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บทคัดยอ 

พีชคณิตกราฟสรางจากกราฟระบุทิศทางที่ไมมีเสนเช่ือมขนาน และพีชคณิตแบบพิเศษชนิด 

(2,0) และจะกลาววากราฟ 𝐺𝐺 สอดคลองกับเอกลักษณ 𝑠𝑠 ≈ 𝑡𝑡 ถาพีชคณิตกราฟ 𝐴𝐴(𝐺𝐺) ที่สมนัย

กับ 𝐺𝐺 สอดคลองกับ 𝑠𝑠 ≈ 𝑡𝑡 เซตของเอกลักษณ 𝑠𝑠 ≈ 𝑡𝑡 ทั้งหมด ซึ่งกราฟ 𝐺𝐺 สอดคลองเขียนแทน

ดวย Id({𝐺𝐺}) เซตของกราฟทั้งหมดซึ่งสอดคลองกับเอกลักษณ 𝑠𝑠 ≈ 𝑡𝑡 ใน Id({𝐺𝐺}) เรียกวา 

กราฟวาไรต้ีที่กอกําเนิดโดย {𝐺𝐺} เขียนแทนดวย 𝒱𝒱𝑔𝑔({𝐺𝐺}) เอกลักษณ 𝑠𝑠 ≈ 𝑡𝑡 จะเปนเอกลักษณใน 
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𝒱𝒱𝑔𝑔({𝐺𝐺}) ถา 𝐴𝐴(𝐺𝐺′) สอดคลอง 𝑠𝑠 ≈ 𝑡𝑡 ทุก 𝐺𝐺 ∈ 𝑉𝑉𝑔𝑔({𝐺𝐺}) เอกลักษณ 𝑠𝑠 ≈ 𝑡𝑡 ของพจน 𝑠𝑠 และ 𝑡𝑡 
ชนิด 𝜏𝜏 จะเรียกวาไฮเปอรไอเด็นติต้ีของพีชคณิต 𝐴𝐴 ถาไมวาเมื่อใดก็ตามที่เอกลักษณการดําเนินการ

ใด ๆ ที่ปรากฏในพจน 𝑠𝑠 และ 𝑡𝑡 ถูกแทนที่ดวยการดําเนินการพจนใด ๆ ที่เหมาะสมของ 𝐴𝐴 และ

ผลลัพธที่ไดเปนจริงใน 𝐴𝐴 ในบทความน้ีจะพิจารณาลักษณะทั้งหมดของไฮเปอรไอเด็นติต้ีใน 

𝒱𝒱𝑔𝑔({𝐺𝐺}) เมื่อ 𝐺𝐺 เปนกราฟซีโรโพเทนตและยูนิโพเทนต  

คําสําคญั:  กราฟวาไรต้ี กราฟกอกําเนิด พจน เอกลักษณ พีชคณิตทวิภาค พีชคณิตกราฟ  

       ไฮเปอรไอเด็นติต้ี 

ABSTRACT 

Directed graphs without multiple edges can be represented as algebras of type 

(2,0), so-called graph algebras. We say that a graph 𝐺𝐺 satisfies a term equation 𝑠𝑠 ≈ 𝑡𝑡 
if the corresponding graph algebra 𝐴𝐴(𝐺𝐺) satisfies 𝑠𝑠 ≈ 𝑡𝑡. The set of all term equations 

𝑠𝑠 ≈ 𝑡𝑡 which the graph 𝐺𝐺 satisfies denoted by Id({𝐺𝐺}). The class of all graph algebras 

satisfying all term equations in Id({𝐺𝐺}) is called the graph variety generated by 𝐺𝐺, 

denoted by 𝒱𝒱𝑔𝑔({𝐺𝐺}). A term equation 𝑠𝑠 ≈ 𝑡𝑡 is called an identity in 𝒱𝒱𝑔𝑔({𝐺𝐺}) if 𝐴𝐴(𝐺𝐺′) 

satisfies 𝑠𝑠 ≈ 𝑡𝑡 for all 𝐺𝐺 ∈ 𝒱𝒱𝑔𝑔({𝐺𝐺}). An identity 𝑠𝑠 ≈ 𝑡𝑡 of terms 𝑠𝑠 and 𝑡𝑡 of any type 𝜏𝜏 

is called a hyperidentity of an algebra 𝐴𝐴 if whenever the operation symbols occurring 

in 𝑠𝑠 and 𝑡𝑡 are replaced by any term operations of 𝐴𝐴 of the appropriate arity, the 

resulting identities hold in 𝐴𝐴.  In this paper, we characterize all identities, all graphs 

and all hyperidentities in 𝒱𝒱𝑔𝑔({𝐺𝐺}) where 𝐺𝐺 is the zeropotent and unipotent.  

Keywords:  Graph varieties, Generated graphs, Terms, Identities, Binary algebras, 

         Graph algebras, Hyperidentities 

1. Introduction 

An identity 𝑠𝑠 ≈ 𝑡𝑡 of terms 𝑠𝑠, 𝑡𝑡 of any type 𝜏𝜏 is called a hyperidentity of an algebra 

𝐴𝐴 if whenever the operation symbols occurring in 𝑠𝑠 and 𝑡𝑡 are replaced by any term 

operations of 𝐴𝐴  of the appropriate arity, the resulting identity holds in 𝐴𝐴. 
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Hyperidentities can be defined more precisely by using the concept of a 

hypersubstitution, which was introduced by Denecke, Lau, Pöschel and Schweigert in 

[2]. 

We fix a type 𝜏𝜏 = (𝑛𝑛𝑖𝑖)𝑖𝑖∈ 𝐼𝐼 ,𝑛𝑛𝑖𝑖 > 0 for all 𝑖𝑖 ∈ 𝐼𝐼, and operation symbols (𝑓𝑓𝑖𝑖)𝑖𝑖∈𝐼𝐼 , 
where 𝑓𝑓𝑖𝑖 is an 𝑛𝑛𝑖𝑖 − ary. Let 𝑊𝑊𝜏𝜏(𝑋𝑋) be the set of all terms of type 𝜏𝜏 over some fixed 

alphabet 𝑋𝑋, and let Alg(𝜏𝜏) be the class of all algebras of type 𝜏𝜏. Then, a mapping 

𝜎𝜎 ∶ {𝑓𝑓𝑖𝑖  | 𝑖𝑖 ∈  𝐼𝐼} ⟶𝑊𝑊𝜏𝜏(𝑋𝑋) 

which assigns to every 𝑛𝑛𝑖𝑖 − ary operation symbol 𝑓𝑓𝑖𝑖 an 𝑛𝑛𝑖𝑖 − ary term will be called 

a hypersubstitution of type 𝜏𝜏 (for short, a hypersubstitution). We denote the extension 

of the hypersubstitution 𝜎𝜎 by a mapping 

𝜎𝜎�:𝑊𝑊𝜏𝜏(𝑋𝑋) ⟶𝑊𝑊𝜏𝜏(𝑋𝑋). 
The term 𝜎𝜎�[𝑡𝑡] is defined inductively by 

(i) 𝜎𝜎�[𝑥𝑥] = 𝑥𝑥 for any variable 𝑥𝑥 in the alphabet 𝑋𝑋, and 

(ii) 𝜎𝜎�[𝑓𝑓𝑖𝑖(𝑡𝑡1, … , 𝑡𝑡𝑛𝑛𝑖𝑖)] = 𝜎𝜎(𝑓𝑓𝑖𝑖)𝑊𝑊𝜏𝜏(𝑋𝑋)(𝜎𝜎�[𝑡𝑡1], … ,𝜎𝜎�[𝑡𝑡𝑛𝑛𝑖𝑖]). 

