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บทคัดย่อ 
บทความนี้ศึกษาดีเทอร์มิแนนต์ของเมทริกซ์จัตุรัสขนาด 𝑛 × 𝑛 ที่มีสมาชิกเป็นค่าของพหุนาม 

ผู้เขียนแสดงว่าดีเทอร์มิแนนต์มีค่าเป็นศูนย์ เมื่อดีกรีของพหุนามไม่เกิน 𝑛 − 2 และพิสูจน์สูตรทั่วไป
ส าหรับดีเทอร์มิแนนต์ในกรณีที่พหุนามมีดีกรีเป็น 𝑛 − 1 ซึ่งผลที่ได้สามารถน าไปอธิบายการเป็น

                                                             
 

 ผู้เขียนหลกั 
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อิสระเชิงเส้นต่อกันของเซตของพหุนามที่เกิดจากการเลื่อนและการสเกลตัวแปรภายใต้เงื่อนไขที่
เหมาะสมบางประการ  
ค าส าคัญ:  เมทริกซ์แวนเดอร์มอนด์ ดีเทอร์มิแนนต์ การประมาณพหุนาม 

ABSTRACT 
We consider a certain class of 𝑛 × 𝑛 matrices whose elements are given by values 

of polynomials. We show that their determinants vanish if the degree of the 
corresponding polynomial does not exceed 𝑛 − 2 and give a general formula for their 
determinants when the corresponding polynomial has degree 𝑛 − 1. As an immediate 
consequence, we deduce linear independence of sets of translations and scalings of 
a polynomial under suitable assumptions. 
Keywords:  Vandermonde matrix, Determinant, Polynomial interpolation 

1. Introduction and The Main Results  
Students learn from an elementary linear algebra class that, for any positive integer 

𝑛, a system of 𝑛 linear equations over the complex numbers with 𝑛 unknowns has 
either a unique solution, infinitely many solutions, or no solutions. The first case occurs 
if and only if the matrix of coefficients of the system is nonsingular; i.e., it has nonzero 
determinant. Therefore, it is an interesting problem to determine whether the 
determinant of a given matrix vanishes. There are various of classes of matrices  
with zero determinant. Simple examples include those whose entries, enumerated  
in a zig-zag direction, form an arithmetic sequence, a geometric sequence, or  
a homogeneous linear recursive sequence, as illustrated below: 

(
2 5 8
11 14 17
20 23 26

) , (
2 −6 18
−54 162 −486
1458 −4374 13122

) , (
2 7 9
16 25 41
66 107 173

) 

It is easily seen from their construction that the row (or column) vectors of these 
matrices are linearly dependent, so they all have zero determinant. In fact, the rank 
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(i.e., the dimension of the row space) or an upper bound of the rank of each matrix in 
these classes is explicitly known [2]. A less obvious example is the following matrix 

(

32 42 62 82

42 52 72 92

52

62
62

72
   8

2

92
102

112

) 

The fact that its determinant is zero is an immediate consequence of a result due to 
Yandl and Swenson [5]. 

Proposition 1.1 [3, Prop.1, Prop.2] Let 𝑘 and 𝑛 be positive integers. For real numbers 
𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 define 

C =

(

  
 

(𝑎1 + 𝑏1)
𝑘 (𝑎1 + 𝑏2)

𝑘 (𝑎1 + 𝑏3)
𝑘 ⋯ (𝑎1 + 𝑏𝑛)

𝑘

(𝑎2 + 𝑏1)
𝑘 (𝑎2 + 𝑏2)

𝑘 (𝑎2 + 𝑏3)
𝑘 ⋯ (𝑎2 + 𝑏𝑛)

𝑘

(𝑎3 + 𝑏1)
𝑘

⋮
(𝑎𝑛 + 𝑏1)

𝑘

(𝑎3 + 𝑏2)
𝑘

⋮
(𝑎𝑛 + 𝑏2)

𝑘

(𝑎3 + 𝑏3)
𝑘

⋮
(𝑎𝑛 + 𝑏3)

𝑘

⋯
⋱
⋯

(𝑎3 + 𝑏𝑛)
𝑘

⋮
(𝑎𝑛 + 𝑏𝑛)

𝑘)

  
 

 

Then 

det(C) =

{
 
 

 
 

0   if  𝑘 ≤ 𝑛 − 2,

(−1)⌊
𝑛
2
⌋∏(

𝑘
𝑗
) ∏ (𝑎𝑗 − 𝑎𝑖) ∏ (𝑏𝑗 − 𝑏𝑖)

1≤𝑖<𝑗≤𝑛1≤𝑖<𝑗≤𝑛

𝑘

𝑗=1

  if  𝑘 = 𝑛 − 1,
 

where ⌊∙⌋ is the floor function. 

