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Abstract. This paper proposes confidence intervals for
the common inverse mean of the normal distributions
with unknown coefficients of variation (CVs). The
generalized confidence interval (GCI), large sample,
adjusted method of variance estimates recovery
(adjusted MOVER) approaches were proposed to
construct the confidence intervals. The confidence
intervals were compared with existing confidence
interval for the common inverse mean of the normal
distributions based on the GCI proposed by Thangjai et
al. (2017a). The coverage probability and average
length of the proposed confidence intervals were
considered for performance criterion. The results
indicate that the GCI and the adjusted MOVER
confidence interval perform satisfactorily in terms of
the coverage probability and average length for large
sample sizes. The GCI and the adjusted MOVER
approaches are better than the other approaches for
constructing the confidence intervals for the common
inverse mean of the normal distributions with unknown
CVs. Finally, two real data in finance and medical
science are given to illustrate the proposed confidence
intervals.

Keywords: GCI approach, Large sample approach,
Adjusted MOVER approach, Monte Carlo simulation

1. Introduction

A normal distribution is the most important
and most widely used in statistics. This
distribution is often used in natural sciences
and social sciences. The mean and the
standard deviation of distribution are defined
as u an o, respectively. The ratio of the

standard deviation to the mean is the
coefficient of variation (CV).

An inverse mean is defined as the ratio
of one to the mean. It is widely used in many
fields. For instance, in experimental nuclear
physics, the inverse of the track curvature of a
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particle (1/ 1) is a charged particle momentum

(Lamanna et al. (1981) and Treadwell (1982)).
In economics, the inverse mean is used to
estimate the marginal propensity to consume
in a simple Keynesian model (Braulke
(1982)). The estimation of the inverse of the
CV is a related problem with the inverse of the
mean. Estimating the inverse of the CV is
more difficult to remove when the expected
value of the CV of normal distribution is
infinite  (Johnson and Kotz (1970) and
Chaturvedi and Rani (1996)). The inverse of
the CV is used to estimate the signal-to-noise
ratio (/o) in electrical and electronic

engineering  (Brown et al. (2001)).
Furthermore, the inverse of the CV is used a
reliability index in structural design and
construction (Zubeck and Kvinson (1996) and
Duerr (2008)).

The point estimation for the inverse
powers of a normal mean is presented by
Withers and Nadarajah  (2013). The
confidence interval estimation for the inverse
mean of normal distribution has been studied
by several researchers, e.g. Wongkhao et al.
(2013), Niwitpong and Wongkhao (2015) and
Niwitpong and Wongkhao (2016). Several
measuring instruments are utilized to measure
the products produced by the same production
process to estimate the average quality and
different laboratories are employed to measure
the amount of toxic waste in a river. If the
samples collected by independent studies are
from normal populations with a common
inverse mean, then the problem of interest
may be to construct a confidence interval for
the common inverse meanof these
populations. Therefore, Thangjai et al. (2016)
and Thangjai et al. (2017a) constructed the
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confidence intervals for the common inverse
mean of normal distributions.

In practice, if the CVs of the
populations are unknown, then the CVs need
to be estimated. Therefore, several researchers
have been studied the mean of normal
distribution with unknown CV, see the
research papers of Srivastava (1980), Sahai
(2004), Sahai and Acharya (2016), Sodanin et
al. (2016), and Thangjai et al. (2017b).
Recently, the confidence intervals for the
inverse mean and difference of inverse means
of normal distributions with unknown CVs are
constructed by Thangjai et al. (2019).
Consequently, estimating the common inverse
mean of several normal populations with
unknown CVs is most interesting problems in
statistical inference.

Let X =(X,,X,,...,X,) be a random

variable from all possible distributions. Let
L(X) and U(X) be the lower and upper
limits for the common mean with unknown
CVs with nominal confidence level 1-« . By
definition, 1/U(X) and 1/L(X) are the lower

and upper limits for the common inverse mean
with unknown CVs with nominal confidence
level 1-o .

This paper extends the paper works of
Thangjai et al. (2016), Thangjai et al. (2017a),
and Thangjai et al. (2019) to construct
confidence intervals for the common inverse
mean of the normal distributions with
unknown CVs. The confidence intervals were
constructed based on the generalized
confidence interval (GCI), large sample, and
adjusted method of variance estimates
recovery (Adjusted MOVER) approaches.
Firstly, The GCI approach has been widely
used to construct confidence interval; for
example, see Tian (2005), Tian and Wu
(2007), Thangjai et al. (2016), Thangjai et al.
(2017a), Thangjai et al. (2017b), and Thangjai
et al. (2019). The large sample approach is
used to estimate confidence interval for
common parameter in the research works of
Tian and Wu (2007), Thangjai et al. (2016),
and Thangjai et al. (2017a). Finally, the
adjusted MOVER approach is motivated based
on the MOVER approach of Zou and Donner
(2008) and Zou et al. (2009). The adjusted
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MOVER approach is introduced by Thangjai
and Niwitpong (2017) and Thangjai et al.
(2017a). Three approaches are compared with
the GCI approach for the common inverse
mean of normal distributions of Thangjai et al.
(2017a).

