

ORIGINAL PAPER

Abundance of coral recruits on settlement plate experiments from Mu Ko Angthong, the Western Gulf of Thailand

Wanlaya Klinthong^a, Makamas Sutthacheep^a, Wiphawan Aunkhongthong^a, Siriluck Rongprakhon^a, Chainarong Ruangthong^b, Thamasak Yeemin^{a*}

^aMarine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

^bChumphon Marine National Park Operation Center 1, Department of National Parks, Wildlife and Plant Conservation, Chumphon Province, Thailand

*Corresponding author: *thamasakyeyemin@hotmail.com*

Received: 17 August 2021 / Revised: 25 August 2021 / Accepted: 25 August 2021

Abstract. facilitating coral recovery after natural and anthropogenic disturbances. Settlement plate experiments were used to study coral settlement and recruitment patterns. Studies on coral larval supply and recruitment patterns in Mu Ko Angthong are limited. Coral recruitment is a critical ecology process on tropical reefs to enhance coral populations following major disturbances. This study aimed to examine coral recruitment on the reefs at Mu Ko Angthong using the settlement plate experiments. The settlement plates were made from terracotta and submerged at the study sites from April 2016 to March 2018. The density of coral recruits on settlement plate experiments at Ko Sam Sao (West) (53.12 ± 14.6 recruits/m², $p < 0.05$) was significantly higher than that at Ko Sam Sao (East) (12.50 ± 8.7 recruits/m²) and Ko Wua Kan Tang (3.12 ± 1.56 recruits/m²). Coral recruits mainly attached settlement plates on a horizontal angle following the oblique angle at Ko Sam Sao (East) and Ko Sam Sao (West), but not found coral recruit settled on the horizontal angle at Ko Wua Kantang. Coral recruits with four taxonomic compositions (*Pocillopora* spp., *Porites* spp., *Fungia* spp., *Goniastrea* spp.) and some unidentified coral recruits were found. *Pocillopora* spp. were the most dominant taxa of coral recruits on the settlement plate experiments at Ko Sam Sao (West). This study provides essential baseline scientific data to the understanding of coral recruitment patterns in Mu Ko Angthong. Filamentous algae were also the most dominant group on the settlement plates. A long-term monitoring program for coral recruitment in other island groups in the Western Gulf of Thailand is needed.

Keywords: coral, recruitment, settlement plate, larvae, Gulf of Thailand

1. Introduction

Coral reefs are the one significant ecosystem distributed in warm, shallow waters of tropical and subtropical seas. In coral reefs found high biological diversity due to complex ecosystems

(Veron et al., 2015). Nowadays, coral reefs are present decrease the reef area from high sea surface temperature, increase solar irradiances (Lesser and Farrell, 2004), increased frequency and intensity of marine heatwaves (Heron et al., 2016; Eakin et al., 2019), nutrient input (Fabricius, 2005; Møller et al., 2015), microplastic and metal pollution (Moore, 2008; Prouty et al., 2013). These factors have induced more the occurrence and extreme of coral bleaching worldwide (Coles & Brown, 2003; Hughes et al., 2017, 2018). Coral recruitment is an essential ecological process in maintaining coral reef ecosystems and facilitating coral recovery after natural and anthropogenic disturbances (Ritson-Williams et al., 2009; Cooper et al., 2014; Cameron & Harrison, 2020).

