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ABSTRACT
This article presents a brief of Pythagoras’ biography and the knowledge of
Pythagoras’ theorem from various ancient civilizations. In addition, Pythagoras’
theorem in Thai mathematics curriculum and the clue of Pythagoras’ theorem from
Lakepakorn book in early Rattanakosin period.

Keywords: Pythagoras, Pythagoras’ theorem
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ABSTRACT

Directed graphs without multiple edges can be represented as algebras of type
(2,0), so-called graph algebras. We say that a graph G satisfies a term equation s = t
if the corresponding graph algebra A(G) satisfies s = t. The set of all term equations
s = t which the graph G satisfies denoted by Id({G}). The class of all graph algebras
satisfying all term equations in Id({G}) is called the graph variety generated by G,
denoted by V,; ({G}). Aterm equation s & t is called an identity in V, ({G}) if A(G')
satisfies s ~ t for all G € V,;({G}). An identity s = t of terms s and t of any type T
is called a hyperidentity of an algebra A if whenever the operation symbols occurring
in s and t are replaced by any term operations of A of the appropriate arity, the
resulting identities hold in A. In this paper, we characterize all identities, all graphs

and all hyperidentities in V, ({G}) where G is the zeropotent and unipotent.

Keywords: Graph varieties, Generated graphs, Terms, Identities, Binary algebras,

Graph algebras, Hyperidentities

1. Introduction
Anidentity s = t of terms s, t of any type T is called a hyperidentity of an algebra
A if whenever the operation symbols occurring in s and t are replaced by any term

operations of A of the appropriate arity, the resulting identity holds in A.
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Hyperidentities can be defined more precisely by using the concept of a
hypersubstitution, which was introduced by Denecke, Lau, Pdschel and Schweigert in
[2].

We fix a type T = (n;)ije, M > 0 for all i € I, and operation symbols (f;);er,
where f; is an n; — ary. Let W, (X) be the set of all terms of type T over some fixed
alphabet X, and let Alg(7) be the class of all algebras of type T. Then, a mapping

o {fi|i€ I} = W,(X)
which assigns to every n; — ary operation symbol f; an n; — ary term will be called
a hypersubstitution of type T (for short, a hypersubstitution). We denote the extension
of the hypersubstitution o by a mapping
G: We(X) — We(X).
The term &[t] is defined inductively by

(i) 6[x] = x for any variable x in the alphabet X, and

(i) G[fi (1, e  ty)] = a(f)" X 6[t,], ..., 0 [tn, D
Here o (f;)"*™X) on the right hand side of (i) is the operation induced by o (f;) on
the term algebra with the universe W, (X).

Graph algebras were introduced by Shallon [13] in 1979 with the purpose of
providing examples of nonfinitely based finite algebras. Let us briefly recall this
concept. Given a directed graph G = (V, E) without multiple edges, the graph
algebra associated with G is the algebra A(G) = (V U {00}, o, 00) of type (2,0),
where o is an element not belonging to V' and the binary operation o is defined by

the rule

u if (u,v) €E,
oo otherwise,
forall u, v € V' U {oo}. We will denote the product u o v simply by juxtaposition uv.

uov::{

In [12], P&schel and Wessel, graph varieties were investigated for finite undirected

graphs in order to get graph theoretic results (structure theorems) from universal
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algebra via graph algebras. In [11], these investigations were extended to arbitrary
(finite) directed graphs where the authors ask for a graph theoretic characterization of
graph varieties, i.e., of classes of graphs which can be defined by identities for their
corresponding graph algebras. The answer is a theorem of Birkhoff-type, which uses
graph theoretic closure operations. A class of finite directed graphs is equational (i.e.,
a graph variety) if and only if it is closed with respect to finite restricted pointed
subproducts and isomorphic copies.

Let s = t be a term equation. Poomsa-ard and et. al. characterized the graph
variety V = Mod,({s = t}) in various kind of terms s and t. Further they
characterized identities and hyperidentities in these graph varieties, too. But these
results are not convenient for applying to the real- world situation. Because at
first we will check that what kind of terms s and t which the graph variety
V = Mod,({s = t}) contains the graph algebra of the diagram of that real-world
situation. It is not easy to do this. So we will characterize the graph variety generated
by the graph G of the diagram directly. Then characterize identities of this graph
variety. In [5], Jampachon and Poomsa-ard characterized all identities, all graphs
and all hyperidentities in graph variety generated by ((xx)(y((zx)z)))z graph.
In [7], Lehtonen and Manyuen characterized all the graph varieties axiomatized by
certain noteworthy groupoid identities that are of general interest in algebra, such as
the zeropotent, unipotent, commutative, alternative, semimedial, and medial
identities.

