ORIGINAL ARTICLE

Pancyclicity and Panconnectedness of Line Graphs of Graphs having at Most One Cycle

Sirirat Singhun^{1,*}, Adthasit Sinna¹, Chapkit Charnsamorn² and Pensiri Sompong³

Received: 28 January 2019 / Revised: 9 March 2019 / Accepted: 5 April 2019

Abstract. Let G be a simple graph. The *line graph* of G, denoted by L(G), is the graph obtained by taking the edges of G as vertices and joining two of these vertices whenever the corresponding edges in G have a vertex in common. A graph is called *pancyclic* if it contains cycles of length three up to its Hamiltonian cycle and it is called *panconnected* if, between any pair of distinct vertices u and v, it contains paths of length d(u,v) up to its Hamiltonian path. In this paper, we consider a tree and a unicyclic graph, and give necessary and sufficient conditions for their line graphs to be pancyclic and panconnected, respectively.

Keywords: pancyclic; panconnected, Hamiltonian cycle, line graph.

1 Introduction

All graphs considered in this paper are simple. That is, they have neither loops nor multiple edges. Let G be a graph. The *line graph* of G, denoted by L(G), is the graph obtained by taking the edges of G as vertices and joining two of these vertices whenever the correspond-

ing edges of G have a vertex in common. A dominating circuit of G is a circuit of G with the property that every edge of G either belongs to the circuit or is adjacent to an edge of the circuit. Harary and Nash-Williams (Harary and Nash-Williams, 1971) gave a classic result that for a graph G without isolated vertices, L(G) is Hamiltonian if and only if G is the graph $K_{1,n}$, for some $n \geq 3$, or G contains a dominating circuit. A graph is pancyclic if it contains a cycle of each length. Thus, a pancyclic graph is necessary Hamiltonian. A graph is panconnected if, between any pair of distinct vertics, it contains a path of each length at least distance between the two vertices. Note that (i) a complete graph K_n is pancyclic and also panconnected, and (ii) a cycle C_n , $n \ge 4$ is not pancyclic and is not panconnected. In Figure 1, G_1 is panconnected and G_2 is pancyclic.

In this paper, we consider a connected graph with no cycles, called a *tree*, and a connected graph with only one cycle, called a *unicyclic graph*. The discussion of a panconnected property of a unicyclic graph was shown in (Chia et al., 2017).

¹Ramkhamhaeng University, Faculty of Science, Department of Mathematics, Bangkok 10240, Thailand; sin sirirat@ru.ac.th and adthasit@ru.ac.th

²Mahanakorn University, Faculty of Science, Department of Physics, Bangkok 10530, Thailand; chapkit@mut.ac.th ³Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Faculty of Science and Engineering, Sakon Nakhon 47000, Thailand; pensiri.so@ku.th

^{*}Corresponding author: sin sirirat@ru.ac.th

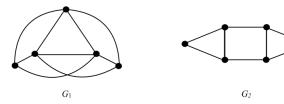


Figure 1: G_1 is panconnedted and G_2 is pancyclic.

If a tree contains one edge, then its line graph is a complete graph K_1 . In the case that a tree contains two edges, the tree is a path P_3 and its line graph is a path P_2 . In both cases, their line graph has no cycle. Then, we consider a tree with at least three edges. For a unicylic graph G, assume that the only one cycle of G also contains at least three edges. We investigate trees and unicycle graphs and find the necessary and sufficient conditions for their line graphs to be pancyclic and panconnected, in sections 2 and 3, respectively.

2 Pancyclicity

Recall that an edge xy is a cut-edge of a graph G if the number of components of G - xy is more than the number of components of G, and a vertex v is a cut-vertex of a graph G if the number of components of G - v is more than the number of components of G.

Since all edges of a tree is a cut-edge, we focus the cut-edge xy such that both x and y have degree at least two, called such edge an *internal cut-edge*. We can see that if e is an internal cut-edge in G, then e is a cut-vertex in L(G). Before obtaining the necessary condition for L(G) to be pancyclic, we shall recall a well-know fact that if a graph has a Hamiltonian cycle, then the deletion of any s vertices from it will result in a graph at most s components.