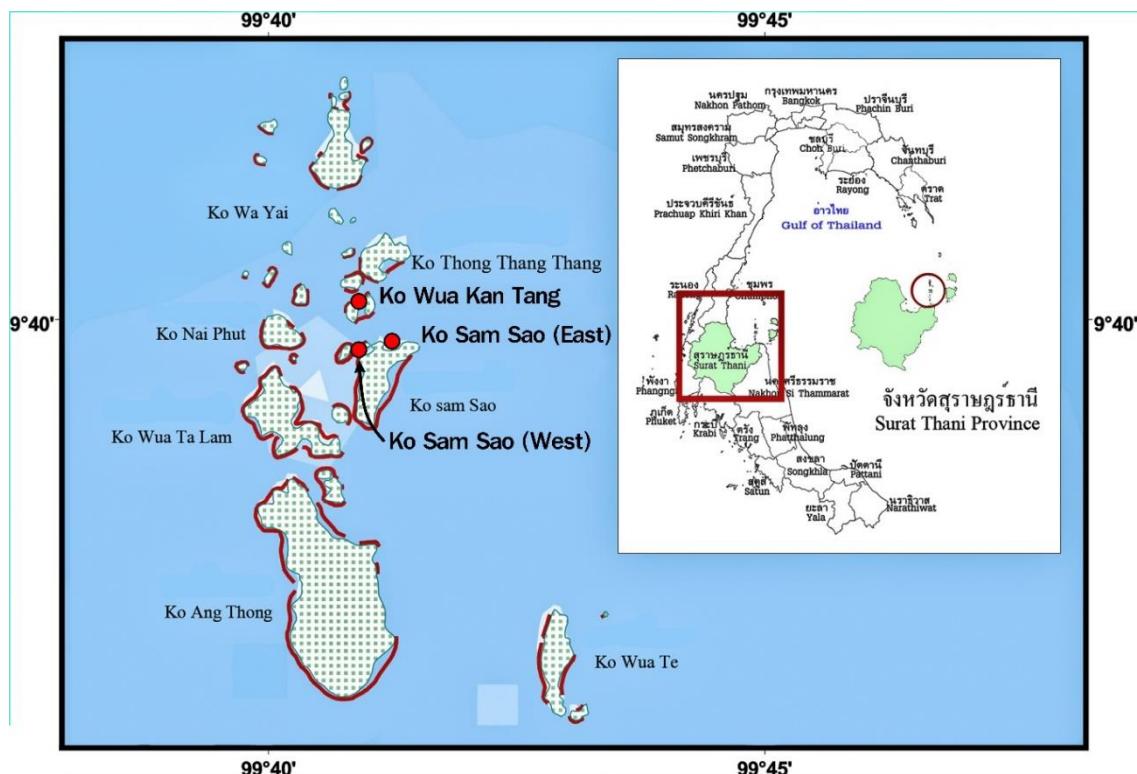
Settlement plate experiments were widely used to study coral settlement and recruitment patterns. Moreover, the settlement plates are artificial substrates and coral restoration tools (dela Cruz & Harrison, 2020). Methods for observing coral settlement experiment were variety design to the reef substratum have been utilized, including plexiglass and PVC plates (Birkeland et al., 1981), terracotta tiles (Tomascik, 1991; Mundy, 2000; Doropoulos et al., 2015; Mwachireya et al., 2017), or settlement tiles cut from dead *Acropora* (dela Cruz & Harrison, 2020). The population method for plate attachment that has been used in coral recruitment studies on Western Pacific coral reefs is the steel mesh rack method (e.g., Wallace & Bull, 1981; Wallace, 1985; Harriott, 1995; Harriott & Fisk, 1987; Babcock, 1988; Fisk & Harriott,

1990; Sammarco, 1991; Harriott, 1992; Baird & Hughes, 1997; Dunstan & Johnson, 1998) Taiwan (Ho & Dai, 2014) and Thailand (Klinthong et al., 2013, 2014, 2015, 2018). However, Studies on coral larval supply and recruitment patterns in the Gulf of Thailand are very limited. This study aimed to examine coral recruitment on the reefs at Mu Ko Angthong using the settlement plate experiments at Ko Sam Sao (East), Ko Sam Sao (West), and Ko Wua Kan Tang in Mu Ko Angthong National Park, the Western Gulf of Thailand. In this study, we extend the knowledge of the density and composition of a coral recruit from larva settlement research by investigating coral settlement. Due to the angle of settlement plates relative to the substratum is also an important source of variability in studies of coral recruitment, we also observed the affected of the angle of settlement plates with coral recruit settlement (Sammarco 1991).