Here 𝜎𝜎(𝑓𝑓𝑖𝑖)𝑊𝑊𝜏𝜏(𝑋𝑋) on the right hand side of ( ii)  is the operation induced by 𝜎𝜎(𝑓𝑓𝑖𝑖) on 

the term algebra with the universe 𝑊𝑊𝜏𝜏(𝑋𝑋). 

Graph algebras were introduced by Shallon [13] in 1979 with the purpose of 

providing examples of nonfinitely based finite algebras.  Let us briefly recall this 

concept.  Given a directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  without multiple edges, the graph 

algebra associated with 𝐺𝐺 is the algebra 𝐴𝐴(𝐺𝐺) = (𝑉𝑉 ∪ {∞}, ∘, ∞) of type (2, 0), 

where ∞ is an element not belonging to 𝑉𝑉 and the binary operation ∘ is defined by 

the rule 

𝑢𝑢 ∘ 𝑣𝑣 ∶= � 𝑢𝑢     if  (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸,
∞   otherwise,      

for all 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {∞}. We will denote the product 𝑢𝑢 ∘ 𝑣𝑣 simply by juxtaposition 𝑢𝑢𝑢𝑢. 

In [12], Pöschel and Wessel, graph varieties were investigated for finite undirected 

graphs in order to get graph theoretic results (structure theorems)  from universal 
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algebra via graph algebras.  In [11], these investigations were extended to arbitrary 

(finite) directed graphs where the authors ask for a graph theoretic characterization of 

graph varieties, i. e. , of classes of graphs which can be defined by identities for their 

corresponding graph algebras.  The answer is a theorem of Birkhoff- type, which uses 

graph theoretic closure operations. A class of finite directed graphs is equational (i.e., 

a graph variety)  if and only if it is closed with respect to finite restricted pointed 

subproducts and isomorphic copies. 

Let 𝑠𝑠 ≈ 𝑡𝑡 be a term equation.  Poomsa- ard and et.  al.  characterized the graph 

variety 𝒱𝒱 = Mod𝑔𝑔({𝑠𝑠 ≈ 𝑡𝑡}) in various kind of terms 𝑠𝑠  and 𝑡𝑡.  Further they 

characterized identities and hyperidentities in these graph varieties, too.  But these 

results are not convenient for applying to the real- world situation.  Because at  

first we will check that what kind of terms 𝑠𝑠  and 𝑡𝑡  which the graph variety  

𝒱𝒱 = Mod𝑔𝑔({𝑠𝑠 ≈ 𝑡𝑡}) contains the graph algebra of the diagram of that real- world 

situation. It is not easy to do this. So we will characterize the graph variety generated 

by the graph 𝐺𝐺 of the diagram directly.  Then characterize identities of this graph 

variety.  In [5], Jampachon and Poomsa- ard characterized all identities, all graphs  

and all hyperidentities in graph variety generated by ((𝑥𝑥𝑥𝑥)(𝑦𝑦((𝑧𝑧𝑧𝑧)𝑧𝑧)))𝑧𝑧  graph.  

In [7], Lehtonen and Manyuen characterized all the graph varieties axiomatized by 

certain noteworthy groupoid identities that are of general interest in algebra, such as 

the zeropotent, unipotent, commutative, alternative, semimedial, and medial 

identities. 

In this paper, we characterized all identities, all graphs and all hyperidentities in 

𝒱𝒱 = Mod𝑔𝑔({𝑠𝑠 ≈ 𝑡𝑡}) where 𝐺𝐺 is the zeropotent and unipotent graphs.  
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2. Terms, identities and graph varieties 

Dealing with terms for graph algebras, the underlying formal language has to 

contain a binary operation symbol ( juxtaposition)  and a symbol for the constant ∞ 

(denoted by ∞ too). 

Definition 2.1 A term over the alphabet 

𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … } 

is defined inductively as follows: 

(i) every variable 𝑥𝑥𝑖𝑖 , 𝑖𝑖 =  1,2,3, … and ∞ are terms; 

(ii) if 𝑡𝑡1 and 𝑡𝑡2 are terms, then 𝑡𝑡1𝑡𝑡2 is a term.  

Let 𝑊𝑊𝜏𝜏(𝑋𝑋) be the set of all terms which can be obtained from (i) and (ii) in finitely 

many steps. Terms built up from the two-element set 𝑋𝑋2 = {𝑥𝑥1,𝑥𝑥2} of variables are 

thus binary terms.  We denote the set of all binary terms by 𝑊𝑊𝜏𝜏(𝑋𝑋2).  The leftmost 

variable of a term 𝑡𝑡 is denoted by 𝐿𝐿(𝑡𝑡), the rightmost variable of a term 𝑡𝑡 is denoted 

by 𝑅𝑅(𝑡𝑡). A term in which the symbol ∞ occurs is called a trivial term. 

Definition 2. 2 For each non- trivial term 𝑡𝑡  of type 𝜏𝜏 = (2,0) , one can define a 

directed graph 𝐺𝐺(𝑡𝑡) = (𝑉𝑉(𝑡𝑡),𝐸𝐸(𝑡𝑡)), where the vertex set 𝑉𝑉(𝑡𝑡) is the set of all 

variables occurring in 𝑡𝑡 and the edge set 𝐸𝐸(𝑡𝑡) is defined inductively by 

𝐸𝐸(𝑡𝑡) = 𝜙𝜙 if 𝑡𝑡 is a variable and 𝐸𝐸(𝑡𝑡1𝑡𝑡2) = 𝐸𝐸(𝑡𝑡1) ∪ 𝐸𝐸(𝑡𝑡2) ∪ {(𝐿𝐿(𝑡𝑡1),𝐿𝐿(𝑡𝑡2))}  
where 𝑡𝑡 = 𝑡𝑡1𝑡𝑡2 is a compound term.  𝐿𝐿(𝑡𝑡) is called the root of the graph 𝐺𝐺(𝑡𝑡), and 

the pair (𝐺𝐺(𝑡𝑡), 𝐿𝐿(𝑡𝑡)) is called the rooted graph corresponding to 𝑡𝑡.  Formally, we 

assign the empty graph 𝜙𝜙 to every trivial term 𝑡𝑡. 