This paper is organized as follows. In
Section 2, the proposed approaches are
described. In Section 3, simulation results are
presented to evaluate the performances of the
proposed approaches and the existing
approach on coverage probabilities and
average lengths. Section 4, illustrates the
proposed approaches and the existing
approach with two real examples. And finally,
Section 5 summarizes this paper.

2. The Confidence Intervals for the
Common Inverse Mean of Several
Normal Populations with Unknown CVs

Let X =(X,, X,,...,X,) be a random variable
from a normal distribution with mean x and

variance o”. Let X and S’ be sample mean
and sample variance for X , respectively.
Following Srivastava (1980), the
estimator of the mean of normal population
with unknown CV has the following form

X _ nX M)
1+(S?/nX?) n+(S?/X?)
The inverse mean of normal population
with unknown CV is

n=

2 2 2 2
0:1:1+(0' Inu ):n+(0' | u ) @)
n H N
The estimator of @ is
2 v 2 21w 2
9:%:1+(S_/nx ):n+(S_/X ). 3
n X nX

According to Thangjai et al. (2019),
the mean and variance of & are

2
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For i=12,....k, j=12,...,n,, let

Xi = (X1, Xip0--, X, ) be a random variable
from the i-th normal distribution with the
common inverse mean 1/u and possibly
unequal variances o7. Let X, and S? be
sample mean and sample variance for X,,
and s’ be the
observed sample of X, and S?, respectively.

The estimator of the inverse mean of
normal population with unknown CV based on
I -th sample is

respectively. Also, let X

A
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Definition 1: Let X =(X,, X,,...,X,) be a
random variable from a distribution F(x|0),

A

Var(0,) =

I
.
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where x=(x;,X,,...,X,) IS an observed value
of X, &=(0,v) is a vector of unknown
parameters, € is a parameter of interest, and
v is a vector of nuisance parameters. Let
R(X;x,5) be a function of X ,x, and ¢o.
The random quantity R(X;x,8) is called a
generalized pivotal quantity if it has the
following two properties; see Weerahandi
(1993):

(i) The distribution of R(X;x,&) is free of

all unknown parameters.

(if) The observed value of R(X;x,J),

X =x, does not depend on the vector
of nuisance parameters.

The GCI is computed using the percentiles
of the generalized pivotal quantity. Let R(«a)
be the 100(c)-th percentile of R(X;x,5),
then R(e) is a 100(1- )% lower bound of
one-sided GCI for 0 and
[R(x/2),R(L—/2)] is the 100(1 - )% two-
sided GClI for 6.

Consider k independent normal

populations with a common inverse mean with
unknown CVs. Recall that

n. —1)S?

S CEY ®
where Zﬁ,_l denotes a chi-squared distribution
with  n;—1 degrees of freedom. The
generalized pivotal quantity for o7 s
obtained by

(n, -1)s
R,=—"5—. 9)

I Zni—l
The mean can be written as
_ 2

U~ )?i _ 4 (ni 1)S| (10)

o

where Z, and U, denote a standard normal

distribution and a chi-squared distribution with
n, —1 degrees of freedom, respectively. The

generalized pivotal quantity for z; is given by
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Z,

=

The generalized plvotal quantity for 6, is

(n 1)S

R, =%— (11)

n + (RU_2 / Rji)
n; R/li
and R y

(9) and Equation (11), respectively.
From Equation (5), the generalized
pivotal quantity for variance of 4, is

, (12)

gi =

where R, are defined in Equation

2
. 1 R, 2R, +4nRIR,
Rt = R, R, nRZJIrR MR SRL
fi i iy g2
n.R
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) 2RL+RIR,
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FoIIowmg Ye et al. (2010), the

generalized pivotal quantity for the common
inverse mean with unknown CVs is a
weighted average of the generalized pivotal
quantity R, based on k individual samples

given by

k
Rgz

i=1

Z :

ar(H) i=1 I:ilar(él)
where R, and R/ar(é) are defined in Equation

(14)

(12) and Equation (13), respectively.
To construct confidence interval based
on R,, we need to confirm that R, in

Equation (14) satisfies the two conditions in
Definition 1. The value of R, in Equation

(12) at (X,,S*)=(X,s?) is 1/,u,, where
1=12,....k.  Therefore, R,=1/u
(X,5%)=(X,s°). It is also clear from
Equation (12), that for given (X,s’), the
distribution of R, is independent of any

at
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unknown parameters. Therefore, R, is
generalized pivotal quantity, and its
percentiles can be wused to construct

confidence interval for the common inverse
mean with unknown CVs.

Therefore, the 100(1— «)% two-sided
confidence interval for the common inverse
mean with unknown CVs based on the GCI
approach is
[LGCI’UGCI] [R (al2),R

J-al2)], (15)

GCI
where R,(a/2) and R,(1—«/2) denote the
100(«/ 2) -th and 100(1—«/ 2) -th percentiles
of R,, respectively.

The following algorithm was used to
construct the GCI:

Algorithm 1
Forg=1tom
Generate ;{rf B

Equation (9)
Generate Z; and U;, and then compute R,

from Equation (11)
Compute R, and Pw(é), and then compute

and compute R, from

R, from Equation (14)

End g loop
Compute the 100(a/2)-th

100(1— a1 2) -th percentiles of R,,.

