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Abstract. This paper proposes confidence intervals for 

the common inverse mean of the normal distributions 

with unknown coefficients of variation (CVs). The 

generalized confidence interval (GCI), large sample, 

adjusted method of variance estimates recovery 

(adjusted MOVER) approaches were proposed to 

construct the confidence intervals. The confidence 

intervals were compared with existing confidence 

interval for the common inverse mean of the normal 

distributions based on the GCI proposed by Thangjai et 

al. (2017a). The coverage probability and average 

length of the proposed confidence intervals were 

considered for performance criterion. The results 

indicate that the GCI and the adjusted MOVER 

confidence interval perform satisfactorily in terms of 

the coverage probability and average length for large 

sample sizes. The GCI and the adjusted MOVER 

approaches are better than the other approaches for 

constructing the confidence intervals for the common 

inverse mean of the normal distributions with unknown 

CVs. Finally, two real data in finance and medical 

science are given to illustrate the proposed confidence 

intervals. 

 

Keywords: GCI approach, Large sample approach, 

Adjusted MOVER approach, Monte Carlo simulation 

 

1. Introduction 

 

A normal distribution is the most important 

and most widely used in statistics. This 

distribution is often used in natural sciences 

and social sciences. The mean and the 

standard deviation of distribution are defined 

as   an  , respectively. The ratio of the 

standard deviation to the mean is the 

coefficient of variation (CV). 

An inverse mean is defined as the ratio 

of one to the mean. It is widely used in many 

fields. For instance, in experimental nuclear 

physics, the inverse of the track curvature of a  

 

particle ( /1 ) is a charged particle momentum 

(Lamanna et al. (1981) and Treadwell (1982)).  

In economics, the inverse mean is used to 

estimate the marginal propensity to consume 

in a simple Keynesian model (Braulke 

(1982)). The estimation of the inverse of the 

CV is a related problem with the inverse of the 

mean. Estimating the inverse of the CV is 

more difficult to remove when the expected 

value of the CV of normal distribution is 

infinite (Johnson and Kotz (1970) and 

Chaturvedi and Rani (1996)). The inverse of 

the CV is used to estimate the signal-to-noise 

ratio (  / ) in electrical and electronic 

engineering (Brown et al. (2001)). 

Furthermore, the inverse of the CV is used a 

reliability index in structural design and 

construction (Zubeck and Kvinson (1996) and 

Duerr (2008)). 

The point estimation for the inverse 

powers of a normal mean is presented by 

Withers and Nadarajah (2013). The 

confidence interval estimation for the inverse 

mean of normal distribution has been studied 

by several researchers, e.g. Wongkhao et al. 

(2013), Niwitpong and Wongkhao (2015) and 

Niwitpong and Wongkhao (2016). Several 

measuring instruments are utilized to measure 

the products produced by the same production 

process to estimate the average quality and 

different laboratories are employed to measure 

the amount of toxic waste in a river. If the 

samples collected by independent studies are 

from normal populations with a common 

inverse mean, then the problem of interest 

may be to construct a confidence interval for 

the common inverse mean of these 

populations. Therefore, Thangjai et al. (2016) 

and Thangjai et al. (2017a) constructed the 
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confidence intervals for the common inverse 

mean of normal distributions. 

In practice, if the CVs of the 

populations are unknown, then the CVs need 

to be estimated. Therefore, several researchers 

have been studied the mean of normal 

distribution with unknown CV, see the 

research papers of Srivastava (1980), Sahai 

(2004), Sahai and Acharya (2016), Sodanin et 

al. (2016), and Thangjai et al. (2017b). 

Recently, the confidence intervals for the 

inverse mean and difference of inverse means 

of normal distributions with unknown CVs are 

constructed by Thangjai et al. (2019). 

Consequently, estimating the common inverse 

mean of several normal populations with 

unknown CVs is most interesting problems in 

statistical inference. 

Let ),,,( 21 nXXXX =  be a random 

variable from all possible distributions. Let 

)(XL  and )(XU  be the lower and upper 

limits for the common mean with unknown 

CVs with nominal confidence level −1 . By 

definition, )(/1 XU  and )(/1 XL  are the lower 

and upper limits for the common inverse mean 

with unknown CVs with nominal confidence 

level −1 . 

This paper extends the paper works of 

Thangjai et al. (2016), Thangjai et al. (2017a), 

and Thangjai et al. (2019) to construct 

confidence intervals for the common inverse 

mean of the normal distributions with 

unknown CVs. The confidence intervals were 

constructed based on the generalized 

confidence interval (GCI), large sample, and 

adjusted method of variance estimates 

recovery (Adjusted MOVER) approaches. 

Firstly, The GCI approach has been widely 

used to construct confidence interval; for 

example, see Tian (2005), Tian and Wu 

(2007), Thangjai et al. (2016), Thangjai et al. 