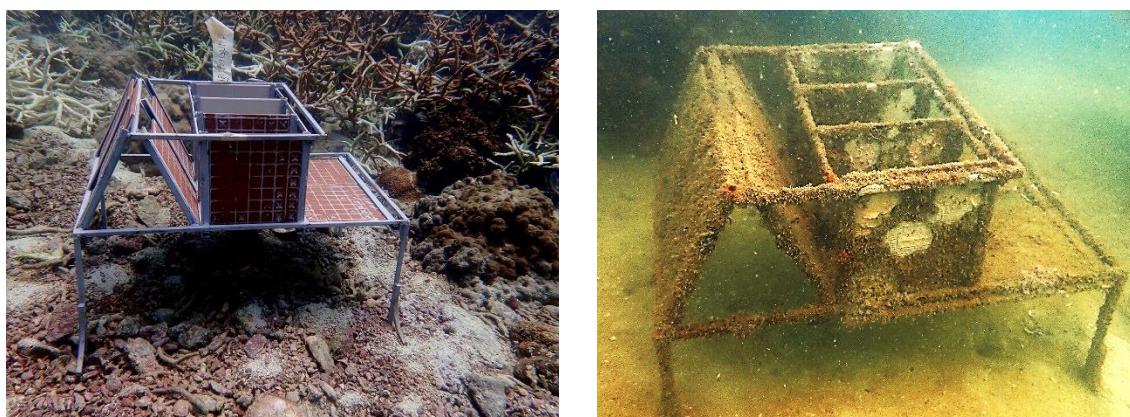
2. Materials and Methods

The coral recruit settlements were conducted to investigate the settlement of coral recruitment patterns on coral communities in Mu Ko Angthong, Surat Thani Province, the Western Gulf of Thailand. Three study sites were examined, i.e., Ko Sam Sao (East), Ko Sam Sao (West), and Ko Wua Kantang (Figure 1).

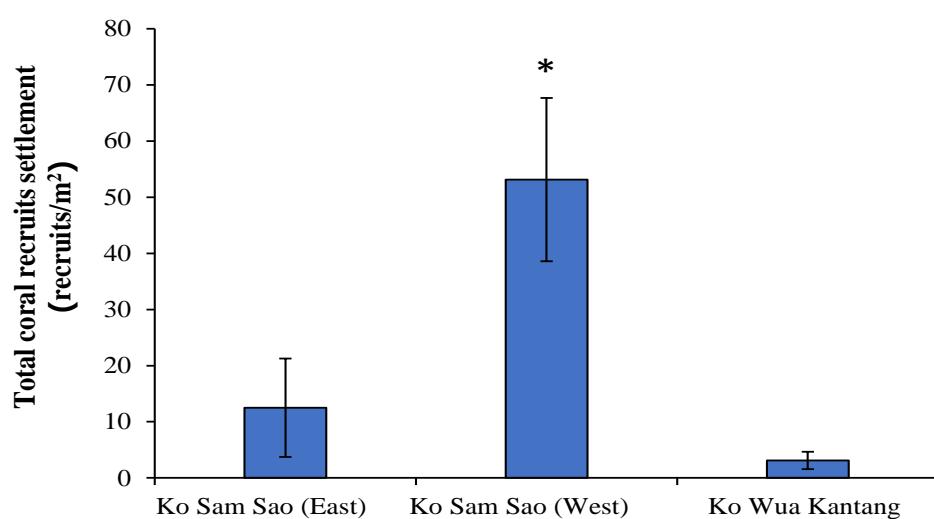
The settlement plates experiment was made from Terracotta plates (20x20 cm²). Terracotta plates were submerged in the coral community using the settlement panel experiment made from steel at 2-5 m depth. We designed the settlement panel experiment to set up the tile at different horizontal, oblique, and horizontal angles. Eight terracotta plates per angle were randomly placed on the substrate in each study site from April 2016 to March 2018 using SCUBA diving (Figure 2).