2.2 The Large Sample Confidence Interval
According to Graybill and Deal (1959), the
large sample estimate of inverse mean with
unknown CVs is a pooled estimate of the
inverse mean with unknown CV is

and the

Kk

i1 Var(a ) Var(H )’
where 4

(16)

IS defmed in Equation (6) and
Var(é,) is an estimate of Var(éi) in Equation
(7) with g, and o7 replaced by X, and s?’,
respectively.

The distribution of & is approximately
normal distribution when the sample size is
large. The confidence interval for the common
inverse mean with unknown CVs is
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constructed using the quantile of the normal
distribution. Therefore, the 100(1— «)% two-

sided confidence interval for the common
inverse mean with unknown CVs based on the
large sample approach is

. ko1 . ko
CILS ‘[LLS’ULS]{H_ZM/Z /g\m(é)'g”mz /%:\W(QJ

, (17)

where z,__,, denotes the (1-a/2)-th quantile
of the standard normal distribution.

2.3 The Adjusted MOVER Confidence Interval
Let 4, and &, be the parameters of interest.
Zou and Donner (2008) and Zou et al. (2009)
proposed the MOVER approach to construct
100(1— )% two-sided confidence interval

[L,U] for the sum of two parameters (6, +6,),

where L and U denote the lower and upper
limits of the confidence interval. By the
central limit theorem and under the
assumption of independence between the point

estimates 6, and 8, the lower limit L is

L=0,+6,-1,,Var(d) +Var(d,),  (18)
where z_,, denotes the (a/2)-th quantile of
the standard normal distribution.

Let [l,,u;] be a 100(1— )% two-sided
confidence interval for 6., where i=12. It is
well known that the lower limit L must be
closer to I, +1, than to 4, +6,. According to
the central limit theorem, the variance estimate
for éi at 6 =1 is
(éi _Ii)2 _

2

Var(d) = (19)

al2

Substituting back into Equation (18)
yields

L= él + éz _\/(él - I1)2 + (éz - |2)2
and similarly

(20)
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U=6,+6, +\/(ul —60)+(u,-6,)* (21).
Let 6,,6,,...,6, be the parameters of

interest. The MOVER approach is motivated
to  construct  100(1— )% two-sided

confidence interval [L,U] for the sum of k
parameters (6,+6,+...+6,). Let
i,ul0,,u,l,....[l,u] be the 100(1—a)%
two-sided confidence intervals for
6,,0,,...,0,, respectively. The lower limit L
must be closer to
0,+6,+...+6,. Using the central limit

theorem and the assumption of independence
between the point estimates 4,,6,,...,6,, the

lower limit L is

l,+1,+...+1, than to

L=6,+...+6 —za,z\/Var(él)+...+Var(ék)

=é’1+...+ék—\/(él—ll)2+...+(ék—Ik)z. (22)
Similarly, the upper limit U must be
closer to u+u,+...+u, than to

0,+0,+...+6,. Using the central limit
theorem and the assumption of independence
between the point estimates 6,,6,,...,6,, the

upper limit U is

U=6,+..+6, +za,2\/Var(é1)+...+Var(9k)

2

=0 +..+6, +\/u1 2h o+ -6) . (23)

The concepts of the large sample and
MOVER approaches given in Equations (16) -
(23) are used to construct the confidence
interval for the common inverse mean with
unknown CVs. This approach is called the
adjusted MOVER approach. The common
inverse mean with unknown CVs is weighted
average of the inverse mean with unknown
CV based on k individual samples is

k

(24)
= Var(& ) Var(H )’
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A

where the variance estimate for 6. at 6 =1,

and 6, =u, is

_é’i)2
2
al?2

)’

2
al2

L

Var(6,) = 5 ((92 J (25)

where z_,, denotes the (a/2)-th quantile of

the standard normal distribution.
Therefore, the lower and upper limits
for the common inverse mean with unknown

CVsare
Lo =0~ \// Yoy @
and

a/2
Uum = la/Z\/% 0)2 , (27)
where z_,, and z__, denote the (a/2)-th

and (l-a/2)-th quantiles of the standard

normal distribution.
Therefore, the 100(1— )% two-sided

confidence interval for the common inverse
mean with unknown CVs based on the
adjusted MOVER approach is
§ b
( |_9i)2

K42
. 1 A
9_21- 12 z A = 10+Z1 12
’ i=1 (Hi —|i)2 ' i=1 (Us

According to  Niwitpong and
Wongkhao (2016), the 100(1— «)% two-sided

confidence interval for the inverse mean based
on i-th sample is

0= { n, I

CIAM :[LAM'UAM]:

.(28)

S, +n X, =d.S, +/n X,
where d, denotes the (1—«a/2)-th quantile of

the Student’s t-distribution with n; -1
degrees of freedom.
Substituting |, and u; are defined in

Equation (29) back into Equation (28), the
confidence interval for the common inverse

}, (29)
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mean with unknown CVs based on the
adjusted MOVER approach is obtained.