In this paper, we characterized all identities, all graphs and all hyperidentities in

V = Mod, ({s =~ t}) where G is the zeropotent and unipotent graphs.
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2. Terms, identities and graph varieties
Dealing with terms for graph algebras, the underlying formal language has to
contain a binary operation symbol (juxtaposition) and a symbol for the constant oo

(denoted by oo too).

Definition 2.1 A term over the alphabet
X = {xl, X7, X3, }
is defined inductively as follows:
(i) every variable x;, i = 1,2,3, ... and oo are terms;

(i) if t; and t, are terms, then t;t, is a term.

Let W, (X) be the set of all terms which can be obtained from (i) and (ii) in finitely
many steps. Terms built up from the two-element set X, = {x;, x,} of variables are
thus binary terms. We denote the set of all binary terms by W, (X,). The leftmost
variable of a term t is denoted by L(t), the rightmost variable of a term t is denoted

by R(t). A term in which the symbol oo occurs is called a trivial term.

Definition 2.2 For each non-trivial term t of type T = (2,0), one can define a
directed graph G(t) = (V(t),E(t)), where the vertex set V(t) is the set of all
variables occurring in t and the edge set E(t) is defined inductively by

E(t) = ¢ if tisavariable and E(t,t,) = E(t;) U E(t;) U {(L(¢t;),L(t;))}
where t = t;t, is a compound term. L(t) is called the root of the graph G (t), and

the pair (G(t),L(t)) is called the rooted graph corresponding to t. Formally, we
assign the empty graph ¢ to every trivial term t.

Definition 2.3 Let G = (V,E) be a graph. Let h : X - V U {o0} be a map, called
an assignment. Extend h to a map h : W, (X) = V U {00} by the rule h(t) = h(t)
ift = x € X, and h(t) = h(t,)h(t,) ift = tit,, where the product is taken in
A(G). Then his called the valuation of the term t in the graph G with respect to
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assignment h. Although the graph G does not appear in the notation h, it will always

be clear from the context.

Definition 2.4 An identity (in the language of graph algebras) is an ordered pair (s, t)
of terms s,t € W,(X), usually written as s = t. Let A(G) be a graph algebra
corresponding to G = (V,E). We say that A(G) satisfies s = t, and we write
A(G) & s = tif h(s) = h(t) for every assignment h : X = V U {oo}. In this case,
we also say that G satisfies s = t and we write G E s = t.

The above notation extends to an arbitrary class G of graphs and to any set X of

identities as follows:

GEX fGEs=tforals=te€E2,
GEs=t fGEs=tforalG €g,
GeX ifG EXforall G € G.

The relation of satisfaction of an identity by a graph induces a Galois connection
between graphs and identities via the polarities
[dGg={s=tl|steW,(X),gEs=t}
Mod,2 ={G | G isagraphand G F X}.
It follows from the general theory of Galois connections (see [1]) that Mod,, Id is
a closure operator on graphs, which we denote simply by V. The closed sets of

graphs, i.e., sets G satisfying V;(G) = §, are called graph varieties.

3. Identities in graph variety generated by zeropotent and unipotent graphs
In [7], we recall that a graph G is zeropotent and unipotent, if it satisfies the

identities (xx)y = xx = y(xx) and xx = yy when X,y € X, respectively.

Proposition 3.1 (Lehtonen and Manyuen [7, Theorem 3.1]) Let G be a graph.
The following conditions are equivalent:
() G is zeropotent.

(i) G is unipotent.
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(i) G has no loops.

From Proposition 3.1 we see that G4, G4, G3, G4 graphs are zeropotent and unipotent.

° )
°
Gy Gy G Gy

Let K = Mod, {(xx)y =~ xx = y(xx),xx = yy}. This means K is the set of
all loopless graphs. We want to characterize all identities in K. Before to do this we
need some results for reference as the following:

The equational theory of the class of all graphs (all graph algebras) was described

by Kiss, Péschel and Prohle in [6] as follows.

Proposition 3.2 (Kiss, Poschel and Prohle [6, Lemma 2.2(3)]). Let s = t be an identity
and let G be the class of all graphs. Then G = s = t if and only if s and t are trivial
terms or G(s) = G(t) and L(s) = L(t).

The following results provide useful tools for checking whether a graph satisfies an

identity.

Proposition 3.3 (Kiss, Péschel and Prohle [6, Lemma 2.2(2)]). Let G = (V,E) be a
graph and let h : X = V U {00} be an evaluation of the variables. Consider the
canonical extension h of h to the set of all terms. Then the following holds. If tis a
trivial term, then h(t) = oo. Otherwise, if h : G(t) = G is a homomorphism of
graphs, then h(t) = f_l(L(t)) = h(L(t)), and if h is not a homomorphism of graphs,
then h(t) = oo.