(2017a), Thangjai et al. (2017b), and Thangjai 

et al. (2019). The large sample approach is 

used to estimate confidence interval for 

common parameter in the research works of 

Tian and Wu (2007), Thangjai et al. (2016), 

and Thangjai et al. (2017a). Finally, the 

adjusted MOVER approach is motivated based 

on the MOVER approach of Zou and Donner 

(2008) and Zou et al. (2009). The adjusted 

MOVER approach is introduced by Thangjai 

and Niwitpong (2017) and Thangjai et al. 

(2017a). Three approaches are compared with 

the GCI approach for the common inverse 

mean of normal distributions of Thangjai et al. 

(2017a). 

This paper is organized as follows. In 

Section 2, the proposed approaches are 

described. In Section 3, simulation results are 

presented to evaluate the performances of the 

proposed approaches and the existing 

approach on coverage probabilities and 

average lengths. Section 4, illustrates the 

proposed approaches and the existing 

approach with two real examples. And finally, 

Section 5 summarizes this paper. 

 

2. The Confidence Intervals for the 

Common Inverse Mean of Several 

Normal Populations with Unknown CVs 

 

Let ),,,( 21 nXXXX =  be a random variable 

from a normal distribution with mean   and 

variance 
2 . Let X  and 

2S  be sample mean 

and sample variance for X , respectively. 

Following Srivastava (1980), the 

estimator of the mean of normal population 

with unknown CV has the following form 
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For ki ,,2,1 = , inj ,,2,1 = , let 

),,,( 21 iiniii XXXX =  be a random variable 

from the i -th normal distribution with the 

common inverse mean /1  and possibly 

unequal variances 2

i . Let 
iX  and 2

iS  be 

sample mean and sample variance for iX , 

respectively. Also, let 
ix  and 2

is  be the 

observed sample of 
iX  and 2

iS , respectively.  

The estimator of the inverse mean of 

normal population with unknown CV based on 
i -th sample is 
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The variance of i̂  is obtained by 
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2.1 The GCI  

 

Definition 1: Let ),,,( 21 nXXXX =  be a 

random variable from a distribution )|( xF , 

where ),,,( 21 nxxxx =  is an observed value 

of X , ),( v =  is a vector of unknown 

parameters,   is a parameter of interest, and 

v  is a vector of nuisance parameters. Let 

),;( xXR  be a function of X  , x , and  . 

The random quantity ),;( xXR  is called a 

generalized pivotal quantity if it has the 

following two properties; see Weerahandi 

(1993): 

(i) The distribution of ),;( xXR  is free of 

all unknown parameters. 

(ii) The observed value of ),;( xXR , 

xX = , does not depend on the vector 

of nuisance parameters. 

The GCI is computed using the percentiles 

of the generalized pivotal quantity. Let )(R  

be the )(100  -th percentile of ),;( xXR , 

then )(R  is a )% -100(1   lower bound of 

one-sided GCI for   and 

)]2/1(),2/([  −RR  is the )% -100(1   two-

sided GCI for  . 

Consider k  independent normal 

populations with a common inverse mean with 

unknown CVs. Recall that 
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where 2

1−in  denotes a chi-squared distribution 

with 1−in  degrees of freedom. The 
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where iZ  and iU  denote a standard normal 

distribution and a chi-squared distribution with 

1−in  degrees of freedom, respectively. The 

generalized pivotal quantity for i  is given by 
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The generalized pivotal quantity for i  is  
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i

R  are defined in Equation 

(9) and Equation (11), respectively. 

From Equation (5), the generalized 

pivotal quantity for variance of 
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Following Ye et al. (2010), the 

generalized pivotal quantity for the common 

inverse mean with unknown CVs is a 

weighted average of the generalized pivotal 

quantity 
i

R  based on k  individual samples 

given by 
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where 
i

R  and 
)ˆ( iVar

R


 are defined in Equation 

(12) and Equation (13), respectively. 

To construct confidence interval based 

on R , we need to confirm that R  in 

Equation (14) satisfies the two conditions in 

Definition 1. The value of  
i

R  in Equation 

(12) at ),(),( 22

iiii sxSX =  is i/1 , where 

ki ,,2,1 = . Therefore,  /1=R  at 

),(),( 22 sxSX = . It is also clear from 

Equation (12), that for given ),( 2sx , the 

distribution of R  is independent of any 

unknown parameters. Therefore, R  is 

generalized pivotal quantity, and its 

percentiles can be used to construct 

confidence interval for the common inverse 

mean with unknown CVs. 

Therefore, the )%1(100 −  two-sided 

confidence interval for the common inverse 

mean with unknown CVs based on the GCI 

approach is  
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where )2/(R  and )2/1(  −R  denote the 

)2/(100  -th and )2/1(100 − -th percentiles 

of R , respectively. 