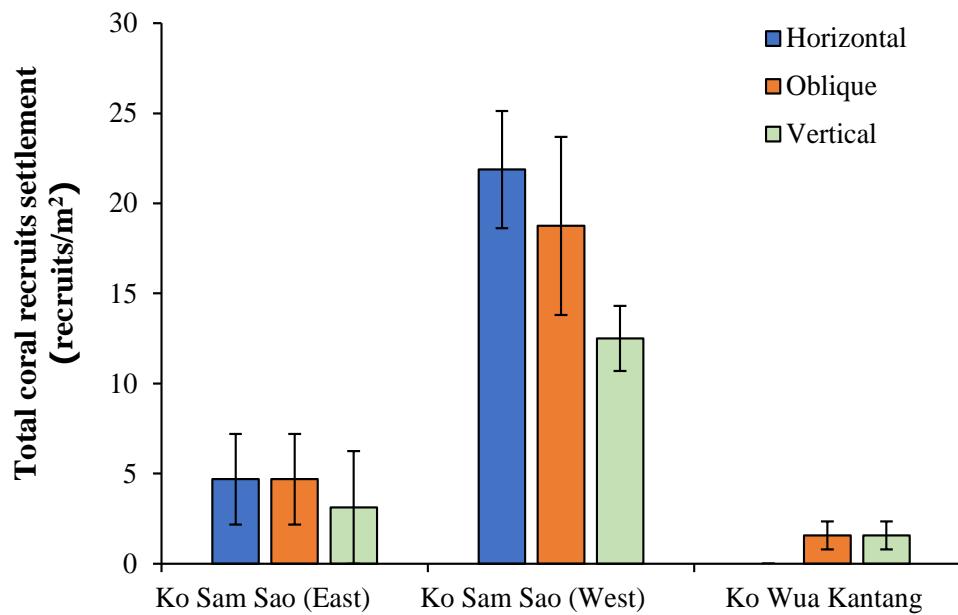

At the end of the two-year experiment, we collected All settlement plates and fixed them in 10% formalin-seawater, labeled, and transported them back to the laboratory. The Terracotta

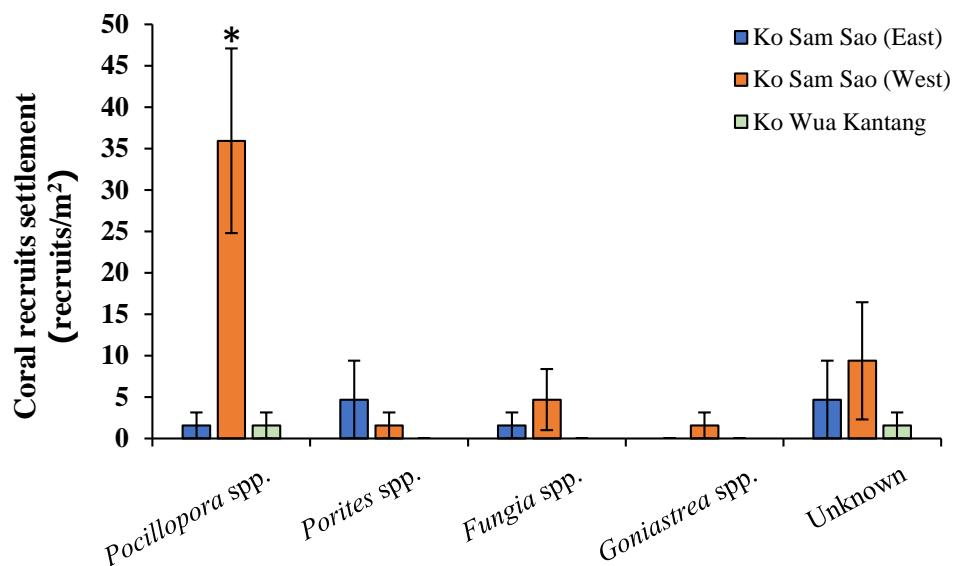
plates were then bleached in a chlorine solution and air-dried for further identification of coral recruits. All coral recruits were counted and identified to genus level under a dissecting microscope.