Lemma 1. Let G be a connected graph. If L(G) is pancyclic, then G has no internal cut-edges. Proof. Assume that L(G) is pancyclic and suppose that G has an internal cut-edge, say e = 1

If a tree contains one edge, then its line uv. Then, e is a cut-vertex of L(G). Let S= h is a complete graph K_1 . In the case that $\{e\}$. Then L(G)-S contains at least two components two edges, the tree is a path P_3 ponents. Therefore, L(G) contains no Hamiltonian graph has no cycle. Then, we consider has no internal cut-edges.

The next theorem obtains a sufficient and necessary condition for a tree such that its line graph is pancyclic.

Theorem 1. Let G be a tree with $q(\geq 3)$ edges. Then, L(G) is pancyclic if and only if G is a star $K_{1,q}$.

Proof. Let G be a tree with $q(\geq 3)$ edges such that L(G) is pancyclic. By Lemma 1, G has no internal cut-edge. Then, G must be a star $K_{1,q}$.

Next, assume that G is a star $K_{1,q}$ for some integer $q(\geq 3)$. Then, L(G) is the complete graph K_q . Since $q \geq 3$, L(G) contains cycles of length ℓ for all $\ell \in \{3,4,\ldots,q\}$. That is, L(G) is pancyclic. \square

The sun flower graph, denoted by $SF(m; n_1, n_2, \ldots, n_m)$, is a unicyclic graph obtained from a cycle $v_1v_2\cdots v_mv_1$ and m sets of independent vertices, A_1, A_2, \ldots, A_m , which each set contains n_1, n_2, \ldots, n_m vertices, respectively, by joining each vertex of A_i to v_i for $i \in \{1, 2, \ldots, m\}$. Here, let $e_i = v_iv_{i+1}$ for $i \in \{1, 2, \ldots, m-1\}$, $e_m = v_mv_1$ and edges joining v_i to each vertices of A_i are $e_i^1, e_i^2, \ldots e_i^{n_i}$ for $i \in \{1, 2, \ldots, m\}$. Then, $SF(m; n_1, n_2, \ldots, n_m)$ is a unicyclic graph with no internal cut-edge. In Figure 2, G_3 is SF(4; 1, 2, 2, 3).

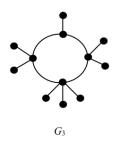


Figure 2: G_3 is SF(4; 1, 2, 2, 3).

Lemma 2. The line graph of $SF(3; n_1, n_2, n_3)$ is pancyclic.

Proof. Let G denote the graph $SF(3; n_1, n_2, n_3)$. Since $|V(L(G))| = |E(G)| = n_1 + n_2 + n_3 + 3$, we shall find cycles of length ℓ in L(G) where $\ell \in \{3, 4, \ldots, n_1 + n_2 + n_3 + 3\}$. Since the subgraph of L(G) induced by the set $\{e_1, e_3, e_1^1, e_1^2, \ldots, e_1^{n_1}\}$ is the complete graph K_{n_1+2} , there is a cycle of length ℓ in L(G) for all $\ell \in \{3, 4, \ldots, n_1 + 2\}$. The cycle of length $n_1 + 3$ is of the form $e_1e_2e_3e_1^1e_1^2\cdots e_1^{n_1}e_1$.

Next, we shall construct the cycle of length ℓ in L(G) where $\ell \in \{n_1+4,n_1+5,\ldots,n_1+n_2+3\}$. For $i \in \{1,2,\ldots,n_2\}$, let P_i be the path $e_2^1e_2^2\cdots e_2^i$ in L(G). Then, the cycle of length n_1+3+i in L(G) for $i \in \{1,2,\ldots,n_2\}$ is of the form $e_1P_ie_2e_3e_1^1e_1^2\cdots e_1^{n_1}e_1$. Hence, the cycles of length ℓ in L(G) where $\ell \in \{n_1+4,n_1+5,\ldots,n_1+n_2+3\}$ are obtained.