Definition 2.3 Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph.  Let ℎ ∶ 𝑋𝑋 → 𝑉𝑉 ∪ {∞} be a map, called 

an assignment.  Extend ℎ to a map ℎ� ∶ 𝑊𝑊𝜏𝜏(𝑋𝑋) → 𝑉𝑉 ∪ {∞} by the rule ℎ�(𝑡𝑡) = ℎ(𝑡𝑡) 

if 𝑡𝑡 = 𝑥𝑥 ∈ 𝑋𝑋, and ℎ�(𝑡𝑡) =  ℎ�(𝑡𝑡1)ℎ�(𝑡𝑡2) if 𝑡𝑡 =  𝑡𝑡1𝑡𝑡2, where the product is taken in 

𝐴𝐴(𝐺𝐺).  Then ℎ� is called the valuation of the term 𝑡𝑡 in the graph 𝐺𝐺 with respect to 
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assignment ℎ. Although the graph 𝐺𝐺 does not appear in the notation ℎ�, it will always 

be clear from the context. 

Definition 2.4 An identity (in the language of graph algebras) is an ordered pair (𝑠𝑠, 𝑡𝑡) 

of terms 𝑠𝑠, 𝑡𝑡 ∈ 𝑊𝑊𝜏𝜏(𝑋𝑋) , usually written as 𝑠𝑠 ≈ 𝑡𝑡.  Let 𝐴𝐴(𝐺𝐺)  be a graph algebra 

corresponding to 𝐺𝐺 = (𝑉𝑉,𝐸𝐸).  We say that 𝐴𝐴(𝐺𝐺) satisfies 𝑠𝑠 ≈ 𝑡𝑡 , and we write 

𝐴𝐴(𝐺𝐺) ⊨ 𝑠𝑠 ≈ 𝑡𝑡 if ℎ�(𝑠𝑠) = ℎ�(𝑡𝑡) for every assignment ℎ ∶ 𝑋𝑋 → 𝑉𝑉 ∪ {∞}.  In this case, 

we also say that 𝐺𝐺 satisfies 𝑠𝑠 ≈ 𝑡𝑡 and we write 𝐺𝐺 ⊨ 𝑠𝑠 ≈ 𝑡𝑡.  

The above notation extends to an arbitrary class 𝒢𝒢 of graphs and to any set Σ of 

identities as follows: 

𝐺𝐺 ⊨ Σ  if 𝐺𝐺 ⊨ 𝑠𝑠 ≈ 𝑡𝑡 for all 𝑠𝑠 ≈ 𝑡𝑡 ∈ 𝛴𝛴, 

𝒢𝒢 ⊨ 𝑠𝑠 ≈ 𝑡𝑡 if 𝐺𝐺 ⊨ 𝑠𝑠 ≈ 𝑡𝑡 for all 𝐺𝐺 ∈ 𝒢𝒢, 

𝒢𝒢 ⊨ 𝛴𝛴  if 𝐺𝐺 ⊨ 𝛴𝛴 for all 𝐺𝐺 ∈ 𝒢𝒢. 

The relation of satisfaction of an identity by a graph induces a Galois connection 

between graphs and identities via the polarities 

Id 𝒢𝒢 = {𝑠𝑠 ≈ 𝑡𝑡 ∣ 𝑠𝑠, 𝑡𝑡 ∈ 𝑊𝑊𝜏𝜏(𝑋𝑋),𝒢𝒢 ⊨ 𝑠𝑠 ≈ 𝑡𝑡}, 
Mod𝑔𝑔𝛴𝛴 = {𝐺𝐺 ∣ 𝐺𝐺 is a graph and 𝐺𝐺 ⊨ 𝛴𝛴}. 

It follows from the general theory of Galois connections (see [1]) that Mod𝑔𝑔 Id is 

a closure operator on graphs, which we denote simply by 𝒱𝒱𝑔𝑔.  The closed sets of 

graphs, i.e., sets 𝒢𝒢 satisfying 𝒱𝒱𝑔𝑔(𝒢𝒢) = 𝒢𝒢, are called graph varieties. 

3. Identities in graph variety generated by zeropotent and unipotent graphs 

In [7], we recall that a graph 𝐺𝐺 is zeropotent and unipotent, if it satisfies the 

identities (𝑥𝑥𝑥𝑥)𝑦𝑦 ≈ 𝑥𝑥𝑥𝑥 ≈ 𝑦𝑦(𝑥𝑥𝑥𝑥) and 𝑥𝑥𝑥𝑥 ≈ 𝑦𝑦𝑦𝑦 when 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, respectively. 

Proposition 3. 1 (Lehtonen and Manyuen [7, Theorem 3. 1]) Let 𝐺𝐺  be a graph.  

The following conditions are equivalent: 

(i) 𝐺𝐺 is zeropotent. 

(ii) 𝐺𝐺 is unipotent.  
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(iii) 𝐺𝐺 has no loops. 

From Proposition 3.1 we see that 𝐺𝐺1,𝐺𝐺2,𝐺𝐺3,𝐺𝐺4 graphs are zeropotent and unipotent. 

 

 

 
 

       𝐺𝐺1           𝐺𝐺2             𝐺𝐺3            𝐺𝐺4 

Let 𝒦𝒦 = Mod𝑔𝑔{(𝑥𝑥𝑥𝑥)𝑦𝑦 ≈ 𝑥𝑥𝑥𝑥 ≈ 𝑦𝑦(𝑥𝑥𝑥𝑥),𝑥𝑥𝑥𝑥 ≈ 𝑦𝑦𝑦𝑦}.  This means 𝒦𝒦 is the set of 

all loopless graphs.  We want to characterize all identities in 𝒦𝒦.  Before to do this we 

need some results for reference as the following: 

The equational theory of the class of all graphs (all graph algebras) was described 

by Kiss, Pöschel and Pröhle in [6] as follows. 

Proposition 3.2 (Kiss, Pöschel and Pröhle [6, Lemma 2.2(3)]). Let 𝑠𝑠 ≈ 𝑡𝑡 be an identity 

and let 𝒢𝒢 be the class of all graphs.  Then 𝒢𝒢 ⊨ 𝑠𝑠 ≈ 𝑡𝑡 if and only if 𝑠𝑠 and 𝑡𝑡 are trivial 

terms or 𝐺𝐺(𝑠𝑠) = 𝐺𝐺(𝑡𝑡) and 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡). 

The following results provide useful tools for checking whether a graph satisfies an 

identity. 

Proposition 3.3 ( Kiss, Pöschel and Pröhle [6, Lemma 2. 2(2)] ) .  Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a 

graph and let ℎ ∶ 𝑋𝑋 → 𝑉𝑉 ∪ {∞} be an evaluation of the variables.  Consider the 

canonical extension ℎ� of ℎ to the set of all terms. Then the following holds.  If 𝑡𝑡 is a 

trivial term, then ℎ�(𝑡𝑡) = ∞.  Otherwise, if ℎ ∶ 𝐺𝐺(𝑡𝑡) → 𝐺𝐺  is a homomorphism of 

graphs, then ℎ�(𝑡𝑡) = ℎ��𝐿𝐿(𝑡𝑡)� = ℎ(𝐿𝐿(𝑡𝑡)), and if ℎ is not a homomorphism of graphs, 

then ℎ�(𝑡𝑡) = ∞. 

