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ABSTRACT
We consider a certain class of n X n matrices whose elements are given by values
of polynomials. We show that their determinants vanish if the degree of the
corresponding polynomial does not exceed n — 2 and give a general formula for their
determinants when the corresponding polynomial has degree n — 1. As an immediate
consequence, we deduce linear independence of sets of translations and scalings of
a polynomial under suitable assumptions.

Keywords: Vandermonde matrix, Determinant, Polynomial interpolation

1. Introduction and The Main Results

Students learn from an elementary linear algebra class that, for any positive integer
n, a system of n linear equations over the complex numbers with n unknowns has
either a unique solution, infinitely many solutions, or no solutions. The first case occurs
if and only if the matrix of coefficients of the system is nonsingular; i.e., it has nonzero
determinant. Therefore, it is an interesting problem to determine whether the
determinant of a given matrix vanishes. There are various of classes of matrices
with zero determinant. Simple examples include those whose entries, enumerated
in a zig-zag direction, form an arithmetic sequence, a geometric sequence, or

a homogeneous linear recursive sequence, as illustrated below:

2 5 8 2 -6 18 2 7 9
11 14 17), —54 162 —486 |, 16 25 41
20 23 26 1458 —4374 13122 66 107 173
It is easily seen from their construction that the row (or column) vectors of these

matrices are linearly dependent, so they all have zero determinant. In fact, the rank
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(i.e., the dimension of the row space) or an upper bound of the rank of each matrix in
these classes is explicitly known [2]. A less obvious example is the following matrix
32 42 62 82
42 52 72 92
52 6% 8% 102
62 7% 92 112

The fact that its determinant is zero is an immediate consequence of a result due to

Yandl and Swenson [5].

Proposition 1.1 [3, Prop.1, Prop.2] Let k and n be positive integers. For real numbers

a,, ap, ..., Ay, bll bz, vy le define

(a; + b)) (ag + b)) (ay + b))k -+ (a; + by)¥
[ (a; + b)* (ay+by)* (ay+bgd* - (ap+ by)¥ |
C=1(as+b)* (as+b)* (az+b)¥ - (as+byk |

(an +b)* (an+b)* (an+b)* ™ (an+ by)"

Then
0 if k<n-2,
det(C) = H k I (1)
j=1 1<i<jsn 1<i<jsn

where || is the floor function.

Yandl and Swenson [5] gave a simple proof of Proposition 1.1 by rewriting the
matrix C as a product of two matrices involving Vandermonde matrices, whose
determinants are well-known. It turns out that one can use the same approach to
extend Proposition 1.1 to a much larger class of matrices. In particular, we have the

following result.
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Theorem 1.1 Letn = 2 be an integer. For each | € {1,2,...,n}, let fi(x) € C[x] be
a polynomial of degree not exceeding n — 2. For any a4, ay, ..., ay, by, by, ..., b, € C,

let A = [fi(a; + b))] and B = [f;(a; - bj)] . Then det(A) = det(B) = 0.

1<i,jsn 1<i,jsn

To illustrate Theorem 1.1, we randomly choose n = 4, f;(x) = —x2 + 4,
fox)=x*—x+1,f;(x) =x+3,f,(x) =4x?> = 5x,a, = 1,a, = —3,a; = 4,

a, = —8,b; = —=7,b, =5,b; = 4 and b, = 2. Then the matrices

filas +by)  folay +by) fi(ay+Db3) fi(ay + by)
filaz + b1) fr(ap+by) fi(az +b3) fa(az +by)

A= filaz +by) fr(as+by) fs(az+bs3) fa(as+ bs)
fi(as +by) fo(as+by) fs(as+bs3) fa(as + bs)
-32 31 8 21
_[-96 3 4 9
-5 73 11 114
—221 13 -1 174
filaiby) fa(a1by) fz(arbs) fa(aibs)
B = fi(azby)  fr(azby) f3(azbs)  fa(azbs)

fi(asby) fo(aszby) fz(aszbs) fa(azbs)
fi(ashby) fa(asby) f3(ashs) fi(asbs)

—45 21 7 6
—437 241 -9 174
—-780 381 19 216
—3132 1641 -29 1104

both have zero determinant. It is clear that one can deduce [5, Prop. 1] from
Theorem 1.1 by choosing f;(x) = x¥ forall 1 < j < n.
Proof of Theorem 1.1 For each I € {1,2,...,n}, let

— n-—2 n—-1
f1(x) = cpp_zx + C p1X + 4 cpix + Cpo-

Then by expanding and rearranging terms we have
filai+ b)) = a2, (" 0 2) +ap ™’ <Cj,n—z (" 1 2) bj + ¢jn-3 (n 0 3)) + o
— 2\, n- 1 0
+ ( (P22 5t gy () by + (O)).