Yandl and Swenson [5] gave a simple proof of Proposition 1.1 by rewriting the 
matrix C  as a product of two matrices involving Vandermonde matrices, whose 
determinants are well-known. It turns out that one can use the same approach to 
extend Proposition 1.1 to a much larger class of matrices. In particular, we have the 
following result. 

(1) 
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Theorem 1.1 Let 𝑛 ≥ 2 be an integer. For each 𝑙 ∈ {1,2, … , 𝑛}, let  𝑓𝑙(𝑥) ∈ ℂ[𝑥] be 
a polynomial of degree not exceeding 𝑛 − 2. For any 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ ℂ, 
let A = [𝑓𝑗(𝑎𝑖 + 𝑏𝑗)]1≤ 𝑖,𝑗≤𝑛 and B = [𝑓𝑗(𝑎𝑖 ∙ 𝑏𝑗)]1≤ 𝑖,𝑗≤𝑛. Then det(A) = det(B) = 0. 

To illustrate Theorem 1.1, we randomly choose 𝑛 = 4, 𝑓1(𝑥) = −𝑥2 + 4, 

𝑓2(𝑥) = 𝑥
2 − 𝑥 + 1, 𝑓3(𝑥) = 𝑥 + 3, 𝑓4(𝑥) = 4𝑥

2 − 5𝑥, 𝑎1 = 1, 𝑎2 = −3, 𝑎3 = 4, 

𝑎4 = −8, 𝑏1 = −7, 𝑏2 = 5, 𝑏3 = 4 and 𝑏4 = 2. Then the matrices 

A = (

𝑓1(𝑎1 + 𝑏1) 𝑓2(𝑎1 + 𝑏2) 𝑓3(𝑎1 + 𝑏3) 𝑓4(𝑎1 + 𝑏4)

𝑓1(𝑎2 + 𝑏1) 𝑓2(𝑎2 + 𝑏2) 𝑓3(𝑎2 + 𝑏3) 𝑓4(𝑎2 + 𝑏4)

𝑓1(𝑎3 + 𝑏1)
𝑓1(𝑎4 + 𝑏1)

𝑓2(𝑎3 + 𝑏2)
𝑓2(𝑎4 + 𝑏2)

𝑓3(𝑎3 + 𝑏3)
𝑓3(𝑎4 + 𝑏3)

𝑓4(𝑎3 + 𝑏4)
𝑓4(𝑎4 + 𝑏4)

) 

 = (

−32 31 8   21
−96 3 4    9
−5
−221

73
13

11 114
−1 174

) 

B = (

𝑓1(𝑎1𝑏1) 𝑓2(𝑎1𝑏2) 𝑓3(𝑎1𝑏3) 𝑓4(𝑎1𝑏4)

𝑓1(𝑎2𝑏1) 𝑓2(𝑎2𝑏2) 𝑓3(𝑎2𝑏3) 𝑓4(𝑎2𝑏4)

𝑓1(𝑎3𝑏1)
𝑓1(𝑎4𝑏1)

𝑓2(𝑎3𝑏2)
𝑓2(𝑎4𝑏2)

𝑓3(𝑎3𝑏3)
𝑓3(𝑎4𝑏3)

𝑓4(𝑎3𝑏4)
𝑓4(𝑎4𝑏4)

) 

 = (

−45 21 7      6
−437 241 −9    174
−780
−3132

381
1641

19     216
−29 1104

) 

both have zero determinant. It is clear that one can deduce [5, Prop. 1] from  
Theorem 1.1 by choosing 𝑓𝑗(𝑥) = 𝑥𝑘  for all 1 ≤ 𝑗 ≤ 𝑛. 
Proof of Theorem 1.1 For each 𝑙 ∈ {1,2, … , 𝑛}, let 

𝑓𝑙(𝑥) = 𝑐𝑙,𝑛−2𝑥
𝑛−2 + 𝑐𝑙,𝑛−1𝑥

𝑛−1 +⋯+ 𝑐𝑙,1𝑥 + 𝑐𝑙,0. 