Proposition 3. 4 ( Pöschel and Wessel [12, Proposition 1. 5(2)]) .  Let 𝑠𝑠 and 𝑡𝑡 be non-

trivial terms such that 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡) and 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡).  Then a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 

satisfies 𝑠𝑠 ≈ 𝑡𝑡 if and only if 𝐺𝐺 has the following property:  a mapping ℎ ∶  𝑉𝑉(𝑠𝑠) →
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𝑉𝑉 ∪ {∞} is a homomorphism from 𝐺𝐺(𝑠𝑠) into 𝐺𝐺 if and only if it is a homomorphism 

from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺. 

Now we characterize all identities in 𝒦𝒦.  Clearly, if 𝑠𝑠 ≈ 𝑡𝑡 is a trivial equation ( i. e. 

𝐺𝐺(𝑠𝑠) = 𝐺𝐺(𝑡𝑡), 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡))  or both of them are trivial terms, then 𝑠𝑠 ≈ 𝑡𝑡 is an 

identity in 𝒦𝒦.  Now we consider the case 𝑠𝑠 ≈ 𝑡𝑡 is a non- trivial equation.  Then all 

identities in 𝒦𝒦 are characterized by the following theorem: 

Theorem 3.1 Let 𝑠𝑠 ≈ 𝑡𝑡 be non- trivial equation.  Then, 𝒦𝒦 ⊨ 𝑠𝑠 ≈ 𝑡𝑡 if and only if the 

following conditions are satisfied: 

(i) 𝐺𝐺(𝑠𝑠) has a loop if and only if 𝐺𝐺(𝑡𝑡) has a loop, 

(ii) if 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop then 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡), 

( iii)  if 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop then for any 𝑥𝑥,𝑦𝑦 ∈ 𝑉𝑉(𝑠𝑠), (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑠𝑠) 

if and only if (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑡𝑡), 

(iv) if 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop then 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡). 

Proof.  (i) Suppose that 𝐺𝐺(𝑠𝑠) has a loop but 𝐺𝐺(𝑡𝑡) has no loops.  Let 𝐺𝐺 = 𝐺𝐺(𝑡𝑡).  By 

Proposition 3.1, we have 𝐺𝐺 ∈ 𝒦𝒦.  Let ℎ ∶ 𝑉𝑉(𝑠𝑠) ∪ 𝑉𝑉(𝑡𝑡) → 𝑉𝑉(𝐺𝐺) ∪ {∞} such that 

ℎ(𝑥𝑥) = 𝑥𝑥 for all 𝑥𝑥 ∈ 𝑉𝑉(𝑡𝑡) and ℎ(𝑦𝑦) = ∞ for all 𝑦𝑦 ∈ 𝑉𝑉(𝑠𝑠) ∖ 𝑉𝑉(𝑡𝑡). It is clear that ℎ 

is a homomorphism from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺 but ℎ is not a homomorphism from 𝐺𝐺(𝑠𝑠) into 

𝐺𝐺.  By Proposition 3.3, we have ℎ�(𝑡𝑡) = ℎ(𝐿𝐿(𝑡𝑡)) = 𝐿𝐿(𝑡𝑡) ≠ ∞ = ℎ�(𝑠𝑠).  Therefore 

𝐺𝐺 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. Hence 𝒦𝒦 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. 

(ii) Suppose that 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop but 𝑉𝑉(𝑠𝑠) ≠ 𝑉𝑉(𝑡𝑡).  Then there 

exists 𝑦𝑦 ∈ 𝑉𝑉(𝑠𝑠) but 𝑦𝑦 ∉ 𝑉𝑉(𝑡𝑡).  Let 𝐺𝐺 = 𝐺𝐺(𝑡𝑡).  By Proposition 3.2, we have 𝐺𝐺 ∈ 𝒦𝒦. 

Let ℎ ∶ 𝑉𝑉(𝑠𝑠) ∪ 𝑉𝑉(𝑡𝑡) → 𝑉𝑉(𝐺𝐺) ∪ {∞}  such that ℎ(𝑥𝑥) = 𝑥𝑥  for all 𝑥𝑥 ∈ 𝑉𝑉(𝑡𝑡)  and 

ℎ(𝑦𝑦) = ∞ for all 𝑦𝑦 ∈ 𝑉𝑉(𝑠𝑠) ∖ 𝑉𝑉(𝑡𝑡).  We have ℎ is a homomorphism from 𝐺𝐺(𝑡𝑡) into 

𝐺𝐺  but ℎ is not a homomorphism from 𝐺𝐺(𝑠𝑠) into 𝐺𝐺.  By Proposition 3.3, we have 

ℎ�(𝑡𝑡) = ℎ(𝐿𝐿(𝑡𝑡)) = 𝐿𝐿(𝑡𝑡) ≠ ∞ = ℎ�(𝑠𝑠). Therefore 𝐺𝐺 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. Hence 𝒦𝒦 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. 
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(iii) Suppose that 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop, (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑠𝑠) but (𝑥𝑥,𝑦𝑦) ∉ 𝐸𝐸(𝑡𝑡). 

Let 𝐺𝐺 = 𝐺𝐺(𝑡𝑡). By Proposition 3.1, we have 𝐺𝐺 ∈ 𝒦𝒦. By (ii), we have 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡).  

Let ℎ ∶ 𝑉𝑉(𝑡𝑡) → 𝑉𝑉(𝐺𝐺) ∪ {∞} such that ℎ(𝑥𝑥) = 𝑥𝑥 for all 𝑥𝑥 ∈ 𝑉𝑉(𝑡𝑡).  Since 𝐺𝐺 = 𝐺𝐺(𝑡𝑡) 

and (𝑥𝑥,𝑦𝑦) ∉ 𝐸𝐸(𝑡𝑡) , we have ℎ  is a homomorphism from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺  and 

(ℎ(𝑥𝑥),ℎ(𝑦𝑦)) ∉ 𝐸𝐸(𝐺𝐺). Because (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑠𝑠), we get ℎ is not a homomorphism from 

𝐺𝐺(𝑠𝑠)  into 𝐺𝐺.  By Proposition 3.3, we have ℎ�(𝑡𝑡) = ℎ(𝐿𝐿(𝑡𝑡)) = 𝐿𝐿(𝑡𝑡) ≠ ∞ = ℎ�(𝑠𝑠). 

Therefore 𝐺𝐺 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. Hence 𝒦𝒦 ⊭ 𝑠𝑠 ≈ 𝑡𝑡.  
(iv) Suppose that 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop and 𝐿𝐿(𝑠𝑠) ≠ 𝐿𝐿(𝑡𝑡). Let 𝐺𝐺 = 𝐺𝐺(𝑡𝑡). 