Proposition 3.4 (Poschel and Wessel [12, Proposition 1.5(2)]). Let s and t be non-
trivial terms such that V(s) = V(t) and L(s) = L(t). Then a graph G = (V,E)
satisfies s & t if and only if G has the following property: a mapping h @ V(s) —
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V' U {00} is a homomorphism from G (s) into G if and only if it is a homomorphism
from G (t) into G.

Now we characterize all identities in K. Clearly, if s = t is a trivial equation (i.e.
G(s) = G(t), L(s) = L(t)) or both of them are trivial terms, then s = t is an
identity in K. Now we consider the case s = t is a non-trivial equation. Then all

identities in K are characterized by the following theorem:

Theorem 3.1 Let s = t be non-trivial equation. Then, K ks = t if and only if the

following conditions are satisfied:

(i) G(s) has a loop if and only if G(t) has a loop,

(i) if G(s) and G(t) have no loop then V(s) = V (t),

(i) if G(s) and G (t) have no loop then for any x,y € V(s), (x,y) € E(s)
if and only if (x,y) € E(t),

(iv) if G(s) and G (t) have no loop then L(s) = L(t).
Proof. (i) Suppose that G (s) has a loop but G (t) has no loops. Let G = G(t). By
Proposition 3.1, we have G € K. Let h: V(s) UV (t) - V(G) U {0} such that
h(x) = x forall x € V(t) and h(y) = oo forally € V(s) \ V(t). It is clear that h
is a homomorphism from G (t) into G but h is not a homomorphism from G (S) into
G. By Proposition 3.3, we have h(t) = h(L(t)) = L(t) # o = h(s). Therefore
GH¥s~=tHence K ¥ s =t.

(i) Suppose that G(s) and G (t) have no loop but V(s) # V(t). Then there
exists y € V(s) buty € V(t). Let G = G(t). By Proposition 3.2, we have G € K.
Let h: V(s)UV(t) = V(G) U {0} such that h(x) =x for all x € V(t) and
h(y) = oo forally € V(s) \ V(t). We have h is a homomorphism from G (t) into
G but h is not a homomorphism from G(s) into G. By Proposition 3.3, we have
h(t) = h(L(t)) = L(t) # o = h(s). Therefore G ¥ s = t. Hence K ¥ s ~ t.
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(iii) Suppose that G(s) and G(t) have no loop, (x,y) € E(s) but (x,y) & E(t).
Let G = G (t). By Proposition 3.1, we have G € K. By (i), we have V(s) = V(t).
Let h : V(t) = V(G) U {00} such that h(x) = x for all X € V(t). Since G = G(t)
and (x,y) € E(t), we have h is a homomorphism from G(t) into G and
(h(x),h(y)) & E(G). Because (x,y) € E(s), we get h is not a homomorphism from
G(s) into G. By Proposition 3.3, we have h(t) = h(L(t)) = L(t) # o = h(s).
Therefore G ¥ s = t. Hence K ¥ s = t.

(iv) Suppose that G(s) and G (t) have no loop and L(s) # L(t). Let G = G(¢t).
By Proposition 3.1, we have G € K. By (i), we have V(s) =V (t). Leth: V(t) -
V(G) U {00} such that h(x) = x for all x € V(t). Since G = G(t), we get his a
homomorphism from G(t) into G. By (iii), we have (x,y) € E(s) if and only if
(x,y) € E(t). Thus his a homomorphism from G(s) into G. By Proposition 3.3,
h(s) = h(L(s)) = L(s) # L(t) = h(L(t)) = h(t). Therefore G ¥ s = t. Hence
K¥Es=t

Conversely, suppose that s = t is a non-trivial equation satisfying (i), (ii), (i) and
(iv). Let G € K. Then G has no loops. By (i), G(s) has a loop if and only if G(t) has

a loop.

Case | If G(s) and G(t) have a loop then any h is not a homomorphism from

G(s) into G and it is not a homomorphism from G(t) into G. Thus h(s) = oo =
h(t).Hence G E s ~ t.