Finally, we shall construct the cycle of length ℓ in L(G) for all $\ell \in \{n_1 + n_2 + 4, n_1 + n_2 + 5, \ldots, n_1 + n_2 + n_3 + 3\}$ by extending the cycle $e_1 P_{n_2} e_2 e_3 e_1^1 e_1^2 \cdots e_1^{n_1} e_1$ of length $n_1 + n_2 + 3$ in L(G). For $i \in \{1, 2, \ldots, n_3\}$, let Q_i be the path $e_3^1 e_3^2 \cdots e_3^i$ in L(G). Then, the cycle of length $n_1 + n_2 + 3 + i$ in L(G) for $i \in \{1, 2, \ldots, n_3\}$ is of the form $e_1 P_{n_2} e_2 Q_i e_3 e_1^1 e_1^2 \cdots e_1^{n_1} e_1$. Hence, the cycles of length ℓ where $\ell \in \{n_1 + n_2 + 4, n_1 + n_2 + 5, \ldots, n_1 + n_2 + n_3 + 3\}$ are obtained.

This completes the proof.

The next lemma is an important property of L(G) where G is $SF(m; n_1, n_2, ..., n_m)$.

Lemma 3. Let m > 3, G be the graph $SF(m; n_1, n_2, ..., n_m)$ and $n = \max\{n_1, n_2, ..., n_m\}$. If m - n > 3, then L(G) contains no cycle of length n + 3.

Proof. Without loss of generality, let $n=n_1$. Assume that m-n>3. If L(G) contains a cycle C of length n+3, then there exists n+3 vertices a_1,a_2,\ldots,a_{n+3} of L(G) with the property that a_1 is adjacent to a_{n+3} and a_2,a_i is adjacent to vertices a_{i-1} and a_{i+1} for $i\in\{2,3,\ldots,n+2\}$ and a_{n+3} is adjacent to a_{n+2} and a_1 . Thus, C is the cycle $a_1a_2\cdots a_{n+3}a_1$. We consider in two cases.

Case (i): n+3 vertices of C must come from vertices in $\{e_1,e_2,\ldots,e_m\}$ of L(G). Since m>n+3 and the subgraph of L(G) induced by $\{e_1,e_2,\ldots,e_m\}$ is a cycle C_m , C is not a cycle.

Case (ii): n+3 vertices of C must come from vertices $e_i^1, e_i^2, \ldots, e_i^{n_i}, e_{i-1}, e_i$ and other $n-n_i+1$ vertices of L(G) for some $i \in \{1,2,\ldots,m\}$. The vertices $e_i^1, e_i^2, \ldots, e_i^{n_i}, e_{i-1}, e_i$ induce the complete graph K_{n_i+2} in L(G) and L(G) contains the cycle $C': e_i^1 e_i^2 \cdots e_i^{n_i} e_{i-1} e_i$ e_i^1 . In order to complete the (n+3)-cycle C, $n-n_i+1$ vertices $w_1, w_2, \ldots, w_{n-n_i+1}$ of L(G) added to C must come from the vertices in $A=\{e_{i-1}^1, e_{i-1}^2, \ldots, e_{i-1}^{n_{i-1}}\}$ or $B=\{e_{i+1}^1, e_{i+1}^2, \ldots, e_{i+1}^{n_{i+1}}\}$. Thus, we replace the edge $e_{i-1}e_i$ of C' by $e_{i-1}w_1w_2\cdots w_{n-n_i+1}e_i$.

If $w_1, w_2, \ldots, w_{n-n_i+1} \in A$, then w_{n-n_i+1} is not adjacent to e_i in L(G), which is a contradiction.

If $w_1, w_2, \dots, w_{n-n_i+1} \in B$, then w_1 is not adjacent to e_{i-1} in L(G) which is a contradiction.

If some vertices of $n-n_i+1$ are in A and the remaining vertices are in B, then without loss of generality, there is an integer t such that $1 \le t \le n-n_i, w_1, w_2, \ldots, w_t \in A$ and $w_{t+1}, w_{t+2}, \ldots, w_{n-n_i+1} \in B$. Then, w_t is not adjacent to w_{t+1} in L(G), which is a contradiction

Therefore, there is no cycle of length n+3 in L(G). \square

From Lemma 2 and 3, we can have sufficient and necessary conditions for L(G) to be pancyclic where G is a unicyclic graph.

Theorem 2. Let G be a unicyclic graph. Then, L(G) is pancyclic if and only if

(i) G is $SF(3; n_1, n_2, n_3)$, or

(ii) if m > 3, then G is $SF(m; n_1, n_2, ..., n_m)$ such that $m-n \le 3$ where $n = \max\{n_1, n_2, ..., n_m\}$.