By Proposition 3.1, we have 𝐺𝐺 ∈ 𝒦𝒦.  By (ii), we have 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡).  Let ℎ ∶ 𝑉𝑉(𝑡𝑡) →
𝑉𝑉(𝐺𝐺) ∪ {∞} such that ℎ(𝑥𝑥) = 𝑥𝑥 for all 𝑥𝑥 ∈ 𝑉𝑉(𝑡𝑡).  Since 𝐺𝐺 = 𝐺𝐺(𝑡𝑡), we get ℎ is a 

homomorphism from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺.  By ( iii) , we have (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑠𝑠) if and only if 

(𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑡𝑡).  Thus ℎ is a homomorphism from 𝐺𝐺(𝑠𝑠) into 𝐺𝐺.  By Proposition 3.3, 

ℎ�(𝑠𝑠) = ℎ(𝐿𝐿(𝑠𝑠)) = 𝐿𝐿(𝑠𝑠) ≠ 𝐿𝐿(𝑡𝑡) = ℎ(𝐿𝐿(𝑡𝑡)) = ℎ�(𝑡𝑡). Therefore 𝐺𝐺 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. Hence 

𝒦𝒦 ⊭ 𝑠𝑠 ≈ 𝑡𝑡. 
Conversely, suppose that 𝑠𝑠 ≈ 𝑡𝑡 is a non- trivial equation satisfying (i), (ii), (iii) and 

(iv). Let 𝐺𝐺 ∈ 𝒦𝒦. Then 𝐺𝐺 has no loops. By (i), 𝐺𝐺(𝑠𝑠) has a loop if and only if 𝐺𝐺(𝑡𝑡) has 

a loop.  

Case I If 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have a loop then any ℎ is not a homomorphism from 

𝐺𝐺(𝑠𝑠) into 𝐺𝐺 and it is not a homomorphism from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺.  Thus ℎ�(𝑠𝑠) = ∞ =
ℎ�(𝑡𝑡). Hence 𝐺𝐺 ⊨ 𝑠𝑠 ≈ 𝑡𝑡. 

Case II If 𝐺𝐺(𝑠𝑠)  and 𝐺𝐺(𝑡𝑡)  have no loop then by (ii) and (iv), 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡)  

and 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡).  Let ℎ ∶ 𝑉𝑉(𝑠𝑠) → 𝑉𝑉(𝐺𝐺) ∪ {∞}  be a function.  Suppose ℎ  is a 

homomorphism from 𝐺𝐺(𝑠𝑠) into 𝐺𝐺. Let (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑠𝑠). Then �ℎ(𝑥𝑥),ℎ(𝑦𝑦)� ∈ 𝐸𝐸(𝐺𝐺). 

By (iii), we get (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸(𝑡𝑡).  Thus ℎ is a homomorphism from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺.  In the 

same way, we can prove that if ℎ is a homomorphism from 𝐺𝐺(𝑡𝑡) into 𝐺𝐺 then it is a 

homomorphism from 𝐺𝐺(𝑠𝑠) into 𝐺𝐺. Hence by Proposition 3.4, we get 𝐺𝐺 ⊨ 𝑠𝑠 ≈ 𝑡𝑡.  
Therefore 𝒦𝒦 ⊨ 𝑠𝑠 ≈ 𝑡𝑡.         
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Corollary 3. 1 Let 𝑠𝑠 ≈ 𝑡𝑡 be a non- trivial equation such that 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no 

loop. Then 𝒦𝒦 ⊨ 𝑠𝑠 ≈ 𝑡𝑡 if and only if 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡) and 𝐺𝐺(𝑠𝑠) = 𝐺𝐺(𝑡𝑡).  

Proof.  Let 𝑠𝑠 ≈ 𝑡𝑡 be a non- trivial equation such that 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have no loop. 

Assume that 𝒦𝒦 ⊨ 𝑠𝑠 ≈ 𝑡𝑡.  Then by conditions (ii), (iii), (iv) of Theorem 3.1, we have  

𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡), 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡) and 𝐸𝐸(𝑠𝑠) = 𝐸𝐸(𝑡𝑡). Hence 𝐺𝐺(𝑠𝑠) = 𝐺𝐺(𝑡𝑡). 

Conversely, assume that 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡) and 𝐺𝐺(𝑠𝑠) = 𝐺𝐺(𝑡𝑡).  So 𝑉𝑉(𝑠𝑠) = 𝑉𝑉(𝑡𝑡) 

and 𝐸𝐸(𝑠𝑠) = 𝐸𝐸(𝑡𝑡). Thus 𝑠𝑠 and 𝑡𝑡 satisfy conditions (i), (ii), (iii) and (iv) of Theorem 3.1. 

Hence 𝒦𝒦 ⊨ 𝑠𝑠 ≈ 𝑡𝑡.             

4. Hyperidentities in graph variety generated by zeropotent and unipotent graphs 

Let 𝒦𝒦 be any graph variety.  Now, we want to formulate precisely the concept of 

a graph hypersubstitution for graph algebras. 

Definition 4. 1 A mapping 𝜎𝜎 ∶ {𝑓𝑓,∞} → 𝑊𝑊𝜏𝜏(𝑋𝑋2), where 𝑋𝑋2 = {𝑥𝑥1, 𝑥𝑥2} and 𝑓𝑓 is the 

operation symbol corresponding to the binary operation of a graph algebra is called 

the graph hypersubstitution if 𝜎𝜎(∞) = ∞  and 𝜎𝜎(𝑓𝑓) = 𝑠𝑠 ∈ 𝑊𝑊𝜏𝜏(𝑋𝑋2).  The graph 

hypersubstitution with 𝜎𝜎(𝑓𝑓) = 𝑠𝑠 is denoted by 𝜎𝜎𝑠𝑠. 

Definition 4.2 An identity 𝑠𝑠 ≈ 𝑡𝑡 is a 𝒦𝒦 graph hyperidentity if and only if for all graph 

hypersubstitutions 𝜎𝜎, 𝒦𝒦 ⊨ 𝜎𝜎�[𝑠𝑠] ≈ 𝜎𝜎�[𝑡𝑡]. 

If we want to check that an identity 𝑠𝑠 ≈ 𝑡𝑡 is a hyperidentity in 𝒦𝒦 we can restrict 

our consideration to a (small) subset of 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 - the set of all graph hypersubstitutions. 

In [8], the following relation between hypersubstitutions was defined: 

Definition 4. 3 Two graph hypersubstitutions 𝜎𝜎1,𝜎𝜎2 are called 𝒦𝒦-  equivalent if and 

only if 𝜎𝜎1(𝑓𝑓) ≈ 𝜎𝜎2(𝑓𝑓) is an identity in 𝒦𝒦. In this case we write 𝜎𝜎1 ∼𝒦𝒦 𝜎𝜎2. 