Next, the GCI approach of Thangjai et
al. (2017a) is briefly reviewed for constructing
the confidence interval for the common
inverse mean of the normal distributions. The

generalized pivotal quantity for 6, is

_ L
o Rui '
(30)
where R, = (Z,si/\/U—i), Z, is the
standard normal distribution, and U, is chi-

squared distribution with n, —1 degrees of

freedom
The generalized pivotal quantity for
the common inverse mean of the normal
distributions is
Z

k
RH.TH = Z
i=1

i=1

.(31)

R

Var(49) Var(@)
R /(ni(R,)*).
R.=(n-1s’/y, , and y2, denotes a chi-

where RVa1r @) =

squared distribution with n, -1 degrees of
freedom.

Therefore, the 100(1—a)% two-sided
confidence interval for the common inverse
mean of the normal distributions based on the
GCI approach of Thangjai et al. (2017a) is
Cly =[Ly Uy ]1=[Rym (@/2), Ry 1=/ 2)]

(32)

where R, («/2) and R, (1—«a/2) denote
the 100(a/2)-th and 100(1—a/2)-th
percentiles of R, , respectively.

3. Simulation Studies

Simulation studies were carried out to evaluate
the performance of the GCI, large sample, and
adjusted MOVER approaches for the common
inverse mean with unknown CVs, comparison
studies were also conducted using the GCI
approach for the common inverse mean of
Thangjai et al. (2017a). The GCI was defined

as Clg , the large sample confidence interval
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was defined as Cl g, the adjusted MOVER

confidence intervals was defined as Cl ,,,, and

the GCI of Thangjai et al. (2017a) was defined
as Cl;,. The performances of these four
approaches were evaluated through the
coverage probabilities and the average lengths.
In particular, the confidence interval was
chosen when the simulated coverage
probability was greater than or close to the
nominal confidence level (1-«) and the
simulated average length was the shortest
average length.

The following algorithm was used to
estimate the coverage probability and average
length:

Algorithm 2
For M, m, k, (n,n,,...,n.), u,

(0,,05,...,0,), 0

Forh=1to M
Generate x; from N(u,07), i=12,...k,
j=12,...,n,

Compute X, and s?
Construct [LGCI (h)'UGCI(h)]’ [LLS(h)’ULS(h)]!

and [LAM(h)’UAM(h)]

If L, <0<U,,set p, =1 elseset p,, =0
Compute U, — L,

End h loop

Compute means of probability p, and length
U Liny -

In the simulation, each confidence
interval was computed at the nominal
confidence level of 0.95. The sample cases
were used k= 2, 4, and 6, with the sample
sizes n,=n,=...=n,=n= 20, 30, 50, 100,
and 200. Following Thangjai et al. (2017a),
the common inverse mean of normal data
within each population was 1/ = 1.00, and
the population standard deviations were
0,=0,=...=0,, = 0.10 and
Owizpn = Ogzye =---=0, = 0.01, 0.03, 0.05,
0.07, 0.09, 0.10, 0.30, 0.50, and 0.70. For each
parameter setting, 5000 random samples were

(O
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generated and thus 2500R,’s were obtained

for each of the random samples.

Tables 1-3 presents the coverage
probabilities and average lengths of 95% two-
sided confidence intervals for the common
inverse mean with unknown CVs for k = 2, 4,
and 6 sample cases, respectively. For k= 2,
the coverage probabilities of Clg, were
closer to the nominal confidence level of 0.95
when the sample size was large. Moreover,
Cl, and CI,, provided low coverage
probability especially for small sample size.
The coverage probabilities of Cl;,, were close
to the nominal confidence level regardless of
the sample sizes. For k= 4 and k= 6, the
coverage probabilities of Clg, and Cl,

were stable. For small sample size, the
coverage probabilities of Cl; and Cl,,
tended to increase when the value of o was
increase. For large sample size, Clg, and

Cl,, performed as well as Cl;,, in terms of
the coverage probability and average length.
Overall, the coverage probabilities of Cly,
were close to nominal confidence level than
Clge, and Cl,, when the sample size was

small (n< 30), whereas Cl,, and ClI,,

performed as well as Cl;, in term of the

coverage probability and average length when
the sample size was large (n > 30). Therefore,

Cl,, can be an alternative to estimate the

confidence interval for the common inverse
mean with unknown CVs when the sample
size was small and value of o was large.

Moreover, Clg, and Cl,,  were

recommended to construct the confidence
intervals when the sample size was large.

4. An Empirical Application

Two examples were exhibited to illustrate the
proposed approaches given in Section 2 and
the GCI approach of Thangjai et al. (2017a).
Example 1: Walpole et al. (2012) and
Thangjai et al. (2017a) considered rates of
return on equity for 24 randomly selected
firms. The data were categorized into four
groups depending on the level of financial
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leverages: control, low, medium, and high.
Thangjai et al. (2017a) analyzed that the four
data sets come from normal populations. From
the data, the following information regarding
the estimates of sample size, mean, variance,
and inverse mean are n, = 6, n, = 6, N, = 6,
n,= 6, X = 43833, X,= 5.1000, X, =
8.4167, X,= 83333, s'= 4.8257, s;
3.8840, s?= 59937, s;= 54707, 1/%X =
0.2281, 1/x, = 0.1961, 1/X, = 0.1188, and

1/X,= 0.1200. The 95% two-sided

confidence intervals for the common inverse
mean with unknown CVs are evaluated. The

GCl is Clg, = [0.1258, 0.2473] with a length
of interval of 0.1215. The large sample
confidence interval Is Cl =
[-0.2897, 0.6384] with a length of interval of
0.9281. The adjusted MOVER confidence
interval is Cl,, = [0.1104, 0.1630] with a
length of interval of 0.0526. Finally, the GCI
of Thangjai et al. (2017a) is Cl;, = [0.0980,
0.1644] with a length of interval of 0.0664. It
seems that Cl,, performs better than the
other confidence intervals in term of length

when the sample size is small and the variance
is large.