Data statistical analyses were using the Kolmogorov-Smirnov test for checked normal distribution; square root transformation was performed when data were not normally distributed. A One-way ANOVA was used to test significant differences between total coral recruit densities and among study sites or in differences angle of terracotta plates, including test significant differences between densities of coral recruits in each genus in among study sites. Pairwise comparisons with post hoc Tukey's test were used to test the level of significant differences was considered significant.

3. Results


The total density of coral recruits (recruits per m²) on settlement plates after two years is shown in Figure 3. Ko Sam Sao (West) shows the significant differences in mean density of coral recruits higher than those at Ko Sam Sao (East) and Ko Wua Kan Tang (53.12 ± 14.6 recruits/m², $p < 0.05$). The effects of differences in settlement plate angle, coral recruits mostly settled on a horizontal angle following the oblique angle at Ko Sam Sao (East) and Ko Sam Sao (West), but not found recruit settle on the horizontal plate at Ko Wua Kantang. However, the settlement plate angle did not significantly different affect coral recruit settled (Figure 4). Four taxonomic compositions of coral recruits were dominated by *Pocillopora* spp., *Porites* sp., *Fungia* sp., *Goniastrea* sp., and some unidentified coral recruits. *Pocillopora* spp. were the most dominant taxa of coral recruits on settlement plates compared with all other taxa coral recruits at Ko Sam Sao (West) (35.94 ± 11.15 recruits/m², $p < 0.05$). However, the abundance of a coral recruit from four major taxa was varied among Ko Sam Sao (East) and Ko Wua Kantang, but no significant differences were observed (Figure 5 and 6).