4
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Therefore, we can write the matrix A as A = A;A,, where A; and A, are n Xn

matrices given by

a2 qpt3 1 0
n-—2 n-3
a a

A, = 2 2 1 0
-2 3
ap an 1 0

and the jt" column of A, is

/ Cj,n—Z(ngz) \
n—2 n—3

| Gn-z ("7 )+ s () |

| : |

v%ﬂq;@@H+L+q4D@+q4$/

0

Similarly, the matrix B can be decomposed into the product of A; and another matrix

| Cj,n—Bb]n_3 |
|
Cj,O /
0
Since det(A,) = 0, it follows from the multiplicativity of the determinant that
det(A) = det(B) = 0. [

whose jt" column is

We also generalize [5, Prop. 2], which corresponds to the case k =n — 1in (1), as

follows.

Theorem 1.2 Let n > 2 be an integer and let f(x) = ¢y x™ 1 4+ cppx™ 2 + - +
c1X + ¢ € Clx]. For any aq,as, ..., ay, by, by, ..., by, € C, let D = [f(al- + bf)]1
and E = [f(al- : bj)] . Then we have

1<i,j<n

<i,jsn
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n—-1
det) = (Dl [[(* ) T[] @-a) [] - @
k=0 1<i<jsn 1<i<jsn
det(E)—l_[ck [] @-a) [] &-1). 3)
1<i<jsn 1<i<jsn

Remark 1.1 It should be noted that we require a single polynomial to generate all
elements of each matrix in Theorem 1.2, while the polynomials involved in Theorem
1.1 could vary from columns to columns. We attempted to generalize formulas (2)
and (3) to matrices whose elements are generated from polynomials which vary from
columns to columns but never succeeded since the calculations involved became

too complicated to be handled systematically.

Recall that a Vandermonde matrix is a matrix of the form

1 x xF - x{l_l\
2 n—-1
V — 1 XZ x2 ce xz
S 2 1{—1/
1 X Xp o0 Xm

If V is a square matrix (i.e., m = n), we have the following formula for its determinant:
det(V) = 1_[ (x5 — x)
1<i<jsn
which is famously known as the Vandermonde determinant. Before proving
Theorem 1.2, we shall prove the following lemma, which can be seen as a modest

generalization of the Vandermonde determinant.

Lemma 1.1 Let n > 2 be an integer. For by, ..., by, 711,721, 722, 131, 732, 133, - » Tt

Tn2, -, Tnn € C define an n X n matrix M by
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n
b, + b? + r3,b, + b}/
1 12101 T T2 713107 T 173301 T 133 Tnj
j=1
n
b, + b? + r5,b, + b}
M=| "1 721027722 73107 773201 T 733 Tnj
j=1
n
b, + b2 + r3,by + bt
1 T210p T T2 T310p T 13201 T 733 Thj

~
1l
Juy

Then
det(M) =1T1"21 " Th1 1_[ (b] )
1<i<jsn
Proof Assume first that r;; # 0 for all 1 <j <n. Then we can perform column
operations to get rid of the small powers of b; in each column as follows:

n

2 n—j
Ti1 Ta1by  131b1 + 1351 + 133 - Zrn]b

L _Ta2 Z L_Tsz_ Ts
M 2 T11 ! rll erbZ T31b§ +T32b1 +T33 b TTL] 3 21 2 T11 !
n
2 n-—j
Ti1 To1bp  T31by +713by + 135 § Tnjby
=1

r1 Taby 7r3bf v 1y bPT!

N 7"1-1 7’21.192 7’31‘195 Tnll?;l_l

i1 Taiby  Tsibio o 1yybi!

Observe that the matrix M is a Vandermonde matrix with the jt* column multiplied

by the constant rj;. Since the determinant is invariant under column operations, we
have

det(M) = det(M) =111 1_[ (b — b; )

1<i<js<n
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If rj; = 0 for some 1 <j <n, then either the jt" column of M is zero or it is
a linear combination of the previous columns. Therefore, we have det(M) = 0 in this

case and the proof is complete. [

Proof of Theorem 1.2 Following the argument in the proof of Theorem 1.1, we

express the matrix D as a product of n X n matrices D; and D,, where

at™' a % - a1

n-1 n-2 ...
D, = az- az- a‘z 1
an—l an—z an 1

and the j* column of D, is

- (n 5 1)

| : '
\Cn—l (z : 1) b}’_l + 4 G) b; + ¢co (8)/

By switching EJ pairs of columns in Dy, we transform it into a Vandermonde matrix.
Hence we have
zl
detd) = (Dl [ | (g-an. @
1<i<jsn

On the other hand, we apply Lemma 1.1 to the transpose of D, to obtain

det(D,) = ct_; ﬁ (n ; 1) 1_[ (b; — by). (5)
0

k= 1<i<jsn

Then (2) follows from (4) and (5). Next, we write the matrix E as E = D,E,, where

n—-1 n—-1 n—-1 n-1
Cn—lbl Cn—lbz Cn—lbn—l Cn—lbn \

n-2 n-2 n-2 n-2
E, = Cn—Zbl Cn—ZbZ Cn—an—l Cn—an

CO CO e CO CO /
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Consider
/Cn—lb?_l Cn2b?™?  Co
n—1 n-—2
EL Cn-1b3 Cn—2b3 Co
n—-1 n-—2
Cn—lbn Cn—an - Cp

We again switch columns of ES and take the determinant to obtain

det(E,) = det(ES) = (- 1)Hl_[ck ﬂ (b; — by).