Proof. For the necessity part, let G be a unicycle graph such that L(G) is pancyclic. By Lemma 1, G has no internal cut-edges. Then, G is $SF(m; n_1, n_2, \ldots, n_m)$ for some integers $m(\geq 3), n_1, n_2, \ldots, n_m$. Let $n = \max\{n_1, n_2, \ldots, n_m\}$. If m > 3 and m - n > 3, then, by Lemma 3, L(G) contains no cycle of length n + 3, which is a contradiction. Therefore, $m - n \leq 3$.

For the sufficient part, we can see by Lemma 2 that if G is $SF(3; n_1, n_2, n_3)$, then L(G) is pancyclic. If m > 3, then we consider in three cases that (i) m - n = 3; (ii) m - n = 2; or (iii) $m - n \leq 1$. Without loss of generality, assume that $n = n_1$.

Case (i): m-n=3. Then, $m=n+3=n_1+3$. We shall find a cycle of length ℓ for all $\ell\in\{3,4,\ldots,2n_1+n_2+\ldots+n_m+3\}$. Since the subgraph of L(G) induced by the set $\{e_1,e_m,e_1^1,e_1^2,\ldots,e_1^{n_1}\}$ is the complete graph K_{n_1+2} , there is a cycle of length ℓ for all $\ell\in\{3,4,\ldots,n_1+2\}$. The cycle of length n_1+3 is of the form $e_1e_2e_3\cdots e_{m-1}e_me_1$.

For $i \in \{1, 2, ..., m\}$, let P_i^j be the path $e_i^1 e_i^2 e_i^3 \cdots e_i^j$ for $j \in \{1, 2, ..., n_i\}$.

Next, we shall construct cycles in L(G) of length ℓ where $\ell \in \{n_1+4, n_1+5, \ldots, 2n_1+3\}$ by using the cycle $e_1e_2e_3\cdots e_{m-1}e_me_1$ of length $m=n_1+3$. Then, for $j\in \{1,2,\ldots,n_1\}$, the cycle of length ℓ where $\ell=n_1+3+j$ is of the form $e_1e_2e_3\cdots e_{m-1}e_mP_1^je_1$.

For the cycle in L(G) of length ℓ where $\ell \in \{2n_1+4,2n_1+5,\ldots,2n_1+n_2\}$, we modify the cycle $e_1e_2e_3\cdots e_{m-1}e_mP_1^{n_1}e_1$ of length $2n_1+3$ by adding path P_i^j . Then, for $j\in\{1,2,\ldots,n_2\}$, the cycle of length ℓ where $\ell=2n_1+3+j$ is of the form $e_1P_2^je_2e_3\cdots e_{m-1}e_mP_1^{n_1}e_1$.

By the recursive process, the cycle of length $2n_1+n_2+\ldots+n_k+j$ for $j\in\{1,2,\ldots,n_k\}$ is of the form

$$e_1 P_2^{n_2} e_2 P_3^{n_3} e_3 \cdots e_{k-1} P_k^j e_k e_{k+1} \cdots e_m P_1^{n_1} e_1.$$

Case (ii): m-n=2. Then $m=n+2=n_1+2$. We shall find a cycle of length ℓ for all $\ell \in \{3,4,\ldots,2n_1+n_2+\ldots+n_m+2\}$. Since the subgraph of L(G) induced by the set $\{e_1,e_m,e_1^1,e_1^2,\ldots,e_1^{n_1}\}$ is the complete graph K_{n_1+2} , there is a cycle of length ℓ for all $\ell \in \{3,4,\ldots n_1+2\}$.

For $i \in \{1, 2, ..., m\}$, let P_i^j be the path $e_i^1 e_i^2 e_i^3 \cdots e_i^j$ for $j \in \{1, 2, ..., n_i\}$.

Next, we shall construct cycles in L(G) of length ℓ where $\ell \in \{n_1+3, n_1+4, \ldots, 2n_1+2\}$ by using the cycle $e_1e_2e_3\cdots e_{m-1}e_me_1$ of length $m=n_1+2$. Then, for $j\in\{1,2,\ldots,n_1\}$, the cycle of length ℓ where $\ell=n_1+2+j$ is of the form $e_1e_2e_3\cdots e_{m-1}e_mP_1^je_1$.