Example 2: Tian (2005) and Fung and Tsang
(1998) considered the data  about
measurements of Hb, RBC, MCV, Hct, WBC
and Platelet from 1995 and 1996 surveys.
Fung and Tsang (1998) presented that the data
come from normal distributions. For 1995
survey, the sample size, sample mean, sample
variance, coefficient of variation, and inverse
mean are extracted: n, = 63, X, = 84.13, 7 =
3.390, 7, = 0.0406, and 1/x = 0.0119. For
1996 survey, the summary statistics are as
follows: n,= 72, X, = 85.68, s, = 2.946,
7,= 0.0346, and 1/X,= 0.0117. The
confidence intervals for the common inverse
mean with unknown CVs are computed. The
GClis Clg, = [0.0117, 0.0118] with a length

of interval of 0.0001. The large sample
confidence interval is Cl ¢ = [0.0085, 0.0150]
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with a length of interval of 0.0065. The
adjusted MOVER confidence interval is
Cl,, = [0.0117, 0.0118] with a length of
interval of 0.0001. The GCI of Thangjai et al.
(2017a) is Cly, = [0.0117, 0.0118] with a
length of interval of 0.0001. It is clear from
the above results that Clg, Cl,,, and Cl,

perform well in term of length when the
sample size is large. These results support the
simulation results in the previous section.

5. Discussion and Conclusions

The aim of this paper was to propose novel
approaches for constructing confidence
interval for the common inverse mean of
normal distributions with unknown CVs. The
proposed  confidence intervals  were
constructed based on the GCI, large sample,
and adjusted MOVER approaches, compared
with the existing approach, using the GCI
approach of Thangjai et al. (2017a) to estimate
the confidence interval for the common
inverse mean. The GCI approach provided
more stable coverage probability and it was
recommended to construct confidence interval
for the common inverse mean with unknown
CVs when the sample size was large. The
large sample approach was not recommended
to estimate the confidence interval. The
adjusted MOVER approach  performed
satisfactorily in terms of the coverage
probability and average length of the
confidence interval when the sample size was
large. However, the adjusted MOVER
approach was easy to use more than the GCI
approach. This is because the adjusted
MOVER approach was computed by the
simple formula, whereas the GCI approach
was based on a computational approach.
Therefore, the adjusted MOVER approach can
be an alternative to construct confidence
interval for the common inverse mean with
unknown CVs when the sample size was
large.
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Table 1 The coverage probabilities (CP) and average lengths (AL) of 95% two-sided confidence intervals for the
common inverse mean of normal distributions with unknown CVs: 2 sample cases