The following lemma was proved in [9]. 

Lemma 4.1 If 𝜎𝜎�1[𝑠𝑠] ≈ 𝜎𝜎�1[𝑡𝑡] ∈ Id 𝒦𝒦 and 𝜎𝜎1 ∼𝒦𝒦 𝜎𝜎2, then 𝜎𝜎�2[𝑠𝑠] ≈ 𝜎𝜎�2[𝑡𝑡] ∈ Id 𝒦𝒦. 

Therefore, it is enough to consider the quotient set 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 /∼𝒦𝒦 . 
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In [10], it showed that any non- trivial term 𝑡𝑡 over the class of graph algebras has 

a uniquely determined normal form term 𝑁𝑁𝑁𝑁(𝑡𝑡)  and there is an algorithm to 

construct the normal form term to a given term 𝑡𝑡.  Without difficulties one shows 

𝐺𝐺�𝑁𝑁𝑁𝑁(𝑡𝑡)� = 𝐺𝐺(𝑡𝑡), 𝐿𝐿(𝑁𝑁𝑁𝑁(𝑡𝑡)) = 𝐿𝐿(𝑡𝑡). 

The following definition was given in [3]. 

Definition 4. 4 The graph hypersubstitution 𝜎𝜎𝑁𝑁𝑁𝑁(𝑡𝑡) , is called a normal form graph 

hypersubstitution. Here 𝑁𝑁𝑁𝑁(𝑡𝑡) is the normal form of the binary term 𝑡𝑡. 

Since for any binary term 𝑡𝑡 the rooted graphs of 𝑡𝑡 and 𝑁𝑁𝑁𝑁(𝑡𝑡) are the same, we 

have 𝑡𝑡 ≈ 𝑁𝑁𝑁𝑁(𝑡𝑡) ∈ Id 𝒦𝒦. Then for any graph hypersubstitution 𝜎𝜎𝑡𝑡 with 𝜎𝜎𝑡𝑡(𝑓𝑓) = 𝑡𝑡 ∈
𝑊𝑊𝜏𝜏(𝑋𝑋2), one obtains 𝜎𝜎𝑡𝑡 ∼𝒦𝒦 𝜎𝜎𝑁𝑁𝑁𝑁(𝑡𝑡). 

Table 1. In [3], all rooted graphs with at most two vertices were considered. Then, 

we formed the corresponding binary terms and used the algorithm to construct 

normal form terms. The result is given in the following table: 

Normal form term graph hypers Normal form term graph hypers 

𝑥𝑥1𝑥𝑥2 
𝑥𝑥2 
𝑥𝑥2𝑥𝑥2 
(𝑥𝑥1𝑥𝑥1)𝑥𝑥2 
𝑥𝑥1(𝑥𝑥2𝑥𝑥2) 
(𝑥𝑥1𝑥𝑥1)(𝑥𝑥2𝑥𝑥2) 
𝑥𝑥1(𝑥𝑥2𝑥𝑥1) 
(𝑥𝑥1𝑥𝑥1)(𝑥𝑥2𝑥𝑥1) 
𝑥𝑥1((𝑥𝑥2𝑥𝑥1)𝑥𝑥2) 
(𝑥𝑥1𝑥𝑥1)((𝑥𝑥2𝑥𝑥1)𝑥𝑥2) 

𝜎𝜎0 
𝜎𝜎2 
𝜎𝜎4 
𝜎𝜎6 
𝜎𝜎8 
𝜎𝜎10 
𝜎𝜎12 
𝜎𝜎14 
𝜎𝜎16 
𝜎𝜎18 

𝑥𝑥1 
𝑥𝑥1𝑥𝑥1 
𝑥𝑥2𝑥𝑥1 
(𝑥𝑥2𝑥𝑥1)𝑥𝑥2 
𝑥𝑥2(𝑥𝑥1𝑥𝑥1) 
(𝑥𝑥2(𝑥𝑥1𝑥𝑥1))𝑥𝑥2 
𝑥𝑥2(𝑥𝑥1𝑥𝑥2) 
(𝑥𝑥2(𝑥𝑥1𝑥𝑥2))𝑥𝑥2 
𝑥𝑥2((𝑥𝑥1𝑥𝑥1)𝑥𝑥2) 
(𝑥𝑥2((𝑥𝑥1𝑥𝑥1)𝑥𝑥2))𝑥𝑥2 

𝜎𝜎1 
𝜎𝜎3 
𝜎𝜎5 
𝜎𝜎7 
𝜎𝜎9 
𝜎𝜎11 
𝜎𝜎13 
𝜎𝜎15 
𝜎𝜎17 
𝜎𝜎19 

Since 𝐺𝐺(𝜎𝜎3),𝐺𝐺(𝜎𝜎4),𝐺𝐺(𝜎𝜎6),𝐺𝐺(𝜎𝜎7),𝐺𝐺(𝜎𝜎8),𝐺𝐺(𝜎𝜎9),𝐺𝐺(𝜎𝜎10),𝐺𝐺(𝜎𝜎11),𝐺𝐺(𝜎𝜎14), 
𝐺𝐺(𝜎𝜎15),𝐺𝐺(𝜎𝜎16),𝐺𝐺(𝜎𝜎17),𝐺𝐺(𝜎𝜎18)  and 𝐺𝐺(𝜎𝜎19)  have loops, hence they satisfy 

conditions (i), (ii), (iii) and (iv) of Theorem 3.1. Thus we have the following relations: 

𝜎𝜎3 ∼𝒦𝒦 𝜎𝜎4 ∼𝒦𝒦 𝜎𝜎6 ∼𝒦𝒦 𝜎𝜎7 ∼𝒦𝒦 𝜎𝜎8 ∼𝒦𝒦 𝜎𝜎9 ∼𝒦𝒦 𝜎𝜎10 ∼𝒦𝒦 𝜎𝜎11 
∼𝒦𝒦 𝜎𝜎14 ∼𝒦𝒦 𝜎𝜎15 ∼𝒦𝒦 𝜎𝜎16 ∼𝒦𝒦 𝜎𝜎17 ∼𝒦𝒦 𝜎𝜎18 ∼𝒦𝒦 𝜎𝜎19 
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Let 𝑀𝑀𝒦𝒦 be the set of all normal form graph hypersubstitutions in 𝒦𝒦. Then we get, 

𝑀𝑀𝒦𝒦 ′ = {𝜎𝜎0,𝜎𝜎1,𝜎𝜎2,𝜎𝜎3,𝜎𝜎5,𝜎𝜎12,𝜎𝜎13}. 
We defined the product of two normal form graph hypersubstitutions in 𝑀𝑀𝒦𝒦 ′  as 

follows. 

Definition 4.5 The product 𝜎𝜎1𝑁𝑁 ∘𝑁𝑁 𝜎𝜎2𝑁𝑁 of two normal form graph hypersubstitutions 

is defined by (𝜎𝜎1𝑁𝑁 ∘𝑁𝑁 𝜎𝜎2𝑁𝑁)(𝑓𝑓)  =  𝑁𝑁𝑁𝑁(𝜎𝜎�1𝑁𝑁[𝜎𝜎�2𝑁𝑁(𝑓𝑓)]). 