Then by expanding and rearranging terms we have 

𝑓𝑗(𝑎𝑖 + 𝑏𝑗) = 𝑎𝑖
𝑛−2𝑐𝑗,𝑛−2 (

𝑛 − 2
0
) + 𝑎𝑖

𝑛−3 (𝑐𝑗,𝑛−2 (
𝑛 − 2
1
)𝑏𝑗 + 𝑐𝑗,𝑛−3 (

𝑛 − 3
0
)) +⋯

+ (𝑐𝑗,𝑛−2 (
𝑛 − 2
𝑛 − 2

)𝑏𝑗
𝑛−2 +⋯+ 𝑐𝑗,1 (

1
1
) 𝑏𝑗 + 𝑐𝑗,0 (

0
0
)). 
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Therefore, we can write the matrix A  as A =  A1A2 , where A1  and A2  are 𝑛 × 𝑛 
matrices given by 

A1 = (

𝑎1
𝑛−2 𝑎1

𝑛−3 ⋯ 1 0

𝑎2
𝑛−2 𝑎2

𝑛−3 ⋯ 1 0
⋮

𝑎𝑛
𝑛−2

⋮
𝑎𝑛
𝑛−3

⋱
⋯

⋮
1

⋮
0

) 

and the 𝑗𝑡ℎ column of A2 is 

(

 
 
 
 

𝑐𝑗,𝑛−2 (
𝑛 − 2
0
)

𝑐𝑗,𝑛−2 (
𝑛 − 2
1
) + 𝑐𝑗,𝑛−3 (

𝑛 − 3
0
)

⋮

𝑐𝑗,𝑛−2 (
𝑛 − 2
𝑛 − 2

) 𝑏𝑗
𝑛−2 +⋯+ 𝑐𝑗,1 (

1
1
) 𝑏𝑗 + 𝑐𝑗,0 (

0
0
)

0 )

 
 
 
 

. 

Similarly, the matrix B can be decomposed into the product of A1 and another matrix 
whose 𝑗𝑡ℎ column is  

(

  
 

𝑐𝑗,𝑛−2𝑏𝑗
𝑛−2

𝑐𝑗,𝑛−3𝑏𝑗
𝑛−3

⋮
𝑐𝑗,0
0 )

  
 
. 

Since det(A1) = 0, it follows from the multiplicativity of the determinant that 
det(A) = det(B) = 0.         

We also generalize [5, Prop. 2], which corresponds to the case 𝑘 = 𝑛 − 1 in (1), as 
follows. 

Theorem 1.2 Let 𝑛 ≥ 2 be an integer and let 𝑓(𝑥) = 𝑐𝑛−1𝑥𝑛−1 + 𝑐𝑛−2𝑥𝑛−2 +⋯+ 

𝑐1𝑥 + 𝑐0 ∈ ℂ[𝑥]. For any 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ ℂ, let D = [𝑓(𝑎𝑖 + 𝑏𝑗)]1≤ 𝑖,𝑗≤𝑛 
and E = [𝑓(𝑎𝑖 ∙ 𝑏𝑗)]1≤ 𝑖,𝑗≤𝑛. Then we have 
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det(D) = (−1)⌊
𝑛
2
⌋𝑐𝑛−1
𝑛 ∏(

𝑛 − 1
𝑘
) ∏ (𝑎𝑗 − 𝑎𝑖) ∏ (𝑏𝑗 − 𝑏𝑖)

1≤𝑖<𝑗≤𝑛1≤𝑖<𝑗≤𝑛

𝑛−1

𝑘=0

, 

det(E) =∏𝑐𝑘 ∏ (𝑎𝑗 − 𝑎𝑖) ∏ (𝑏𝑗 − 𝑏𝑖)

1≤𝑖<𝑗≤𝑛1≤𝑖<𝑗≤𝑛

𝑛−1

𝑘=0

. 