The following algorithm was used to 

construct the GCI: 

 

Algorithm 1 

For g = 1 to m 

Generate 2

1−in  and compute 2
i

R


 from 

Equation (9) 

Generate iZ  and iU , and then compute 
i

R  

from Equation (11) 

Compute 
i

R  and 
)ˆ( iVar

R


, and then compute 

R  from Equation (14) 

End g loop 

Compute the )2/(100  -th and the

)2/1(100 − -th percentiles of R . 

2.2 The Large Sample Confidence Interval 

According to Graybill and Deal (1959), the 

large sample estimate of inverse mean with 

unknown CVs is a pooled estimate of the 

inverse mean with unknown CV is 
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where 
i̂  is defined in Equation (6) and 

)ˆ( iVar   is an estimate of )ˆ( iVar   in Equation 

(7) with i  and 2

i  replaced by ix  and 2

is , 

respectively. 

The distribution of ̂  is approximately 

normal distribution when the sample size is 

large. The confidence interval for the common 

inverse mean with unknown CVs is 
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constructed using the quantile of the normal 

distribution. Therefore, the )%1(100 −  two-

sided confidence interval for the common 

inverse mean with unknown CVs based on the 

large sample approach is  
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where 
2/1 −z  denotes the )2/1( − -th quantile 

of the standard normal distribution. 

2.3 The Adjusted MOVER Confidence Interval 

Let 1  and 2  be the parameters of interest. 

Zou and Donner (2008) and Zou et al. (2009) 

proposed the MOVER approach to construct 

)%1(100 −  two-sided confidence interval 

],[ UL  for the sum of two parameters ( 21  + ), 

where L  and U  denote the lower and upper 

limits of the confidence interval. By the 

central limit theorem and under the 

assumption of independence between the point 

estimates 1̂  and 2̂ , the lower limit L  is  
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where 2/z  denotes the )2/( -th quantile of 

the standard normal distribution. 

Let ],[ ii ul  be a )%1(100 −  two-sided 

confidence interval for 
i , where 2,1=i . It is 

well known that the lower limit L  must be 

closer to 21 ll +  than to 21
ˆˆ  + . According to 

the central limit theorem, the variance estimate 

for i̂  at ii l=  is 
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Substituting back into Equation (18) 

yields 
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Let k ,,, 21    be the parameters of 

interest. The MOVER approach is motivated 

to construct )%1(100 −  two-sided 

confidence interval ],[ UL  for the sum of k 

parameters ( k +++ 21 ). Let 

],[,],,[],,[ 2211 kk ululul   be the )%1(100 −  

two-sided confidence intervals for 

k ,,, 21  , respectively. The lower limit L  
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theorem and the assumption of independence 

between the point estimates 
k ˆ,,ˆ,ˆ
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lower limit L  is  
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Similarly, the upper limit U  must be 

closer to kuuu +++ 21  than to 

k ˆˆˆ
21 +++  . Using the central limit 

theorem and the assumption of independence 

between the point estimates 
k ˆ,,ˆ,ˆ

21  , the 

upper limit U  is 
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The concepts of the large sample and 

MOVER approaches given in Equations (16) - 

(23) are used to construct the confidence 

interval for the common inverse mean with 

unknown CVs. This approach is called the 

adjusted MOVER approach. The common 

inverse mean with unknown CVs is weighted 

average of the inverse mean with unknown 

CV based on k  individual samples is  
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where the variance estimate for i̂  at ii l=  

and ii u=  is  
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where 
2/z  denotes the )2/( -th quantile of 

the standard normal distribution. 

Therefore, the lower and upper limits 

for the common inverse mean with unknown 

CVs are  
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where 
2/z  and 

2/1 −z  denote the )2/( -th 

and )2/1( − -th quantiles of the standard 

normal distribution. 

Therefore, the )%1(100 −  two-sided 

confidence interval for the common inverse 

mean with unknown CVs based on the 

adjusted MOVER approach is  
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According to Niwitpong and 

Wongkhao (2016), the )%1(100 −  two-sided 

confidence interval for the inverse mean based 

on i -th sample is 
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where id  denotes the )2/1( − -th quantile of 

the Student’s t -distribution with 1−in  

degrees of freedom. 

Substituting il  and iu  are defined in 

Equation (29) back into Equation (28), the 

confidence interval for the common inverse 

mean with unknown CVs based on the 

adjusted MOVER approach is obtained. 

Next, the GCI approach of Thangjai et 

al. (2017a) is briefly reviewed for constructing 

the confidence interval for the common 

inverse mean of the normal distributions. The 

generalized pivotal quantity for i  is  

i

i R
R





1
= ,          

)30(                                                                

where )/( iiii UsZxR
i

−= , iZ  is the 

standard normal distribution, and iU  is chi-

squared distribution with 1−in  degrees of 

freedom  

The generalized pivotal quantity for 

the common inverse mean of the normal 

distributions is  
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ii

nii snR 


, and 
2

1−in  denotes a chi-

squared distribution with 1−in  degrees of 

freedom.        