Clgg, Cls Claw Cly,

n o, o,

CP AL CP AL CP AL CP AL

20 0.10 | 0.01 | 0.9454 0.0092 0.9296 0.0086 0.9456 0.0092 0.9518 0.0094

0.03 | 0.9584 0.0269 0.9374 0.0247 0.9540 0.0264 0.9622 0.0276

0.05 | 0.9520 0.0423 0.9288 0.0383 0.9440 0.0409 0.9572 0.0433

0.07 | 0.9496 0.0543 0.9260 0.0488 0.9410 0.0521 0.9556 0.0556

0.09 | 0.9518 0.0633 0.9240 0.0568 0.9414 0.0607 0.9584 0.0648

0.10 | 0.9530 0.0671 0.9242 0.0602 0.9406 0.0643 0.9570 0.0687

0.30 | 0.9502 0.0902 0.9296 0.0815 0.9460 0.0872 0.9538 0.0922

0.50 | 0.9518 0.0932 0.9320 0.0846 0.9472 0.0905 0.9544 0.0955

0.70 | 0.9552 0.0944 0.9356 0.0856 0.9524 0.0916 0.9588 0.0970

30 0.10 | 0.01 0.9436 0.0074 0.9320 0.0070 0.9450 0.0074 0.9510 0.0075

0.03 0.9488 0.0215 0.9358 0.0204 0.9458 0.0212 0.9514 0.0219

0.05 0.9526 0.0336 0.9368 0.0315 0.9476 0.0328 0.9576 0.0341

0.07 0.9456 0.0431 0.9320 0.0402 0.9410 0.0419 0.9508 0.0438

0.09 0.9498 0.0504 0.9346 0.0469 0.9444 0.0490 0.9540 0.0512

0.10 0.9536 0.0532 0.9336 0.0495 0.9472 0.0517 0.9570 0.0541

0.30 0.9460 0.0713 0.9326 0.0669 0.9430 0.0699 0.9498 0.0724

0.50 0.9510 0.0739 0.9396 0.0695 0.9496 0.0726 0.9556 0.0751

0.70 0.9538 0.0746 0.9402 0.0704 0.9502 0.0735 0.9566 0.0759

50 0.10 | 0.01 0.9430 0.0056 0.9372 0.0055 0.9432 0.0056 0.9502 0.0057

0.03 0.9452 0.0163 0.9392 0.0158 0.9460 0.0162 0.9502 0.0165

0.05 0.9538 0.0255 0.9438 0.0245 0.9502 0.0252 0.9554 0.0258

0.07 0.9512 0.0328 0.9422 0.0314 0.9470 0.0322 0.9512 0.0330

0.09 0.9542 0.0384 0.9464 0.0367 0.9520 0.0377 0.9566 0.0387

0.10 0.9526 0.0405 0.9424 0.0387 0.9480 0.0397 0.9552 0.0408

0.30 0.9510 0.0542 0.9446 0.0522 0.9484 0.0536 0.9528 0.0547

0.50 0.9472 0.0559 0.9406 0.0541 0.9460 0.0555 0.9494 0.0565

0.70 0.9496 0.0564 0.9406 0.0545 0.9484 0.0559 0.9498 0.0569

100 | 0.10 | 0.01 0.9504 0.0039 0.9484 0.0039 0.9512 0.0039 0.9560 0.0040

0.03 0.9430 0.0114 0.9404 0.0112 0.9418 0.0114 0.9446 0.0115

0.05 0.9526 0.0178 0.9482 0.0174 0.9510 0.0177 0.9542 0.0179

0.07 0.9540 0.0228 0.9464 0.0223 0.9510 0.0226 0.9544 0.0229

0.09 0.9528 0.0266 0.9480 0.0260 0.9524 0.0264 0.9550 0.0268

0.10 0.9518 0.0282 0.9468 0.0275 0.9516 0.0279 0.9556 0.0283

0.30 0.9496 0.0378 0.9456 0.0371 0.9476 0.0376 0.9506 0.0380

0.50 0.9500 0.0390 0.9468 0.0383 0.9502 0.0388 0.9506 0.0392

0.70 0.9452 0.039%4 0.9434 0.0388 0.9458 0.0393 0.9462 0.0396

200 | 0.10 | 0.01 0.9500 0.0028 0.9486 0.0028 0.9494 0.0028 0.9514 0.0028

0.03 0.9476 0.0080 0.9456 0.0080 0.9468 0.0080 0.9490 0.0080

0.05 0.9444 0.0125 0.9422 0.0124 0.9442 0.0124 0.9452 0.0125

0.07 0.9498 0.0160 0.9480 0.0158 0.9496 0.0159 0.9498 0.0160

0.09 0.9464 0.0187 0.9438 0.0185 0.9456 0.0186 0.9498 0.0187

0.10 0.9520 0.0198 0.9528 0.0195 0.9536 0.0197 0.9540 0.0198

0.30 0.9484 0.0265 0.9480 0.0262 0.9484 0.0264 0.9500 0.0266

0.50 0.9494 0.0274 0.9468 0.0271 0.9492 0.0273 0.9510 0.0274

0.70 0.9550 0.0276 0.9554 0.0274 0.9566 0.0276 0.9572 0.0277
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Table 2 The CP and AL of 95% two-sided confidence intervals for the common inverse mean of normal
distributions with unknown CVs: 4 sample cases

CIGCI CILS CIAM CITH

n| o | o;