Figure 1. Map of the study site at Mu Ko Angthong, the Western Gulf of Thailand


Figure 2. The settlement plate experiments at the study sites

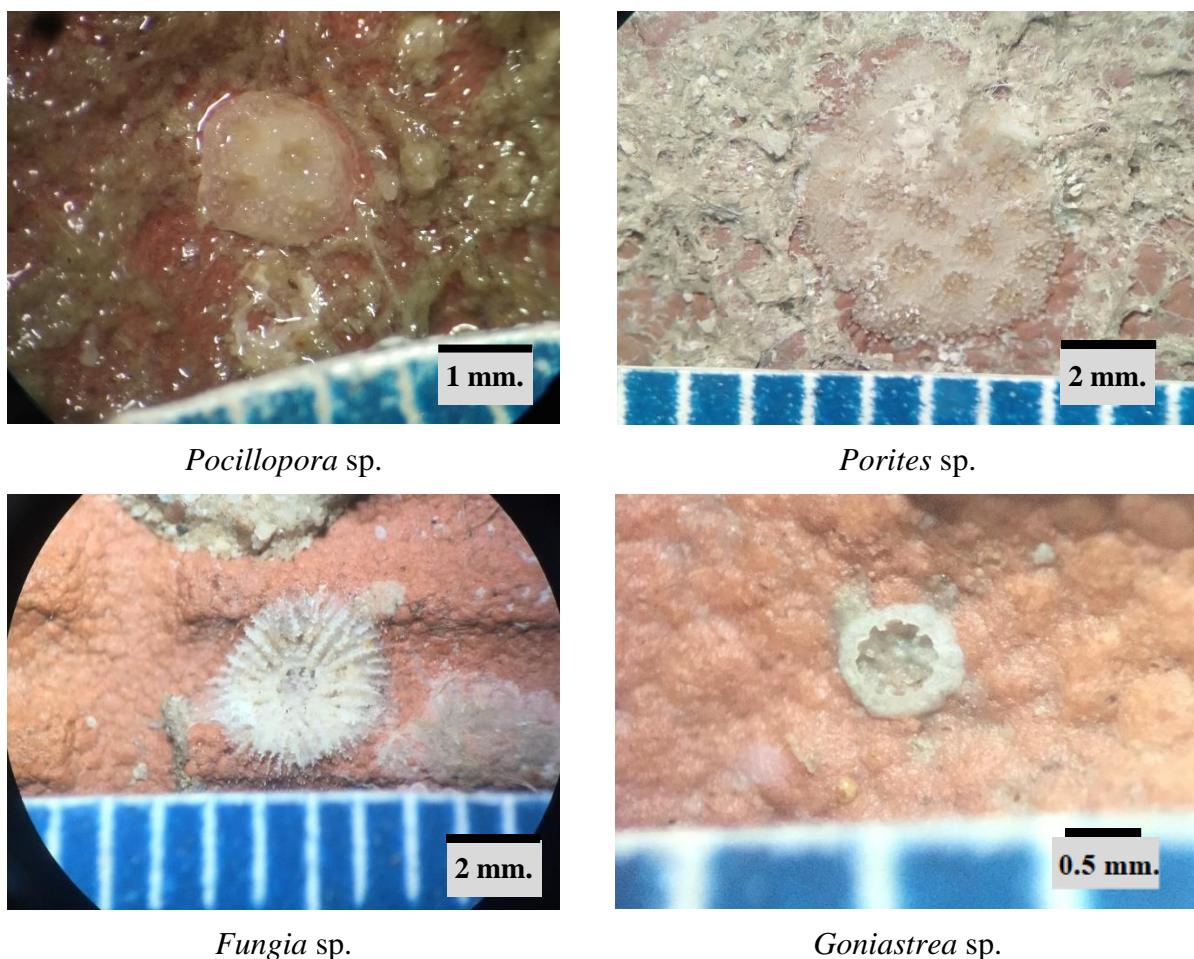

Figure 3. Coral recruit densities on the settlement panels at three study sites from Mu Ko Angthong (mean \pm SEM, * $p < 0.05$)

Figure 4. Coral recruit densities on the settlement plates at three study sites from Mu Ko Angthong (mean \pm SEM)

Figure 5. Taxonomic composition of coral recruits on the settlement plate experiments at Mu Ko Angthong (mean \pm SEM, * $p < 0.05$)

Figure 4. Dominant coral recruits on the settlement plates

4. Discussion

The natural recovery of the coral reef ecosystem following a disturbance depends on coral larval supply, successful settlement of larvae, and survival to adult reproductive age (Gilmour et al., 2013; Gouezo et al., 2019). This study has provided the first data on coral larval settled on experiment plate, which are essential baseline scientific data to understand coral recruitment patterns in Mu Ko Angthong. The number of larvae that directly determine terracotta plates in this paper can predict the post larva settled strategy of the coral more clearly than observed directly in natural ecosystem because the microscopic larvae are too small (1-10 mm in diameter) to census and tend to have cryptic settlement on the complex reef surfaces on the coral reef (Penin et al., 2010; Doropoulos et al., 2015; dela Cruz & Harrison, 2020).

After two-year experiment, coral recruitment rates varied significantly among the three study sites. Coral recruits attached on terracotta plates at Ko Sam Sao (West) were 4 and 17 times higher than Ko Sam Sao (East) and Ko Wua Kantang. The taxonomic composition of coral recruits at Ko Sam Sao (West) were the most abundant recruits during the study period by *Pocillopora* spp. up to 67%. The results of this study agree with the result by Ho and Dai (2014) that the coral recruits composition in the short-term survey was dominated by *Pocilloporidae* (52%-90%) and *Acroporidae* (10%-41%). Recruitment Comparison of the diversity of adult corals with the diversity of juvenile corals showed that Mu Ko Samet (Ao Kiew Na Nok and Ao Kiew Na Nai) are high degrees of self-seeding (Sutthacheep et al., 2020). Recruitments of coral have crucial connectivity with adult coral populations. It has been studied and assessed to identify self-seeding reefs and the level of connectivity among coral reefs (Selkoe &

Toonen, 2011; Feng et al., 2016). Coral reef connectivity and self-seeding of coral recruitment were varied among reef sites and are controlled by oceanographic conditions and larval supply sources (Kough & Paris, 2015).