Therefore, the )%1(100 −  two-sided 

confidence interval for the common inverse 

mean of the normal distributions based on the 

GCI approach of Thangjai et al. (2017a) is  

)]2/1(),2/([],[ ..   −== THTHTHTHTH RRULCI
   

)32(  

,                                                

where )2/(.  THR  and )2/1(.  −THR  denote 

the )2/(100  -th and )2/1(100 − -th 

percentiles of THR . , respectively. 

 

3. Simulation Studies 

 

Simulation studies were carried out to evaluate 

the performance of the GCI, large sample, and 

adjusted MOVER approaches for the common 

inverse mean with unknown CVs, comparison 

studies were also conducted using the GCI 

approach for the common inverse mean of 

Thangjai et al. (2017a). The GCI was defined 

as GCICI , the large sample confidence interval 



 

 

Ramkhamhaeng International Journal of Science and Technology (2020) 3(2): 31-43 

 

37 

was defined as LSCI , the adjusted MOVER 

confidence intervals was defined as AMCI , and 

the GCI of Thangjai et al. (2017a) was defined 

as THCI . The performances of these four 

approaches were evaluated through the 

coverage probabilities and the average lengths. 

In particular, the confidence interval was 

chosen when the simulated coverage 

probability was greater than or close to the 

nominal confidence level )1( −  and the 

simulated average length was the shortest 

average length. 

The following algorithm was used to 

estimate the coverage probability and average 

length: 

 

Algorithm 2 

For M , m , k , ),,,( 21 knnn  ,  , 

),,,( 21 k  ,   

For h  = 1 to M  

Generate 
ijx  from ),( 2

iN  , ki ,,2,1 = , 

inj ,,2,1 =  

Compute ix  and 2

is  

Construct ],[ )()( hGCIhGCI UL , ],[ )()( hLShLS UL , 

and ],[ )()( hAMhAM UL  

If 
)()( hh UL  , set =)(hp  1; else set =)(hp  0 

Compute 
)()( hh LU −  

End h loop 

Compute means of probability 
)(hp  and length 

)()( hh LU − . 

In the simulation, each confidence 

interval was computed at the nominal 

confidence level of 0.95. The sample cases 

were used =k  2, 4, and 6, with the sample 

sizes ===== nnnn k21  20, 30, 50, 100, 

and 200. Following Thangjai et al. (2017a), 

the common inverse mean of normal data 

within each population was =/1  1.00, and 

the population standard deviations were 

==== 2/21 k   0.10 and 

==== ++ kkk  2)2/(1)2/(
 0.01, 0.03, 0.05, 

0.07, 0.09, 0.10, 0.30, 0.50, and 0.70. For each 

parameter setting, 5000 random samples were 

generated and thus 2500 R ’s were obtained 

for each of the random samples. 

Tables 1-3 presents the coverage 

probabilities and average lengths of 95% two-

sided confidence intervals for the common 

inverse mean with unknown CVs for =k  2, 4, 

and 6 sample cases, respectively. For =k  2, 

the coverage probabilities of GCICI  were 

closer to the nominal confidence level of 0.95 

when the sample size was large. Moreover, 

LSCI  and AMCI  provided low coverage 

probability especially for small sample size. 

The coverage probabilities of THCI  were close 

to the nominal confidence level regardless of 

the sample sizes. For =k  4 and =k  6, the 

coverage probabilities of GCICI  and THCI  

were stable. For small sample size, the 

coverage probabilities of LSCI  and AMCI  

tended to increase when the value of   was 

increase. For large sample size, GCICI  and 

AMCI  performed as well as THCI  in terms of 

the coverage probability and average length. 

Overall, the coverage probabilities of THCI  

were close to nominal confidence level than 

GCICI  and AMCI  when the sample size was 

small ( n  30), whereas GCICI  and AMCI  

performed as well as THCI  in term of the 

coverage probability and average length when 

the sample size was large ( n  30). Therefore, 

AMCI  can be an alternative to estimate the 

confidence interval for the common inverse 

mean with unknown CVs when the sample 

size was small and value of   was large. 

Moreover, GCICI  and AMCI  were 

recommended to construct the confidence 

intervals when the sample size was large. 

 

4. An Empirical Application 

Two examples were exhibited to illustrate the 

proposed approaches given in Section 2 and 

the GCI approach of Thangjai et al. (2017a). 

Example 1: Walpole et al. (2012) and 

Thangjai et al. (2017a) considered rates of 

return on equity for 24 randomly selected 

firms. The data were categorized into four 

groups depending on the level of financial 
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leverages: control, low, medium, and high. 