CP AL CP AL CP AL CP AL

20 | 010 | 0.01 | 0.9412 | 0.0066 | 0.9080 0.0060 0.9282 0.0064 0.9538 0.0068

0.03 | 0.9450 | 0.0193 | 0.9180 0.0171 0.9348 0.0183 0.9522 0.0197

0.05 | 0.9584 | 0.0302 | 0.9250 0.0266 0.9460 0.0284 0.9636 0.0309

0.07 | 0.9536 | 0.0389 | 0.9258 0.0342 0.9416 0.0365 0.9602 0.0398

0.09 | 0.9554 | 0.0453 | 0.9212 0.0396 0.9436 0.0424 0.9600 0.0463

0.10 | 0.9580 | 0.0480 | 0.9258 0.0420 0.9442 0.0449 0.9616 0.0491

0.30 | 0.9488 | 0.0644 | 0.9232 0.0566 0.9408 0.0606 0.9522 0.0659

0.50 | 0.9490 | 0.0667 | 0.9216 0.0586 0.9392 0.0627 0.9508 0.0682

0.70 | 0.9494 | 0.0678 | 0.9254 0.0596 0.9428 0.0637 0.9530 0.0695

30 | 0.10 | 0.01 | 0.9434 | 0.0053 | 0.9262 0.0049 0.9384 0.0051 0.9554 0.0054

0.03 | 0.9498 | 0.0153 | 0.9314 0.0142 0.9442 0.0148 0.9552 0.0156

0.05 | 0.9528 | 0.0240 | 0.9340 0.0220 0.9452 0.0230 0.9568 0.0243

0.07 | 0.9566 | 0.0308 | 0.9330 0.0283 0.9464 0.0295 0.9608 0.0313

0.09 | 0.9524 | 0.0360 | 0.9328 0.0329 0.9436 0.0344 0.9546 0.0365

0.10 | 0.9578 | 0.0380 | 0.9390 0.0347 0.9504 0.0363 0.9638 0.0386

0.30 | 0.9558 | 0.0511 | 0.9374 0.0469 0.9468 0.0490 0.9580 0.0518

0.50 | 0.9500 | 0.0527 | 0.9338 0.0485 0.9462 0.0506 0.9520 0.0535

0.70 | 0.9482 | 0.0533 | 0.9308 0.0490 0.9410 0.0512 0.9508 0.0541

50 | 0.10 | 0.01 | 0.9472 | 0.0040 | 0.9360 0.0038 0.9428 0.0039 0.9530 0.0041

0.03 | 0.9534 | 0.0116 | 0.9440 0.0111 0.9488 0.0114 0.9576 0.0117

0.05 | 0.9572 | 0.0181 | 0.9474 0.0173 0.9540 0.0177 0.9586 0.0183

0.07 | 0.9460 | 0.0233 | 0.9376 0.0221 0.9436 0.0227 0.9502 0.0235

0.09 | 0.9536 | 0.0272 | 0.9398 0.0258 0.9486 0.0265 0.9552 0.0275

0.10 | 0.9532 | 0.0287 | 0.9438 0.0272 0.9510 0.0279 0.9550 0.0290

0.30 | 0.9526 | 0.0386 | 0.9444 0.0367 0.9498 0.0376 0.9560 0.0390

0.50 | 0.9488 | 0.0399 | 0.9388 0.0379 0.9454 0.0389 0.9494 0.0402

0.70 | 0.9512 | 0.0402 | 0.9422 0.0383 0.9488 0.0392 0.9534 0.0406

100 | 0.10 | 0.01 | 0.9458 | 0.0028 | 0.9406 0.0027 0.9448 0.0028 0.9504 0.0028

0.03 | 0.9514 | 0.0081 | 0.9470 0.0079 0.9498 0.0080 0.9522 0.0081

0.05 | 0.9546 | 0.0126 | 0.9476 0.0123 0.9520 0.0125 0.9558 0.0127

0.07 | 0.9592 | 0.0162 | 0.9540 0.0158 0.9568 0.0160 0.9606 0.0163

0.09 | 0.9522 | 0.0189 | 0.9470 0.0184 0.9506 0.0186 0.9550 0.0190

0.10 | 0.9528 | 0.0200 | 0.9468 0.0194 0.9504 0.0197 0.9532 0.0201

0.30 | 0.9494 | 0.0268 | 0.9460 0.0261 0.9498 0.0264 0.9508 0.0269

0.50 | 0.9476 | 0.0277 | 0.9434 0.0270 0.9466 0.0273 0.9502 0.0278

0.70 | 0.9452 | 0.0279 | 0.9412 0.0273 0.9436 0.0276 0.9480 0.0280

200 | 0.10 | 0.01 | 0.9460 | 0.0020 | 0.9432 0.0019 0.9450 0.0020 0.9466 0.0020

0.03 | 0.9448 | 0.0057 | 0.9414 0.0056 0.9440 0.0056 0.9460 0.0057

0.05 | 0.9508 | 0.0088 | 0.9468 0.0087 0.9484 0.0088 0.9510 0.0089

0.07 | 0.9518 | 0.0114 | 0.9488 0.0112 0.9508 0.0113 0.9542 0.0114

0.09 | 0.9522 | 0.0132 | 0.9498 0.0131 0.9514 0.0131 0.9514 0.0133

0.10 | 0.9500 | 0.0140 | 0.9476 0.0138 0.9500 0.0139 0.9506 0.0140

0.30 | 0.9532 | 0.0188 | 0.9498 0.0185 0.9514 0.0186 0.9550 0.0188

0.50 | 0.9524 | 0.0194 | 0.9518 0.0192 0.9532 0.0193 0.9532 0.0194

0.70 | 0.9504 | 0.0196 | 0.9482 0.0193 0.9508 0.0195 0.9518 0.0196
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Table 3 The CP and AL of 95% two-sided confidence intervals for the common inverse mean of normal
distributions with unknown CVs: 6 sample cases