Case Il If G(s) and G(t) have no loop then by (i) and (iv), V(s) = V(t)
and L(s) = L(t). Let h:V(s) = V(G) U {0} be a function. Suppose h is a
homomorphism from G(s) into G. Let (x,y) € E(s). Then (h(x), h(y)) € E(G).
By (ii), we get (x,y) € E(t). Thus his a homomorphism from G(t) into G. In the

same way, we can prove that if h is a homomorphism from G (t) into G then it is a
homomorphism from G (s) into G. Hence by Proposition 3.4, we get G E s = t.
Therefore X E s = t. O
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Corollary 3.1 Let s = t be a non-trivial equation such that G(s) and G (t) have no
loop. Then K s = t if and only if L(s) = L(t) and G(s) = G(t).
Proof. Let s = t be a non-trivial equation such that G(s) and G (t) have no loop.
Assume that X E s = t. Then by conditions (ii), (iii), (iv) of Theorem 3.1, we have
L(s) = L(t),V(s) =V (t) and E(s) = E(t). Hence G(s) = G(t).

Conversely, assume that L(s) = L(t) and G(s) = G(t). So V(s) =V (t)
and E(s) = E(t). Thus s and t satisfy conditions (i), (ii), (iii) and (iv) of Theorem 3.1.
Hence KX E s = t. O

4. Hyperidentities in graph variety generated by zeropotent and unipotent graphs
Let K be any graph variety. Now, we want to formulate precisely the concept of

a graph hypersubstitution for graph algebras.

Definition 4.1 A mapping o : {f, 0} = W, (X,), where X, = {x;,x,} and f is the
operation symbol corresponding to the binary operation of a graph algebra is called
the graph hypersubstitution if a() = oo and a(f) = s € W,(X,). The graph
hypersubstitution with a(f) = s is denoted by o.

Definition 4.2 An identity s = t is a K graph hyperidentity if and only if for all graph
hypersubstitutions o, K & &[s] = &[t].

If we want to check that an identity s = t is a hyperidentity in K we can restrict
our consideration to a (small) subset of HypG - the set of all graph hypersubstitutions.

In [8], the following relation between hypersubstitutions was defined:

Definition 4.3 Two graph hypersubstitutions gy, g, are called K- equivalent if and

only if a;(f) = a,(f) is an identity in &. In this case we write 0; ~4 0.

The following lemma was proved in [9].

Lemma 4.1 If 6, [s] = 6,[t] € Id K and 0, ~4 05, then G,[s] = 6,[t] € Id K.

Therefore, it is enough to consider the quotient set HypG /~ .
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In [10], it showed that any non-trivial term t over the class of graph algebras has
a uniquely determined normal form term NF(t) and there is an algorithm to
construct the normal form term to a given term t. Without difficulties one shows
G(NF(t)) = G(t), LINF(t)) = L(¢).

The following definition was given in [3].
Definition 4.4 The graph hypersubstitution gy, is called a normal form graph
hypersubstitution. Here NF (t) is the normal form of the binary term t.

Since for any binary term t the rooted graphs of t and NF (t) are the same, we

have t = NF(t) € Id K. Then for any graph hypersubstitution a; with a,(f) =t €

W, (X3), one obtains g, ~4 Oy

Table 1. In [3], all rooted graphs with at most two vertices were considered. Then,
we formed the corresponding binary terms and used the algorithm to construct

normal form terms. The result is given in the following table:

Normal form term | graph hypers | Normal form term | graph hypers
X1X7 Op X1 01
X2 03 X1X1 03
XoX3 04 Xa2X1 Os
(x121) %7 O¢ (x2%1)x; 07
X1 (X222) Og X2 (%1%1) Oy
(121) (x2%7) 010 (2 (x121))x; 011
X1 (x2%1) 012 X5 (x1%2) 013
(121) (x2%1) 014 (2 (x122))x; 015
X1 ((2x1)x7) O16 X ((x121)x2) 017
(1201) ((x2x1)x2) 018 (2 ((x121)%2)) %, O19

Since G(03), G(04), G(06), G(07), G(ag), G(09), G(010), G(011), G(014),

G(045),G(016),G(017),G(01g) and G(0gy9) have loops, hence they satisfy

conditions (i), (i), (iii) and (iv) of Theorem 3.1. Thus we have the following relations:

03 ~gc 04 ~g5 Og ~g O7 ~g¢ Og ~g¢ O9 ~3c 019 ~x 011
~3 014 ~x 015 ~x O16 ~x 017 ~x 018 ~x O19
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Let My be the set of all normal form graph hypersubstitutions in K. Then we get,

My = {0y, 01, 02,03, 05, 015, 013}
We defined the product of two normal form graph hypersubstitutions in Mg as

follows.

Definition 4.5 The product gy °n 02n Of two normal form graph hypersubstitutions

is defined by (015 on Tan)(f) = NF(G1n[G2n(H)]).

Table 2. The following table gives the multiplication of elements in My

The concept of a proper hypersubstitution of a class of algebras was introduced in [9].