For the cycle in L(G) of length ℓ where $\ell \in \{2n_1+3,2n_1+4,\ldots,2n_1+n_2+2\}$, we modify the cycle $e_1e_2e_3\cdots e_{m-1}e_mP_1^{n_1}e_1$ of length $2n_1+2$ by adding path P_i^j . Then, for $j\in\{1,2,\ldots,n_2\}$, the cycle of length ℓ where $\ell=2n_1+2+j$ is of the form $e_1P_2^je_2e_3\cdots e_{m-1}e_mP_1^{n_1}e_1$.

By the recursive process, the construction of the cycle of length $2n_1 + n_2 + \ldots + n_k + j$ for $j \in \{1, 2, \ldots, n_k\}$ is in the form

$$e_1 P_2^{n_2} e_2 P_3^{n_3} e_3 \cdots e_{k-1} P_k^j e_k e_{k+1} \cdots e_m P_1^{n_1} e_1.$$

Case (iii): $m-n \leq 1$. In this case, first, we construct the cycle of length ℓ where $\ell \in \{m, m+1, m+2, \ldots, m+n_1+n_2+\cdots+n_m\}$. Next, the constructions of the cycle of length ℓ where $\ell \in \{3, 4, 5, \ldots, n+2\}$ are obtained. Finally, we show that $n+2 \geq m-1$. Thus, G contains cycles of length ℓ where $\ell \in \{3, 4, 5, \ldots, m+n_1+n_2+\ldots+n_m\}$.

Since $v_1v_2\cdots v_mv_1$ is a cycle in G, vertices $e_1,e_2,\ldots e_m$ in L(G) induce the cycle $e_1e_2e_3\cdots e_{m-1}e_me_1$ of length m in L(G). Then, L(G) contains a cycle of length m.

For $i \in \{1, 2, ..., m\}$, let P_i^j be the path $e_i^1 e_i^2 e_i^3 \cdots e_i^j$ for $j \in \{1, 2, ..., n_i\}$.

For the cycle in L(G) of length ℓ where $\ell \in \{m+1, m+2, \ldots, m+n_1\}$, we modify the cycle $e_1e_2e_3\cdots e_{m-1}e_me_1$ of length m by adding path P_i^j . Then, for $j\in\{1,2,\ldots,n_1\}$, the cycle of length ℓ where $\ell=m+j$ is in the form $e_1e_2e_3\cdots e_{m-1}e_mP_1^je_1$. For $j\in\{1,2,\ldots,n_2\}$, the cycle of length ℓ where $\ell=m+n_1+j$ is of the form $e_1P_2^je_2e_3\cdots e_{m-1}e_mP_1^{n_1}e_1$.

By the recursive process, the construction of the cycle of length $m+n_1+n_2+\ldots+n_k+j$ for $j\in\{1,2,\ldots,n_k\}$ is in the form $e_1P_2^{n_2}e_2P_3^{n_3}e_3\cdots e_{k-1}P_k^je_ke_{k+1}\cdots e_mP_1^{n_1}e_1$.

Thus, the cycles of length $m, m+1, m+2, \ldots, m+n_1+n_2+\cdots+n_m$ are obtained.

Since the subgraph of L(G) induced by the set $\{e_1, e_m, e_1^1, e_1^2, \dots, e_1^{n_1}\}$ is the complete graph K_{n_1+2} , there is a cycle of length ℓ for all $\ell \in \{3, 4, \dots n+2\}$.

We shall show that $n+2 \ge m-1$. Suppose to the contrary that n+2 < m-1. Then, m-n > 1, which is a contradiction. Thus $n+2 \ge m-1$.

Hence, G contains cycles of length ℓ for all $\ell \in \{3, 4, \dots, m + n_1 + n_2 + \dots + n_m\}$.

This completes the proof.

3 Panconnectedness

We first recall the well-known fact that if v condition for a is a cut-vertex in a connected graph G and u and panconnected.

w are vertices in distinct components of G - v, then v lies on every u - w path in G.