Thangjai et al. (2017a) analyzed that the four 

data sets come from normal populations. From 

the data, the following information regarding 

the estimates of sample size, mean, variance, 

and inverse mean are =1n  6, =2n  6, =3n  6, 

=4n  6, =1x  4.3833, =2x  5.1000, =3x  

8.4167, =4x  8.3333, =2

1s  4.8257, =2

2s  

3.8840, =2

3s  5.9937, =2

4s  5.4707, =1/1 x  

0.2281, =2/1 x  0.1961, =3/1 x  0.1188, and 

=4/1 x  0.1200. The 95% two-sided 

confidence intervals for the common inverse 

mean with unknown CVs are evaluated. The 

GCI is =GCICI  [0.1258, 0.2473] with a length 

of interval of 0.1215. The large sample 

confidence interval is =LSCI   

[-0.2897, 0.6384] with a length of interval of 

0.9281. The adjusted MOVER confidence 

interval is =AMCI  [0.1104, 0.1630] with a 

length of interval of 0.0526. Finally, the GCI 

of Thangjai et al. (2017a) is =THCI  [0.0980, 

0.1644] with a length of interval of 0.0664. It 

seems that AMCI  performs better than the 

other confidence intervals in term of length 

when the sample size is small and the variance 

is large. 

 

Example 2: Tian (2005) and Fung and Tsang 

(1998) considered the data about 

measurements of Hb, RBC, MCV, Hct, WBC 

and Platelet from 1995 and 1996 surveys. 

Fung and Tsang (1998) presented that the data 

come from normal distributions. For 1995 

survey, the sample size, sample mean, sample 

variance, coefficient of variation, and inverse 

mean are extracted: =1n  63, =1x  84.13, =2

1s  

3.390, =1  0.0406, and =1/1 x  0.0119. For 

1996 survey, the summary statistics are as 

follows: =2n  72, =2x  85.68, =2

2s  2.946, 

=2  0.0346, and =2/1 x  0.0117. The 

confidence intervals for the common inverse 

mean with unknown CVs are computed. The 

GCI is =GCICI  [0.0117, 0.0118] with a length 

of interval of 0.0001. The large sample 

confidence interval is =LSCI  [0.0085, 0.0150] 

with a length of interval of 0.0065. The 

adjusted MOVER confidence interval is 

=AMCI  [0.0117, 0.0118] with a length of 

interval of 0.0001. The GCI of Thangjai et al. 

(2017a) is =THCI  [0.0117, 0.0118] with a 

length of interval of 0.0001. It is clear from 

the above results that GCICI , AMCI , and THCI  

perform well in term of length when the 

sample size is large. These results support the 

simulation results in the previous section. 

 

5. Discussion and Conclusions 

 

The aim of this paper was to propose novel 

approaches for constructing confidence 

interval for the common inverse mean of 

normal distributions with unknown CVs. The 

proposed confidence intervals were 

constructed based on the GCI, large sample, 

and adjusted MOVER approaches, compared 

with the existing approach, using the GCI 

approach of Thangjai et al. (2017a) to estimate 

the confidence interval for the common 

inverse mean. The GCI approach provided 

more stable coverage probability and it was 

recommended to construct confidence interval 

for the common inverse mean with unknown 

CVs when the sample size was large. The 

large sample approach was not recommended 

to estimate the confidence interval. The 

adjusted MOVER approach performed 

satisfactorily in terms of the coverage 

probability and average length of the 

confidence interval when the sample size was 

large. However, the adjusted MOVER 

approach was easy to use more than the GCI 

approach. This is because the adjusted 

MOVER approach was computed by the 

simple formula, whereas the GCI approach 

was based on a computational approach. 

Therefore, the adjusted MOVER approach can 

be an alternative to construct confidence 

interval for the common inverse mean with 

unknown CVs when the sample size was 

large. 
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Table 1 The coverage probabilities (CP) and average lengths (AL) of 95% two-sided confidence intervals for the 