Remark 1.1 It should be noted that we require a single polynomial to generate all 
elements of each matrix in Theorem 1.2, while the polynomials involved in Theorem 
1.1 could vary from columns to columns. We attempted to generalize formulas (2) 
and (3) to matrices whose elements are generated from polynomials which vary from 
columns to columns but never succeeded since the calculations involved became 
too complicated to be handled systematically. 

Recall that a Vandermonde matrix is a matrix of the form 

V =

(

 

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛−1

1 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑛−1

⋮
1

⋮
𝑥𝑚

⋮
𝑥𝑚
2

⋱
⋯

⋮
𝑥𝑚
𝑛−1)

  

If V is a square matrix (i.e., 𝑚 = 𝑛), we have the following formula for its determinant: 

det(V) = ∏ (𝑥𝑗 − 𝑥𝑖)

1≤𝑖<𝑗≤𝑛

 

which is famously known as the Vandermonde determinant. Before proving  
Theorem 1.2, we shall prove the following lemma, which can be seen as a modest 
generalization of the Vandermonde determinant. 

Lemma 1.1 Let 𝑛 ≥ 2 be an integer. For 𝑏1, … , 𝑏𝑛, 𝑟11, 𝑟21, 𝑟22, 𝑟31, 𝑟32, 𝑟33, … , 𝑟𝑛1, 
𝑟𝑛2, … , 𝑟𝑛𝑛 ∈ ℂ define an 𝑛 × 𝑛 matrix M by 

(2) 

(3) 
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M =

(

 
 
 
 
 
 
 
𝑟11 𝑟21𝑏1 + 𝑟22 𝑟31𝑏1

2 + 𝑟32𝑏1 + 𝑟33 ⋯ ∑𝑟𝑛𝑗𝑏1
𝑛−𝑗

𝑛

𝑗=1

𝑟11 𝑟21𝑏2 + 𝑟22 𝑟31𝑏2
2 + 𝑟32𝑏1 + 𝑟33 ⋯ ∑𝑟𝑛𝑗𝑏2

𝑛−𝑗

𝑛

𝑗=1

⋮ ⋮ ⋮ ⋱ ⋮

𝑟11 𝑟21𝑏𝑛 + 𝑟22 𝑟31𝑏𝑛
2 + 𝑟32𝑏1 + 𝑟33 ⋯ ∑𝑟𝑛𝑗𝑏𝑛

𝑛−𝑗

𝑛

𝑗=1 )

 
 
 
 
 
 
 

. 

 

Then 

det(M) = 𝑟11𝑟21⋯𝑟𝑛1 ∏ (𝑏𝑗 − 𝑏𝑖)

1≤𝑖<𝑗≤𝑛

. 

Proof Assume first that 𝑟𝑗1 ≠ 0  for all 1 ≤ 𝑗 ≤ 𝑛 . Then we can perform column 
operations to get rid of the small powers of 𝑏𝑖 in each column as follows: 

M
𝑐2−

𝑟22
𝑟11
𝑐1

→     

(

 
 
 
 
 
 
 
𝑟11 𝑟21𝑏1 𝑟31𝑏1

2 + 𝑟32𝑏1 + 𝑟33 ⋯ ∑𝑟𝑛𝑗𝑏1
𝑛−𝑗

𝑛

𝑗=1

𝑟11 𝑟21𝑏2 𝑟31𝑏2
2 + 𝑟32𝑏1 + 𝑟33 ⋯ ∑𝑟𝑛𝑗𝑏2

𝑛−𝑗

𝑛

𝑗=1

⋮ ⋮ ⋮ ⋱ ⋮

𝑟11 𝑟21𝑏𝑛 𝑟31𝑏𝑛
2 + 𝑟32𝑏1 + 𝑟33 ⋯ ∑𝑟𝑛𝑗𝑏𝑛

𝑛−𝑗

𝑛

𝑗=1 )

 
 
 
 
 
 
 