Lemma 4. Let G be a graph such that L(G) is panconnected. Then, G has no internal cutedge.

Proof. Let G be a graph. Suppose that G has an internal cut-edge e which x and y are the end-vertices. Then, e is a cut-vertex of L(G). Since deg $x \geq 2$ and deg $y \geq 2$, let e_1 and e_2 be edges incident with x and y, respectively, where $e_1 \neq e$ and $e_2 \neq e$.

We shall show that there is no Hamiltonian path from e_1 to e in L(G). Suppose to the contrary that there is a Hamiltonian path P from e_1 to e in L(G). Then, P and the edge e_1e form a cycle C in L(G). Thus, the path from e_1 to e_2 obtained from C by deleting e_1e and ee_2 has no e in it, this contradicts to the property of e. Hence, L(G) has no Hamiltonian path and this implies that L(G) is not panconnected. \square

Since the star has no intenal cut-edge and the line graph of the star is a complete graph, the following result obtains directly from Lemma 4.

Theorem 3. Let G be a tree. Then, L(G) is panconnected if and only if G is a star.

The following lemma is an important property of a minimal vertex-cut of a connected graph.

Lemma 5. Let G be a 2-connected graph with at least 4 vertices and let $U = \{x, y\}$ be a vertexcut. Then, there is no Hamiltonian path from x to y in G.

Proof. Suppose to the contrary that there is a Hamiltonian path P from x to y in G. Let x' and y' be vertices that adjacent to x and y in P, respectively. Then, G-U contains a Hamiltonian path P-U from x' to y'. That is, G-U is a connected graph which is a contradiction. \square

Next, we obtain a sufficient and necessary condition for a unicyclic graph G that L(G) is panconnected.

Theorem 4. Let G be a unicyclic graph. Then, L(G) is panconnected if and only if G is C_3 .

Proof. Assume that G is a unicyclic such that G is not a cycle C_3 and L(G) is panconnected. By Lemma 4, G has no internal cut-edges. Then, G must be $SF(m; n_1, n_2, \ldots, n_m)$ for some nonnegative integers m, n_1, n_2, \ldots, n_m .

Case (i): m > 3. Since L(G) is a 2-connected graph and $U = \{e_1, e_3\}$ is a vertexcut of L(G), by Lemma 5, there is no Hamiltonian path from e_1 to e_3 in L(G), which is a contradiction.

Case (ii): m=3 and $n_i\neq 0$ for some $i\in\{1,2,3\}$. Without of loss of generality, let $n_1\neq 0$. Since L(G) is a 2-connected graph and $U=\{e_1,e_3\}$ is a vertex-cut of L(G), L(G)-U contains two components H_1 and H_2 such that $V(H_1)=\{e_1^1,e_1^2,e_1^3,\ldots,e_1^{n_1}\}$ and $V(H_2)=E(G)-(V(H_1)\cup\{e_1,e_3\})$. By Lemma 5, there is no Hamiltonian path from e_1 to e_3 in L(G), which is a contradiction.

Therefore L(G) must be C_3 .

Conversely, if G is C_3 , then L(G) is C_3 . Thus, for two distinct vertices, there is a path of length 1 and 2. Therefore, G is panconnected.

4 Conclusions

The *cyclomatic number* of a graph G, denoted by c(G), is |E(G)| - |V(G)| + 1. Then,

c(G) = 0 if and only if G is a tree and c(G) = 1 if and only if G is a unicyclic graph. This article obtains necessary and sufficient conditions for a line graph of a graph at most one cycle to be pancyclic and panconnected, respectively. That is, such conditions give for graphs with cyclomatic number 0 and 1. In the future research, we shall find necessary and sufficient conditions for a line graph of a graph with cyclomatic number more that one to be pancyclic or panconnected.

References

Fleischner H (1971) In the square of graphs, Hamiltonicity and pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concept, *Monatsh. Math.* **82**, 125–149.

Chia GL, Hemakul W and Singhun S (2017) Graphs with cyclomatic number three having panconnected square. *Discrete* mathematics, Algorithm and applications 14 page DOI:10.1142/S1793830917500677.

Harary F and Nash-Williams C St JA (1965) On eulerian and Hamiltonian graphs and line graphs, *Can. Math. Bull.* 701–710.