common inverse mean of normal distributions with unknown CVs: 2 sample cases    

n 1  2  
GCICI

 LSCI
 AMCI

 THCI
 

CP AL CP AL CP AL CP AL 

20 0.10 0.01 0.9454 0.0092 0.9296 0.0086 0.9456 0.0092 0.9518 0.0094 

0.03 0.9584 0.0269 0.9374 0.0247 0.9540 0.0264 0.9622 0.0276 

0.05 0.9520 0.0423 0.9288 0.0383 0.9440 0.0409 0.9572 0.0433 

0.07 0.9496 0.0543 0.9260 0.0488 0.9410 0.0521 0.9556 0.0556 

0.09 0.9518 0.0633 0.9240 0.0568 0.9414 0.0607 0.9584 0.0648 

0.10 0.9530 0.0671 0.9242 0.0602 0.9406 0.0643 0.9570 0.0687 

0.30 0.9502 0.0902 0.9296 0.0815 0.9460 0.0872 0.9538 0.0922 

0.50 0.9518 0.0932 0.9320 0.0846 0.9472 0.0905 0.9544 0.0955 

0.70 0.9552 0.0944 0.9356 0.0856 0.9524 0.0916 0.9588 0.0970 

30 0.10 0.01 0.9436 0.0074 0.9320 0.0070 0.9450 0.0074 0.9510 0.0075 

0.03 0.9488 0.0215 0.9358 0.0204 0.9458 0.0212 0.9514 0.0219 

0.05 0.9526 0.0336 0.9368 0.0315 0.9476 0.0328 0.9576 0.0341 

0.07 0.9456 0.0431 0.9320 0.0402 0.9410 0.0419 0.9508 0.0438 

0.09 0.9498 0.0504 0.9346 0.0469 0.9444 0.0490 0.9540 0.0512 

0.10 0.9536 0.0532 0.9336 0.0495 0.9472 0.0517 0.9570 0.0541 

0.30 0.9460 0.0713 0.9326 0.0669 0.9430 0.0699 0.9498 0.0724 

0.50 0.9510 0.0739 0.9396 0.0695 0.9496 0.0726 0.9556 0.0751 

0.70 0.9538 0.0746 0.9402 0.0704 0.9502 0.0735 0.9566 0.0759 

50 0.10 0.01 0.9430 0.0056 0.9372 0.0055 0.9432 0.0056 0.9502 0.0057 

0.03 0.9452 0.0163 0.9392 0.0158 0.9460 0.0162 0.9502 0.0165 

0.05 0.9538 0.0255 0.9438 0.0245 0.9502 0.0252 0.9554 0.0258 

0.07 0.9512 0.0328 0.9422 0.0314 0.9470 0.0322 0.9512 0.0330 

0.09 0.9542 0.0384 0.9464 0.0367 0.9520 0.0377 0.9566 0.0387 

0.10 0.9526 0.0405 0.9424 0.0387 0.9480 0.0397 0.9552 0.0408 

0.30 0.9510 0.0542 0.9446 0.0522 0.9484 0.0536 0.9528 0.0547 

0.50 0.9472 0.0559 0.9406 0.0541 0.9460 0.0555 0.9494 0.0565 

0.70 0.9496 0.0564 0.9406 0.0545 0.9484 0.0559 0.9498 0.0569 

100 0.10 0.01 0.9504 0.0039 0.9484 0.0039 0.9512 0.0039 0.9560 0.0040 

0.03 0.9430 0.0114 0.9404 0.0112 0.9418 0.0114 0.9446 0.0115 

0.05 0.9526 0.0178 0.9482 0.0174 0.9510 0.0177 0.9542 0.0179 

0.07 0.9540 0.0228 0.9464 0.0223 0.9510 0.0226 0.9544 0.0229 

0.09 0.9528 0.0266 0.9480 0.0260 0.9524 0.0264 0.9550 0.0268 

0.10 0.9518 0.0282 0.9468 0.0275 0.9516 0.0279 0.9556 0.0283 

0.30 0.9496 0.0378 0.9456 0.0371 0.9476 0.0376 0.9506 0.0380 

0.50 0.9500 0.0390 0.9468 0.0383 0.9502 0.0388 0.9506 0.0392 

0.70 0.9452 0.0394 0.9434 0.0388 0.9458 0.0393 0.9462 0.0396 

200 0.10 0.01 0.9500 0.0028 0.9486 0.0028 0.9494 0.0028 0.9514 0.0028 

0.03 0.9476 0.0080 0.9456 0.0080 0.9468 0.0080 0.9490 0.0080 

0.05 0.9444 0.0125 0.9422 0.0124 0.9442 0.0124 0.9452 0.0125 

0.07 0.9498 0.0160 0.9480 0.0158 0.9496 0.0159 0.9498 0.0160 

0.09 0.9464 0.0187 0.9438 0.0185 0.9456 0.0186 0.9498 0.0187 

0.10 0.9520 0.0198 0.9528 0.0195 0.9536 0.0197 0.9540 0.0198 

0.30 0.9484 0.0265 0.9480 0.0262 0.9484 0.0264 0.9500 0.0266 

0.50 0.9494 0.0274 0.9468 0.0271 0.9492 0.0273 0.9510 0.0274 

0.70 0.9550 0.0276 0.9554 0.0274 0.9566 0.0276 0.9572 0.0277 
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Table 2 The CP and AL of 95% two-sided confidence intervals for the common inverse mean of normal 

distributions with unknown CVs: 4 sample cases    

 