Table 2. The following table gives the multiplication of elements in 𝑀𝑀𝒦𝒦 ′ . 

∘𝑁𝑁 𝜎𝜎0 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎5 𝜎𝜎12 𝜎𝜎13 

𝜎𝜎0 𝜎𝜎0 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎5 𝜎𝜎12 𝜎𝜎13 

𝜎𝜎1 𝜎𝜎1 𝜎𝜎1 𝜎𝜎2 𝜎𝜎1 𝜎𝜎2 𝜎𝜎1 𝜎𝜎2 

𝜎𝜎2 𝜎𝜎2 𝜎𝜎1 𝜎𝜎2 𝜎𝜎1 𝜎𝜎1 𝜎𝜎1 𝜎𝜎2 

𝜎𝜎3 𝜎𝜎3 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎3 𝜎𝜎3 𝜎𝜎3 

𝜎𝜎5 𝜎𝜎5 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎0 𝜎𝜎3 𝜎𝜎3 

𝜎𝜎12 𝜎𝜎12 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎13 𝜎𝜎12 𝜎𝜎13 

𝜎𝜎13 𝜎𝜎13 𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 𝜎𝜎12 𝜎𝜎3 𝜎𝜎3 

The concept of a proper hypersubstitution of a class of algebras was introduced in [9]. 

Definition 4. 6 A hypersubstitution 𝜎𝜎 is called proper with respect to a class 𝒦𝒦 of 

algebras if 𝜎𝜎�[𝑠𝑠] ≈ 𝜎𝜎�[𝑡𝑡] ∈ Id 𝒦𝒦 for all 𝑠𝑠 ≈ 𝑡𝑡 ∈ Id 𝒦𝒦. 

A graph hypersubstitution with the property that 𝜎𝜎(𝑓𝑓) contains both variables 𝑥𝑥1 
and 𝑥𝑥2  is called regular.  It is easy to check that the set of all regular graph 

hypersubstitutions forms a groupoid 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟. 

The following lemma was proved in [3]. 

Lemma 4.2 For each non-trivial term 𝑠𝑠, (𝑠𝑠 ≠ 𝑥𝑥 ∈ 𝑋𝑋) and for all 𝑢𝑢, 𝑣𝑣 ∈ 𝑋𝑋, we have 

𝐸𝐸(𝜎𝜎�6[𝑠𝑠]) = 𝐸𝐸(𝑠𝑠) ∪ {(𝑢𝑢,𝑢𝑢)|(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸(𝑠𝑠)}, 

𝐸𝐸(𝜎𝜎�8[𝑠𝑠]) = 𝐸𝐸(𝑠𝑠) ∪ {(𝑣𝑣, 𝑣𝑣)|(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸(𝑠𝑠)},  
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and  𝐸𝐸(𝜎𝜎�12[𝑠𝑠]) = 𝐸𝐸(𝑠𝑠) ∪ {(𝑣𝑣,𝑢𝑢)|(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸(𝑠𝑠)}. 

In the similar way we can prove that, 𝐸𝐸(𝜎𝜎�3[𝑠𝑠]) = {(𝐿𝐿(𝑠𝑠), 𝐿𝐿(𝑠𝑠))}.  

We want to find all proper graph hypersubstitutions with respect to 𝒦𝒦.  Then we 

obtain: 

Theorem 4. 1 {𝜎𝜎0,𝜎𝜎3,𝜎𝜎12} is the set of all proper graph hypersubstitutions with 

respect to 𝒦𝒦.  

Proof.  If 𝑠𝑠 ≈ 𝑡𝑡 ∈ Id 𝒦𝒦  and 𝑠𝑠, 𝑡𝑡  are trivial terms, then for every graph 

hypersubstitution 𝜎𝜎 ∈ {𝜎𝜎0,𝜎𝜎3,𝜎𝜎12} the term 𝜎𝜎�[𝑠𝑠] and 𝜎𝜎�[𝑡𝑡] are also trivial and thus 

𝜎𝜎�[𝑠𝑠] ≈ 𝜎𝜎�[𝑡𝑡] ∈ Id 𝒦𝒦.  In the same manner, we see that 𝜎𝜎�[𝑠𝑠] ≈ 𝜎𝜎�[𝑡𝑡] ∈ Id 𝒦𝒦 for 

every 𝜎𝜎 ∈ {𝜎𝜎0,𝜎𝜎3,𝜎𝜎12} if 𝑠𝑠 = 𝑡𝑡 = 𝑥𝑥. 

Now assume that 𝑠𝑠  and 𝑡𝑡  are non- trivial terms, different from variables, and  

𝑠𝑠 ≈ 𝑡𝑡 ∈ Id 𝒦𝒦.  

Consider 𝜎𝜎0. Since 𝜎𝜎0 = 𝑥𝑥1𝑥𝑥2, it is clear that 𝐸𝐸(𝜎𝜎�0[𝑠𝑠]) = 𝐸𝐸(𝑠𝑠) and 𝐿𝐿(𝜎𝜎�0[𝑠𝑠]) =
𝐿𝐿(𝑠𝑠) for all non-trivial term 𝑠𝑠. Hence 𝜎𝜎�0[𝑠𝑠] ≈ 𝜎𝜎�0[𝑡𝑡] ∈ Id 𝒦𝒦. 

Consider 𝜎𝜎3.  By Lemma 4.2, 𝐸𝐸(𝜎𝜎�3[𝑠𝑠]) = {(𝐿𝐿(𝑠𝑠), 𝐿𝐿(𝑠𝑠))}  and 𝐸𝐸(𝜎𝜎�3[𝑡𝑡]) =
{(𝐿𝐿(𝑡𝑡), 𝐿𝐿(𝑡𝑡))}.  That is 𝐺𝐺(𝑠𝑠) and 𝐺𝐺(𝑡𝑡) have a loop.  By Theorem 3.1 (i), we get 

𝜎𝜎�3[𝑠𝑠] ≈ 𝜎𝜎�3[𝑡𝑡] ∈ Id 𝒦𝒦. Therefore 𝜎𝜎3 is a proper hypersubstitution. 