𝑐3−
𝑟32
𝑟21
𝑐2−

𝑟33
𝑟11
𝑐1

→           … 

            
→   (

𝑟11 𝑟21𝑏1 𝑟31𝑏1
2 ⋯ 𝑟𝑛1𝑏1

𝑛−1

𝑟11 𝑟21𝑏2 𝑟31𝑏2
2 ⋯ 𝑟𝑛1𝑏2

𝑛−1

⋮
𝑟11

⋮
𝑟21𝑏𝑛

⋮
𝑟31𝑏𝑛

2
⋱
⋯

⋮
𝑟𝑛1𝑏𝑛

𝑛−1

) ∶= M̃. 

Observe that the matrix M̃ is a Vandermonde matrix with the 𝑗𝑡ℎ column multiplied 
by the constant 𝑟𝑗1. Since the determinant is invariant under column operations, we 
have 

det(M) = det(M̃) = 𝑟11𝑟21⋯𝑟𝑛1 ∏ (𝑏𝑗 − 𝑏𝑖).

1≤𝑖<𝑗≤𝑛
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If 𝑟𝑗1 = 0  for some 1 ≤ 𝑗 ≤ 𝑛 , then either the 𝑗𝑡ℎ  column of M  is zero or it is  
a linear combination of the previous columns. Therefore, we have det(M) = 0 in this 
case and the proof is complete.         

Proof of Theorem 1.2 Following the argument in the proof of Theorem 1.1, we 
express the matrix D as a product of 𝑛 × 𝑛 matrices D1 and D2, where 

D1 = (

𝑎1
𝑛−1 𝑎1

𝑛−2 ⋯ 𝑎1 1

𝑎2
𝑛−1 𝑎2

𝑛−2 ⋯ 𝑎2 1
⋮

𝑎𝑛
𝑛−1

⋮
𝑎𝑛
𝑛−2

⋱
⋯

⋮
𝑎𝑛

⋮
1

) 

and the 𝑗𝑡ℎ column of D2 is 

(

 
 
 

𝑐𝑛−1 (
𝑛 − 1
0
)

𝑐𝑛−1 (
𝑛 − 1
1
) 𝑏𝑗 + 𝑐𝑛−2 (

𝑛 − 2
0
)

⋮

𝑐𝑛−1 (
𝑛 − 1
𝑛 − 1

)𝑏𝑗
𝑛−1 +⋯+ 𝑐1 (

1
1
) 𝑏𝑗 + 𝑐0 (

0
0
))

 
 
 

. 

By switching ⌊𝑛
2
⌋ pairs of columns in D1, we transform it into a Vandermonde matrix. 

Hence we have 

det(D1) = (−1)
⌊
𝑛
2
⌋ ∏ (𝑎𝑗 − 𝑎𝑖)

1≤𝑖<𝑗≤𝑛

. (4) 

On the other hand, we apply Lemma 1.1 to the transpose of D2 to obtain 

det(D2) = 𝑐𝑛−1
𝑛 ∏(

𝑛 − 1
𝑘
)

𝑛−1

𝑘=0

∏ (𝑏𝑗 − 𝑏𝑖).

1≤𝑖<𝑗≤𝑛

 
(5) 

Then (2) follows from (4) and (5). Next, we write the matrix E as E = D1E2, where 

E2 =

(

 

𝑐𝑛−1𝑏1
𝑛−1 𝑐𝑛−1𝑏2

𝑛−1 ⋯ 𝑐𝑛−1𝑏𝑛−1
𝑛−1 𝑐𝑛−1𝑏𝑛

𝑛−1

𝑐𝑛−2𝑏1
𝑛−2 𝑐𝑛−2𝑏2

𝑛−2 ⋯ 𝑐𝑛−2𝑏𝑛−1
𝑛−2 𝑐𝑛−2𝑏𝑛

𝑛−2

⋮
𝑐0

⋮
𝑐0

⋱         ⋮               ⋮
⋯         𝑐0               𝑐0

    
)

 . 
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Consider 

E2
t =

(

 

𝑐𝑛−1𝑏1
𝑛−1 𝑐𝑛−2𝑏1

𝑛−2 ⋯ 𝑐0

𝑐𝑛−1𝑏2
𝑛−1 𝑐𝑛−2𝑏2

𝑛−2 ⋯ 𝑐0
⋮

𝑐𝑛−1𝑏𝑛
𝑛−1

⋮
𝑐𝑛−2𝑏𝑛

𝑛−2
⋱
⋯

⋮
𝑐0)

 . 