n 1  3  
GCICI

 LSCI
 AMCI

 THCI
 

CP AL CP AL CP AL CP AL 

20 0.10 0.01 0.9412 0.0066 0.9080 0.0060 0.9282 0.0064 0.9538 0.0068 

0.03 0.9450 0.0193 0.9180 0.0171 0.9348 0.0183 0.9522 0.0197 

0.05 0.9584 0.0302 0.9250 0.0266 0.9460 0.0284 0.9636 0.0309 

0.07 0.9536 0.0389 0.9258 0.0342 0.9416 0.0365 0.9602 0.0398 

0.09 0.9554 0.0453 0.9212 0.0396 0.9436 0.0424 0.9600 0.0463 

0.10 0.9580 0.0480 0.9258 0.0420 0.9442 0.0449 0.9616 0.0491 

0.30 0.9488 0.0644 0.9232 0.0566 0.9408 0.0606 0.9522 0.0659 

0.50 0.9490 0.0667 0.9216 0.0586 0.9392 0.0627 0.9508 0.0682 

0.70 0.9494 0.0678 0.9254 0.0596 0.9428 0.0637 0.9530 0.0695 

30 0.10 0.01 0.9434 0.0053 0.9262 0.0049 0.9384 0.0051 0.9554 0.0054 

0.03 0.9498 0.0153 0.9314 0.0142 0.9442 0.0148 0.9552 0.0156 

0.05 0.9528 0.0240 0.9340 0.0220 0.9452 0.0230 0.9568 0.0243 

0.07 0.9566 0.0308 0.9330 0.0283 0.9464 0.0295 0.9608 0.0313 

0.09 0.9524 0.0360 0.9328 0.0329 0.9436 0.0344 0.9546 0.0365 

0.10 0.9578 0.0380 0.9390 0.0347 0.9504 0.0363 0.9638 0.0386 

0.30 0.9558 0.0511 0.9374 0.0469 0.9468 0.0490 0.9580 0.0518 

0.50 0.9500 0.0527 0.9338 0.0485 0.9462 0.0506 0.9520 0.0535 

0.70 0.9482 0.0533 0.9308 0.0490 0.9410 0.0512 0.9508 0.0541 

50 0.10 0.01 0.9472 0.0040 0.9360 0.0038 0.9428 0.0039 0.9530 0.0041 

0.03 0.9534 0.0116 0.9440 0.0111 0.9488 0.0114 0.9576 0.0117 

0.05 0.9572 0.0181 0.9474 0.0173 0.9540 0.0177 0.9586 0.0183 

0.07 0.9460 0.0233 0.9376 0.0221 0.9436 0.0227 0.9502 0.0235 

0.09 0.9536 0.0272 0.9398 0.0258 0.9486 0.0265 0.9552 0.0275 

0.10 0.9532 0.0287 0.9438 0.0272 0.9510 0.0279 0.9550 0.0290 

0.30 0.9526 0.0386 0.9444 0.0367 0.9498 0.0376 0.9560 0.0390 

0.50 0.9488 0.0399 0.9388 0.0379 0.9454 0.0389 0.9494 0.0402 

0.70 0.9512 0.0402 0.9422 0.0383 0.9488 0.0392 0.9534 0.0406 

100 0.10 0.01 0.9458 0.0028 0.9406 0.0027 0.9448 0.0028 0.9504 0.0028 

0.03 0.9514 0.0081 0.9470 0.0079 0.9498 0.0080 0.9522 0.0081 

0.05 0.9546 0.0126 0.9476 0.0123 0.9520 0.0125 0.9558 0.0127 

0.07 0.9592 0.0162 0.9540 0.0158 0.9568 0.0160 0.9606 0.0163 

0.09 0.9522 0.0189 0.9470 0.0184 0.9506 0.0186 0.9550 0.0190 

0.10 0.9528 0.0200 0.9468 0.0194 0.9504 0.0197 0.9532 0.0201 

0.30 0.9494 0.0268 0.9460 0.0261 0.9498 0.0264 0.9508 0.0269 

0.50 0.9476 0.0277 0.9434 0.0270 0.9466 0.0273 0.9502 0.0278 

0.70 0.9452 0.0279 0.9412 0.0273 0.9436 0.0276 0.9480 0.0280 

200 0.10 0.01 0.9460 0.0020 0.9432 0.0019 0.9450 0.0020 0.9466 0.0020 

0.03 0.9448 0.0057 0.9414 0.0056 0.9440 0.0056 0.9460 0.0057 

0.05 0.9508 0.0088 0.9468 0.0087 0.9484 0.0088 0.9510 0.0089 

0.07 0.9518 0.0114 0.9488 0.0112 0.9508 0.0113 0.9542 0.0114 

0.09 0.9522 0.0132 0.9498 0.0131 0.9514 0.0131 0.9514 0.0133 

0.10 0.9500 0.0140 0.9476 0.0138 0.9500 0.0139 0.9506 0.0140 

0.30 0.9532 0.0188 0.9498 0.0185 0.9514 0.0186 0.9550 0.0188 

0.50 0.9524 0.0194 0.9518 0.0192 0.9532 0.0193 0.9532 0.0194 

0.70 0.9504 0.0196 0.9482 0.0193 0.9508 0.0195 0.9518 0.0196 
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Table 3 The CP and AL of 95% two-sided confidence intervals for the common inverse mean of normal 