Consider 𝜎𝜎12.  If 𝑠𝑠 and 𝑡𝑡 have a loop then 𝜎𝜎�12[𝑠𝑠] and 𝜎𝜎�12[𝑡𝑡] have a loop.  By 

Theorem 3.1 (i), 𝜎𝜎�12[𝑠𝑠] ≈ 𝜎𝜎�12[𝑡𝑡] ∈ Id 𝒦𝒦.  If 𝑠𝑠  and 𝑡𝑡  have no loop then 

𝐺𝐺(𝑠𝑠) = 𝐺𝐺(𝑡𝑡) and 𝐿𝐿(𝑠𝑠) = 𝐿𝐿(𝑡𝑡).  By Lemma 4.2, we get 𝐺𝐺(𝜎𝜎�12[𝑠𝑠]) = 𝐺𝐺(𝜎𝜎�12[𝑡𝑡]),
𝐿𝐿(𝜎𝜎�12[𝑠𝑠]) = 𝐿𝐿(𝜎𝜎�12[𝑡𝑡]) . So 𝜎𝜎�12[𝑠𝑠] ≈ 𝜎𝜎�12[𝑡𝑡] ∈ Id 𝒦𝒦.  Therefore 𝜎𝜎12  is a proper 

hypersubstitution.  

For any 𝜎𝜎 ∉ {𝜎𝜎0,𝜎𝜎3,𝜎𝜎12}, let 𝑠𝑠1 = 𝑥𝑥1𝑥𝑥1 and 𝑡𝑡1 = 𝑥𝑥2𝑥𝑥2. Then 𝑠𝑠1 ≈ 𝑡𝑡1 ∈ Id 𝒦𝒦. 

We see that, 𝜎𝜎�1[𝑠𝑠1] = 𝑥𝑥1 , 𝜎𝜎�1[𝑡𝑡1] = 𝑥𝑥2 , 𝜎𝜎�2[𝑠𝑠1] = 𝑥𝑥1  and 𝜎𝜎�2[𝑡𝑡1] = 𝑥𝑥2.  Thus 

𝜎𝜎�1[𝑠𝑠1] ≈ 𝜎𝜎�1[𝑡𝑡1], 𝜎𝜎�2[𝑠𝑠1] ≈ 𝜎𝜎�2[𝑡𝑡1] ∉ Id 𝒦𝒦. 

Let 𝑠𝑠2 = 𝑥𝑥1𝑥𝑥2  and 𝑡𝑡2 = (𝑥𝑥1𝑥𝑥2)𝑥𝑥2.  Then 𝑠𝑠2 ≈ 𝑡𝑡2 ∈ Id 𝒦𝒦.  We see that, 

𝜎𝜎�5[𝑠𝑠2] = 𝑥𝑥2𝑥𝑥1, 𝜎𝜎�5[𝑡𝑡2] = 𝑥𝑥2(𝑥𝑥2𝑥𝑥1), 𝜎𝜎�13[𝑠𝑠2] = 𝑥𝑥2(𝑥𝑥1𝑥𝑥2) and  
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𝜎𝜎�13[𝑡𝑡2] = 𝑥𝑥2(�𝑥𝑥2(𝑥𝑥1𝑥𝑥2)�𝑥𝑥2). We see that 𝜎𝜎�5[𝑠𝑠2], 𝜎𝜎�5[𝑠𝑠2] have no loop but 𝜎𝜎�5[𝑡𝑡2],
𝜎𝜎�13[𝑡𝑡2] have a loop. Hence 𝜎𝜎�5[𝑠𝑠2] ≈ 𝜎𝜎�5[𝑡𝑡2], 𝜎𝜎�13[𝑠𝑠2] ≈ 𝜎𝜎�13[𝑡𝑡2] ∉ Id 𝒦𝒦. 

Therefore {𝜎𝜎0,𝜎𝜎3,𝜎𝜎12}  is the set of all proper graph hypersubstitutions with 

respect to 𝒦𝒦.            

Now, we apply our results to characterize all hyperidentities in 𝒦𝒦. Clearly, if 𝑠𝑠 and 

𝑡𝑡 are trivial terms, then 𝑠𝑠 ≈ 𝑡𝑡 is a hyperidentity in 𝒦𝒦 if and only if 𝐿𝐿(𝑠𝑠) =  𝐿𝐿(𝑡𝑡), 

𝑅𝑅(𝑠𝑠)  =  𝑅𝑅(𝑡𝑡) and 𝑥𝑥 ≈ 𝑥𝑥, 𝑥𝑥 ∈ 𝑋𝑋 is a hyperidentity in 𝒦𝒦, too.  So, we consider the 

case that 𝑠𝑠 and 𝑡𝑡 are non-trivial terms and different from variables. 

Theorem 4.2 An identity 𝑠𝑠 ≈ 𝑡𝑡  in 𝒦𝒦 , where 𝑠𝑠  and 𝑡𝑡  are non- trivial terms and 

different from variables is a hyperidentity in 𝒦𝒦 ′ if and only if 𝜎𝜎�1[𝑠𝑠] ≈ 𝜎𝜎�1[𝑡𝑡], 𝜎𝜎�2[𝑠𝑠] ≈
𝜎𝜎�2[𝑡𝑡] and 𝜎𝜎�5[𝑠𝑠] ≈ 𝜎𝜎�5[𝑡𝑡] are also identities in 𝒦𝒦. 

Proof.  Let 𝑠𝑠 ≈ 𝑡𝑡 ∈ Id 𝒦𝒦 , where 𝑠𝑠, 𝑡𝑡 are non- trivial and 𝑠𝑠 ≠ 𝑥𝑥, 𝑡𝑡 ≠ 𝑥𝑥.  If 𝑠𝑠 ≈ 𝑡𝑡 is  
a hyperidentity in 𝒦𝒦 , then 𝜎𝜎�1[𝑠𝑠] ≈ 𝜎𝜎�1[𝑡𝑡] ∈ Id 𝒦𝒦, 𝜎𝜎�2[𝑠𝑠] ≈ 𝜎𝜎�2[𝑡𝑡] ∈ Id 𝒦𝒦  and 

𝜎𝜎�5[𝑠𝑠] ≈ 𝜎𝜎�5[𝑡𝑡] ∈ Id 𝒦𝒦.  

Assume that 𝜎𝜎�1[𝑠𝑠] ≈ 𝜎𝜎�1[𝑡𝑡], 𝜎𝜎�2[𝑠𝑠] ≈ 𝜎𝜎�2[𝑡𝑡] and 𝜎𝜎�5[𝑠𝑠] ≈ 𝜎𝜎�5[𝑡𝑡] are identities in 

𝒦𝒦. Since 𝜎𝜎0,𝜎𝜎3,𝜎𝜎12 are the proper graph hypersubstitutions, we have 𝜎𝜎�0[𝑠𝑠] ≈ 𝜎𝜎�0[𝑡𝑡],
𝜎𝜎�3[𝑠𝑠] ≈ 𝜎𝜎�3[𝑡𝑡] and 𝜎𝜎�12[𝑠𝑠] ≈ 𝜎𝜎�12[𝑡𝑡] are identities in 𝒦𝒦. 

Because of 𝜎𝜎12 ∘𝑁𝑁 𝜎𝜎5 = 𝜎𝜎13  and 𝜎𝜎12  is a proper graph hypersubstitution with 

respect to the class 𝒦𝒦, we have 𝜎𝜎�13[𝑠𝑠] ≈ 𝜎𝜎�13[𝑡𝑡] is an identity in 𝒦𝒦.    
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