We again switch columns of E2t  and take the determinant to obtain 

det(E2) = det(E2
t ) = (−1)⌊

𝑛
2
⌋∏𝑐𝑘 ∏ (𝑏𝑗 − 𝑏𝑖).

1≤𝑖<𝑗≤𝑛

𝑛−1

𝑘=0

 

Therefore, we have 

det(E) = det(D1) det(E2) =∏𝑐𝑘 ∏ (𝑎𝑗 − 𝑎𝑖)

1≤𝑖<𝑗≤𝑛

∏ (𝑏𝑗 − 𝑏𝑖)

1≤𝑖<𝑗≤𝑛

𝑛−1

𝑘=0

 

as desired.           

2. Application and Further Discussions  
As an easy application of Theorem 1.2, we deduce the linear independence of sets 

of functions constructed from a single polynomial by translation and scaling. 

Corollary 2.1 Let 𝑘 be a positive integer, 𝑓(𝑥) ∈ ℂ[𝑥] a polynomial of degree 𝑘, and 
let 𝑏0, 𝑏1, … , 𝑏𝑘 be complex numbers which are all distinct. 

(i) The set B1 = { 𝑓(𝑥 + 𝑏0), 𝑓(𝑥 + 𝑏1), . . . , 𝑓(𝑥 + 𝑏𝑘)} is linearly independent. 
(ii) If the coefficients of 𝑓(𝑥)  are all nonzero, then the set B2 = { 𝑓(𝑏0𝑥), 𝑓(𝑏1𝑥),

. . . , 𝑓(𝑏𝑘𝑥)} is linearly independent. 
In particular, under the assumptions above, the sets B1 and B2 form bases for the 

subspace 𝑃𝑘 of ℂ[𝑥] consisting of the polynomials of degree not exceeding 𝑘. 
Proof Let 𝑐0, 𝑐1, … , 𝑐𝑘 ∈ ℂ such that 

𝑐0𝑓(𝑥 + 𝑏0) + 𝑐1𝑓(𝑥 + 𝑏1) + ⋯+ 𝑐𝑘𝑓(𝑥 + 𝑏𝑘) = 0. 

Let 𝑎0, 𝑎1, … , 𝑎𝑘  be distinct complex numbers. Then for each integer 𝑖  such that 
0 ≤ 𝑖 ≤ 𝑘 we have 
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𝑐0𝑓(𝑎𝑖 + 𝑏0) + 𝑐1𝑓(𝑎𝑖 + 𝑏1) + ⋯+ 𝑐𝑘𝑓(𝑎𝑖 + 𝑏𝑘) = 0, 

which can be written in terms of matrices as follows: 

(

𝑓(𝑎0 + 𝑏0) 𝑓(𝑎0 + 𝑏1) ⋯ 𝑓(𝑎0 + 𝑏𝑘)

𝑓(𝑎1 + 𝑏0) 𝑓(𝑎1 + 𝑏1) ⋯ 𝑓(𝑎1 + 𝑏𝑘)
⋮

𝑓(𝑎𝑘 + 𝑏0)
⋮

𝑓(𝑎𝑘 + 𝑏1)
⋱
⋯

⋮
𝑓(𝑎𝑘 + 𝑏𝑘)

)(

𝑐0
𝑐1
⋮
𝑐𝑘

) = (

0
0
⋮
0

). 

By Theorem 1.2, we have that the coefficient matrix has nonzero determinant, so  
it is nonsingular. This implies that 𝑐0 = 𝑐1 = ⋯ = 𝑐𝑘 = 0. Hence B1 must be linearly 
independent. 

One can use the same argument to show that B2 is linearly independent. (The 
assumption that the coefficients of 𝑓(𝑥) do not vanish is required in this case since 
the determinant of the corresponding coefficient matrix involves the product of these 
quantities.)           