distributions with unknown CVs: 6 sample cases  

n 1  4  
GCICI

 LSCI
 AMCI

 THCI
 

CP AL CP AL CP AL CP AL 

20 0.10 0.01 0.9388 0.0055 0.9048 0.0048 0.9242 0.0052 0.9596 0.0056 

0.03 0.9522 0.0158 0.9214 0.0139 0.9404 0.0148 0.9584 0.0162 

0.05 0.9570 0.0248 0.9236 0.0216 0.9432 0.0231 0.9622 0.0254 

0.07 0.9530 0.0318 0.9224 0.0276 0.9388 0.0295 0.9600 0.0325 

0.09 0.9536 0.0373 0.9226 0.0323 0.9448 0.0346 0.9576 0.0381 

0.10 0.9564 0.0394 0.9240 0.0341 0.9434 0.0365 0.9606 0.0402 

0.30 0.9490 0.0531 0.9158 0.0460 0.9392 0.0492 0.9524 0.0542 

0.50 0.9464 0.0547 0.9174 0.0475 0.9364 0.0508 0.9484 0.0560 

0.70 0.9498 0.0554 0.9188 0.0480 0.9416 0.0513 0.9514 0.0567 

30 0.10 0.01 0.9424 0.0043 0.9234 0.0040 0.9348 0.0042 0.9598 0.0044 

0.03 0.9558 0.0126 0.9326 0.0116 0.9458 0.0121 0.9634 0.0128 

0.05 0.9516 0.0196 0.9306 0.0179 0.9424 0.0187 0.9542 0.0199 

0.07 0.9504 0.0252 0.9312 0.0230 0.9420 0.0240 0.9558 0.0256 

0.09 0.9510 0.0295 0.9254 0.0268 0.9406 0.0280 0.9544 0.0299 

0.10 0.9570 0.0312 0.9372 0.0284 0.9500 0.0296 0.9588 0.0317 

0.30 0.9480 0.0419 0.9322 0.0381 0.9434 0.0399 0.9502 0.0425 

0.50 0.9440 0.0432 0.9290 0.0394 0.9402 0.0412 0.9464 0.0439 

0.70 0.9454 0.0437 0.9292 0.0398 0.9408 0.0416 0.9472 0.0444 

50 0.10 0.01 0.9492 0.0033 0.9376 0.0031 0.9434 0.0032 0.9598 0.0033 

0.03 0.9544 0.0095 0.9452 0.0091 0.9516 0.0093 0.9588 0.0096 

0.05 0.9504 0.0149 0.9398 0.0141 0.9450 0.0144 0.9538 0.0150 

0.07 0.9466 0.0190 0.9352 0.0180 0.9416 0.0185 0.9502 0.0192 

0.09 0.9492 0.0222 0.9366 0.0210 0.9446 0.0215 0.9516 0.0224 

0.10 0.9534 0.0235 0.9408 0.0222 0.9474 0.0228 0.9532 0.0237 

0.30 0.9504 0.0316 0.9414 0.0299 0.9498 0.0307 0.9516 0.0319 

0.50 0.9494 0.0326 0.9424 0.0309 0.9492 0.0317 0.9520 0.0329 

0.70 0.9504 0.0329 0.9412 0.0312 0.9474 0.0320 0.9520 0.0332 

100 0.10 0.01 0.9462 0.0023 0.9416 0.0022 0.9446 0.0023 0.9508 0.0023 

0.03 0.9522 0.0066 0.9464 0.0065 0.9486 0.0065 0.9520 0.0067 

0.05 0.9508 0.0103 0.9450 0.0100 0.9486 0.0102 0.9524 0.0104 

0.07 0.9498 0.0132 0.9450 0.0129 0.9476 0.0130 0.9520 0.0133 

0.09 0.9518 0.0154 0.9468 0.0150 0.9494 0.0152 0.9522 0.0155 

0.10 0.9504 0.0163 0.9450 0.0159 0.9480 0.0161 0.9496 0.0164 

0.30 0.9512 0.0219 0.9428 0.0213 0.9470 0.0216 0.9510 0.0220 

0.50 0.9532 0.0226 0.9480 0.0220 0.9506 0.0223 0.9528 0.0227 

0.70 0.9506 0.0228 0.9462 0.0222 0.9486 0.0225 0.9516 0.0229 

200 0.10 0.01 0.9508 0.0016 0.9472 0.0016 0.9494 0.0016 0.9500 0.0016 

0.03 0.9512 0.0046 0.9498 0.0046 0.9508 0.0046 0.9524 0.0047 

0.05 0.9514 0.0072 0.9476 0.0071 0.9498 0.0072 0.9506 0.0072 

0.07 0.9514 0.0093 0.9494 0.0091 0.9506 0.0092 0.9534 0.0093 

0.09 0.9510 0.0108 0.9488 0.0107 0.9498 0.0107 0.9510 0.0108 

0.10 0.9466 0.0114 0.9430 0.0113 0.9448 0.0113 0.9448 0.0115 

0.30 0.9508 0.0153 0.9484 0.0151 0.9502 0.0152 0.9504 0.0154 

0.50 0.9486 0.0158 0.9472 0.0156 0.9486 0.0157 0.9502 0.0159 

0.70 0.9518 0.0160 0.9516 0.0158 0.9524 0.0159 0.9530 0.0160 
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