1<i<jsn

Therefore, we have

det(E) = det(D,) det(E,) = Hck 1_[ (a; — a;) 1_[ (b —

1<i<jsn 1<i<j<n

as desired. ]

2. Application and Further Discussions
As an easy application of Theorem 1.2, we deduce the linear independence of sets

of functions constructed from a single polynomial by translation and scalins.

Corollary 2.1 Let k be a positive integer, f(x) € C[x] a polynomial of degree k, and
let by, by, ..., by be complex numbers which are all distinct.
() Theset By ={f(x +by),f(x + by),...,f(x + bg)} is linearly independent.
(i) If the coefficients of f(x) are all nonzero, then the set B, = { f(byx), f (b1X),
., f(brx)} is linearly independent.
In particular, under the assumptions above, the sets By and B, form bases for the
subspace Py, of C[x] consisting of the polynomials of degree not exceeding k.

Proof Let ¢y, ¢4, ..., ¢ € C such that

cof (x +by) +cif(x+by)+ -+ crf(x+ by) =0.
Let ag, aq, ..., ay be distinct complex numbers. Then for each integer i such that

0 <i<kwehave
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cof (a; + bo) + c1f(a; + by) + -+ cf(a; + by) =0,

which can be written in terms of matrices as follows:

flag+bo) flag+by) - flag+br)\ /Co 0

f(ay + bo) fla + b,) flay + by) Cl _ 0 _

flag +bo) flax+by) - flax+be)/ \Ck 0
By Theorem 1.2, we have that the coefficient matrix has nonzero determinant, so
it is nonsingular. This implies that ¢, = ¢; = - = ¢, = 0. Hence B; must be linearly
independent.

One can use the same argument to show that B, is linearly independent. (The
assumption that the coefficients of f(x) do not vanish is required in this case since
the determinant of the corresponding coefficient matrix involves the product of these

quantities.) ]

As closing remarks, we propose a few questions which might be of interest to the

reader.

Question 2.1 There are several results in the literature concerning ranks of matrices
whose determinants are zero. What can we say about the ranks of matrices A and B
in Theorem 1.1 7

Using our results and some basic facts in linear algebra, we can partially answer
this question. For example, let f(x) € C[x] be a polynomial of degree n — k where
2 <k <nand, foraq,ay, ...,a,, by, by, ..., b, EC, let A= [f(al + b; )]1<U<n hen
it is clear from Theorem 1.1 that all (n — k + 2) X (n — k + 2) minors of A vanish.
It is a well-known fact that the rank of a matrix M is the largest order of
any nonvanishing minor in M (see, for example, [3, Sec. 5.2]). Therefore, we can

conclude thatrank(A) <n —k + 1.
Similarly, if B = [f(ai . bj)]1< i j<n’ thenrank(B) <n—k + 1.

10
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Question 2.2 It is natural to ask whether there exist formulas similar to (2) and (3) for
n X n matrices whose elements are values of polynomials of degree n or higher.
The reader should notice immediately that the strategy employed in the proof of
Theorem 1.2 is not applicable in these cases due to limitation on sizes of matrices in
the decomposition. A possible approach to tackle this problem, which is kindly
suggested by one of the referees, is to apply the Cauchy-Binet formula [4, Sect. 3.2].

To demonstrate this formula, consider the following matrix:

1 1
_((a1+b1)2 (a1+b2)2)= G a1 2b;  2b,
(az +b)? (az+by)?) \a3 a; 1

bi b3
Using the Cauchy-Binet formula, we have
2 2
_lai aq]] 1 1 a, 1| 2b; 2b, as 1| 1 1
det(A) = a% a, 2b; 2b, a, 1 bf b% a% 1 b% b%'

Then by some manipulations and the Vandermonde determinant one can deduce
det(A) = (a; — az)(b; — by)(2(asa; + biby) + (ay + az)(by + by)).

It would definitely be desirable to extend this formula to more general cases.

Question 2.3 Corollary 2.1 gives an affirmative answer to a problem in interpolation
theory (see, for example, [1, Problem 2, p. 75]). It implies that given a degree k
polynomial f(x) € R[x] and distinct real numbers xq, Xy, ..., X, any polynomial

p(x) € P, can be written uniquely as
K

p() = ) af(x—x)
i=0
where a; € R,0 < i < k. For a given set of k points (xq, Vo), (X1, V1), -+, (X, Vi) In

R?, can one develop a method for constructing a polynomial which interpolates this
data set using k distinct shifts of a single polynomial f(x) ?
This approach is quite different from the classical methods such as Newton

polynomial interpolation and Lagrange’s interpolation formula [1, Chapter 9 — 10].

11
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