Definition 4.6 A hypersubstitution o is called proper with respect to a class K of
algebras if 6[s] = 6[t] EIdK foralls =t € Id K.

A graph hypersubstitution with the property that a(f) contains both variables x4
and x, is called regular. It is easy to check that the set of all regular graph
hypersubstitutions forms a groupoid M.

The following lemma was proved in [3].

Lemma 4.2 For each non-trivial term s, (s # x € X) and for all u, v € X, we have

E(G6lsD = E(s) U {(w,w)|(w,v) € E(s)},
E(Ggls]) = E(s) U {(v,v)|(u,v) € E(s)},
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and  E(612[s]) = E(s) U {(v,w)|(u,v) € E(s)}.
In the similar way we can prove that, E (65[s]) = {(L(s), L(s))}.
We want to find all proper graph hypersubstitutions with respect to K. Then we

obtain:

Theorem 4.1 {0y, 03,0,,} is the set of all proper graph hypersubstitutions with
respect to K.

Proof. If s=t€IdXK and s, t are trivial terms, then for every graph
hypersubstitution o € {ay, g3, 0y, } the term &[s] and G[t] are also trivial and thus
o[s] = 6[t] EId K. In the same manner, we see that &[s] = &[t] € Id K for
every g € {0y,03,01,}ifs =t =x.

Now assume that § and t are non-trivial terms, different from variables, and
s~teldX.

Consider ;. Since 0y = X1 X5, it is clear that E(6,[s]) = E(s) and L(G,y[s]) =
L(s) for all non-trivial term s. Hence 6,[s] = 6,[t] € Id K.

Consider 3. By Lemma 4.2, E(65[s]) = {(L(s),L(s))} and E(G5[t]) =
{(L(t),L(t))}. That is G(s) and G(t) have a loop. By Theorem 3.1 (i), we get
G;[s] = 65[t] € Id K. Therefore a3 is a proper hypersubstitution.

Consider g;,. If s and t have a loop then &;,[s] and 6;,[t] have a loop. By
Theorem 3.1 (), G15[s] = 65[t] EIdK. If s and t have no loop then
G(s) = G(t) and L(s) = L(t). By Lemma 4.2, we get G(6y5[s]) = G(G.,[t]),
L(Gy5[s]) = L(612[t]). So G15[s] = 61,[t] € Id K. Therefore gy, is a proper
hypersubstitution.

Forany o & {0y, 03,013}, let s; = x;x1 and t; = X,X,. Then 5; = t; € Id K.
We see that, 6;[s1] = X1, 01[t1] = x2, 6;[s1] = x; and 63[t;] = x,. Thus
61ls1] = 61[t1], 621s1] = 65[t1] € Id K.

Let 5, = x1X, and t, = (X;x,)x,. Then s, =t, EIdK. We see that,

Osls2] = x2x1, G5lt,] = x,(xx1), Gy3[S2] = x5 (x4%;) and
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613[t2] = 22 ((x2(1%2))x5). We see that 65[s5], 65[s2] have no loop but G5[t,],
613 [tz] have a lOOp. Hence 6-5[52] =~ 65[t2], 6-13[52] =~ 6-13[t2] e ld f](
Therefore {0y, 03,015} is the set of all proper graph hypersubstitutions with

respect to K. O

Now, we apply our results to characterize all hyperidentities in K. Clearly, if s and
t are trivial terms, then s = t is a hyperidentity in K if and only if L(s) = L(t),
R(s) = R(t) and x = x, x € X is a hyperidentity in K, too. So, we consider the

case that s and t are non-trivial terms and different from variables.

Theorem 4.2 An identity s = t in K, where s and t are non- trivial terms and
different from variables is a hyperidentity in K if and only if 6, [s] = 6,[t], 6,[s] =
G,[t] and G5[s] = G5[t] are also identities in K.

Proof. Let s = t € Id K, where s,t are non-trivial and s # x,t #x. If s =t is
a hyperidentity in K, then &,[s] = 6,[t] € Id K, 6,[s] = 6,[t] € Id KX and
Gs[s] = 65[t] € Id K.

Assume that 6;[s] = 6;[t], 6,[s] = 6,[t] and &5[s] = 65[t] are identities in
XK. Since gy, 03, 04, are the proper graph hypersubstitutions, we have 6,y[s] = &,[t],
G;[s] = 65[t] and 61,[s] = 6;,[t] are identities in K.

Because of 0y, o 05 = 043 and 04, is a proper graph hypersubstitution with

respect to the class K, we have 6;3[s] = G;3[t] is an identity in K. O
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