CIGCI CILS CIAM C:ITH

n | o | o
CP AL CP AL CP AL CP AL

20 | 0.10 | 0.01 | 0.9388 | 0.0055 | 0.9048 | 0.0048 0.9242 0.0052 0.9596 0.0056

0.03 | 0.9522 | 0.0158 | 0.9214 | 0.0139 0.9404 0.0148 0.9584 0.0162

0.05 | 0.9570 | 0.0248 | 0.9236 | 0.0216 0.9432 0.0231 0.9622 0.0254

0.07 | 0.9530 | 0.0318 | 0.9224 | 0.0276 0.9388 0.0295 0.9600 0.0325

0.09 | 0.9536 | 0.0373 | 0.9226 | 0.0323 0.9448 0.0346 0.9576 0.0381

0.10 | 0.9564 | 0.0394 | 0.9240 | 0.0341 0.9434 0.0365 0.9606 0.0402

0.30 | 0.9490 | 0.0531 | 0.9158 | 0.0460 0.9392 0.0492 0.9524 0.0542

0.50 | 0.9464 | 0.0547 | 0.9174 | 0.0475 0.9364 0.0508 0.9484 0.0560

0.70 | 0.9498 | 0.0554 | 0.9188 | 0.0480 0.9416 0.0513 0.9514 0.0567

30 | 0.10 | 0.01 | 0.9424 | 0.0043 | 0.9234 | 0.0040 0.9348 0.0042 0.9598 0.0044

0.03 | 0.9558 | 0.0126 | 0.9326 | 0.0116 0.9458 0.0121 0.9634 0.0128

0.05 | 0.9516 | 0.0196 | 0.9306 | 0.0179 0.9424 0.0187 0.9542 0.0199

0.07 | 0.9504 | 0.0252 | 0.9312 | 0.0230 0.9420 0.0240 0.9558 0.0256

0.09 | 0.9510 | 0.0295 | 0.9254 | 0.0268 0.9406 0.0280 0.9544 0.0299

0.10 | 0.9570 | 0.0312 | 0.9372 | 0.0284 0.9500 0.0296 0.9588 0.0317

0.30 | 0.9480 | 0.0419 | 0.9322 | 0.0381 0.9434 0.0399 0.9502 0.0425

0.50 | 0.9440 | 0.0432 | 0.9290 | 0.0394 0.9402 0.0412 0.9464 0.0439

0.70 | 0.9454 | 0.0437 | 0.9292 0.0398 0.9408 0.0416 0.9472 0.0444

50 | 0.10 | 0.01 | 0.9492 | 0.0033 | 0.9376 | 0.0031 0.9434 0.0032 0.9598 0.0033

0.03 | 0.9544 | 0.0095 | 0.9452 | 0.0091 0.9516 0.0093 0.9588 0.0096

0.05 | 0.9504 | 0.0149 | 0.9398 | 0.0141 0.9450 0.0144 0.9538 0.0150

0.07 | 0.9466 | 0.0190 | 0.9352 | 0.0180 0.9416 0.0185 0.9502 0.0192

0.09 | 0.9492 | 0.0222 | 0.9366 | 0.0210 0.9446 0.0215 0.9516 0.0224

0.10 | 0.9534 | 0.0235 | 0.9408 | 0.0222 0.9474 0.0228 0.9532 0.0237

0.30 | 0.9504 | 0.0316 | 0.9414 | 0.0299 0.9498 0.0307 0.9516 0.0319

0.50 | 0.9494 | 0.0326 | 0.9424 | 0.0309 0.9492 0.0317 0.9520 0.0329

0.70 | 0.9504 | 0.0329 | 0.9412 | 0.0312 0.9474 0.0320 0.9520 0.0332

100 | 0.10 | 0.01 | 0.9462 | 0.0023 | 0.9416 | 0.0022 0.9446 0.0023 0.9508 0.0023

0.03 | 0.9522 | 0.0066 | 0.9464 | 0.0065 0.9486 0.0065 0.9520 0.0067

0.05 | 0.9508 | 0.0103 | 0.9450 | 0.0100 0.9486 0.0102 0.9524 0.0104

0.07 | 0.9498 | 0.0132 | 0.9450 | 0.0129 0.9476 0.0130 0.9520 0.0133

0.09 | 0.9518 | 0.0154 | 0.9468 | 0.0150 0.9494 0.0152 0.9522 0.0155

0.10 | 0.9504 | 0.0163 | 0.9450 | 0.0159 0.9480 0.0161 0.9496 0.0164

0.30 | 0.9512 | 0.0219 | 0.9428 | 0.0213 0.9470 0.0216 0.9510 0.0220

0.50 | 0.9532 | 0.0226 | 0.9480 | 0.0220 0.9506 0.0223 0.9528 0.0227

0.70 | 0.9506 | 0.0228 | 0.9462 | 0.0222 0.9486 0.0225 0.9516 0.0229

200 | 0.10 | 0.01 | 0.9508 | 0.0016 | 0.9472 | 0.0016 0.9494 0.0016 0.9500 0.0016

0.03 | 0.9512 | 0.0046 | 0.9498 | 0.0046 0.9508 0.0046 0.9524 0.0047

0.05 | 0.9514 | 0.0072 | 0.9476 | 0.0071 0.9498 0.0072 0.9506 0.0072

0.07 | 0.9514 | 0.0093 | 0.9494 | 0.0091 0.9506 0.0092 0.9534 0.0093

0.09 | 0.9510 | 0.0108 | 0.9488 | 0.0107 0.9498 0.0107 0.9510 0.0108

0.10 | 0.9466 | 0.0114 | 0.9430 | 0.0113 0.9448 0.0113 0.9448 0.0115

0.30 | 0.9508 | 0.0153 | 0.9484 | 0.0151 0.9502 0.0152 0.9504 0.0154

0.50 | 0.9486 | 0.0158 | 0.9472 | 0.0156 0.9486 0.0157 0.9502 0.0159

0.70 | 0.9518 | 0.0160 | 0.9516 | 0.0158 0.9524 0.0159 0.9530 0.0160
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