As closing remarks, we propose a few questions which might be of interest to the 
reader. 

Question 2.1 There are several results in the literature concerning ranks of matrices 
whose determinants are zero. What can we say about the ranks of matrices A and B 
in Theorem 1.1 ? 

Using our results and some basic facts in linear algebra, we can partially answer 
this question. For example, let 𝑓(𝑥) ∈ ℂ[𝑥] be a polynomial of degree 𝑛 − 𝑘 where 
2 ≤ 𝑘 ≤ 𝑛 and, for 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ ℂ, let A = [𝑓(𝑎𝑖 + 𝑏𝑗)]1≤ 𝑖,𝑗≤𝑛. Then 
it is clear from Theorem 1.1 that all (𝑛 − 𝑘 + 2) × (𝑛 − 𝑘 + 2) minors of A vanish.  
It is a well-known fact that the rank of a matrix M  is the largest order of  
any nonvanishing minor in M  (see, for example, [3, Sec. 5.2]). Therefore, we can 
conclude that rank(A) ≤ 𝑛 − 𝑘 + 1.  

Similarly, if B = [𝑓(𝑎𝑖 ∙ 𝑏𝑗)]1≤ 𝑖,𝑗≤𝑛, then rank(B) ≤ 𝑛 − 𝑘 + 1. 
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Question 2.2 It is natural to ask whether there exist formulas similar to (2) and (3) for 
𝑛 × 𝑛 matrices whose elements are values of polynomials of degree 𝑛 or higher.  

The reader should notice immediately that the strategy employed in the proof of 
Theorem 1.2 is not applicable in these cases due to limitation on sizes of matrices in 
the decomposition. A possible approach to tackle this problem, which is kindly 
suggested by one of the referees, is to apply the Cauchy-Binet formula [4, Sect. 3.2]. 
To demonstrate this formula, consider the following matrix: 

A = (
(𝑎1 + 𝑏1)

2 (𝑎1 + 𝑏2)
2

(𝑎2 + 𝑏1)
2 (𝑎2 + 𝑏2)

2) = (
𝑎1
2 𝑎1 1

𝑎2
2 𝑎2 1

)(

1 1
2𝑏1 2𝑏2
𝑏1
2 𝑏2

2
). 

Using the Cauchy-Binet formula, we have 

det(A) = |
𝑎1
2 𝑎1
𝑎2
2 𝑎2

| |
1 1
2𝑏1 2𝑏2

| + |
𝑎1 1
𝑎2 1

| |
2𝑏1 2𝑏2
𝑏1
2 𝑏2

2 | + |
𝑎1
2 1

𝑎2
2 1

| |
1 1
𝑏1
2 𝑏2

2|. 

Then by some manipulations and the Vandermonde determinant one can deduce  

det(A) = (𝑎1 − 𝑎2)(𝑏2 − 𝑏1)(2(𝑎1𝑎2 + 𝑏1𝑏2) + (𝑎1 + 𝑎2)(𝑏1 + 𝑏2)). 

It would definitely be desirable to extend this formula to more general cases. 

Question 2.3 Corollary 2.1 gives an affirmative answer to a problem in interpolation 
theory (see, for example, [1, Problem 2, p. 75]). It implies that given a degree 𝑘 
polynomial 𝑓(𝑥) ∈ ℝ[𝑥]  and distinct real numbers 𝑥0, 𝑥1, . . . , 𝑥𝑘,  any polynomial 
𝑝(𝑥) ∈ 𝑃𝑘 can be written uniquely as 

𝑝(𝑥) =∑𝛼𝑖𝑓(𝑥 − 𝑥𝑖),

𝑘

𝑖=0

 

where 𝛼𝑖 ∈ ℝ, 0 ≤ 𝑖 ≤ 𝑘. For a given set of 𝑘 points (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑘, 𝑦𝑘) in 
ℝ2, can one develop a method for constructing a polynomial which interpolates this 
data set using 𝑘 distinct shifts of a single polynomial 𝑓(𝑥) ?  

This approach is quite different from the classical methods such as Newton 
polynomial interpolation and Lagrange’s interpolation formula [1, Chapter 9 – 10]. 
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