The effect of terracotta plates angle in this research was variance to estimates of coral recruitment proved to but no significant difference among angle plates. However, coral larvae were mainly settled on the horizontal and following oblique, similar to the results of Mundy (2000), who found the coral recruit attached settlement plate angles between 0° to 40° . Nevertheless, our result shows that some coral recruits settled on the vertical angle plate. This result agrees with the result of Carleton and Sammarco (1987), who found the correlation between plate angle and coral recruit density significantly more recruits than expected on substrata angled between 61° and 90° . The results presented here also disagree with the suggestion by Sammarco (1991) that the optimum angle of settlement plates for coral recruitment settled between 37° and 45° .

Post-settlement of coral larvae mortality due to competition with algae and other benthos overgrowth for settlement space may also limit coral recruitment on the perfect substrate in the reef (Harriott and Banks 1995; Ho and Dai 2014). In our research, the filamentous algae were the most dominant group on the settlement plates, following coralline algae, bryozoans, polychaetes tube, barnacle, oyster, and sea sponge. These organisms often have higher growth rates and may quickly occupy the surface, thus prohibiting or excluding the settlement of coral recruits (Birkeland 1977; Ho and Dai 2014). While high post-settlement mortality remains a crucial challenge for coral restoration using (Randall et al., 2020) sexual production.

In conclusion, this study provides important baseline scientific data of coral recruitment patterns, composition, and substrates' angle in coral community structures. A long-term monitoring program for coral recruitment in other island groups in the Western Gulf of Thailand is needed to manage and considered a restoration tool for increase coral recruitment through this experiment.

Acknowledgments

We are grateful to the staffs of Mu Koh Angthong National Marine Park and Chumphon National Park, Department of National Parks, Wildlife and Plant Conservation, and Marine Biodiversity Research Group, Faculty of Science, and Ramkhamhaeng University for their fieldwork assistance. This research was funded by the National Science and Technology Development Agency (NSTDA) and a budget for research promotion from the Thai Government to Ramkhamhaeng University.

References

- Babcock RC (1988) Fine-scale spatial and temporal patterns in coral settlement. Proc 6th Int Coral Reef Symp Townsville 2:63-639
- Baird AH, Hughes TP (1997) Spatial variation in coral recruitment around Lizard Island, Australia. Proc 8th Int Coral Reef Symp Panama 2:1207-1210
- Birkeland C, Rowley D, Randall RH. (1981) Coral recruitment patterns at Guam. Proc 4th Int Coral Reef Symp, Manila, pp 339-44
- Birkeland C (1977) The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proc 3rd Int Coral Reef Symp 1:15-21
- Cameron KA, Harrison PL (2020) Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration. Sci Rep 10:1-12
- Carleton JH, Sammarco PW (1987) Effects of substratum irregularity on success of coral settlement: quantification by comparative geomorphological techniques. Bull Mar Sci 40:85-98
- Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. In: Southward AJ, Tyler PA,

Young CM, Fuiman LA (Eds.) *Advances in Marine Biology*. Academic Press, London, UK, pp 183-212

Cooper WT, Lirman D, Vangroningen MP, Parkinson JE, Herlan J, McManus JW (2014) Assessing techniques to enhance early post-settlement survival of corals in situ for reef restoration. *Bull Mar Sci* 90:651-64

dela Cruz DW, Harrison PL (2020) Enhancing coral recruitment through assisted mass settlement of cultured coral larvae. *PLoS One* 15:1-21

Doropoulos C, Ward S, Roff G, González-Rivero M, Mumby PJ (2015) Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats. *PLoS One* 10:1-23

Dunstan PK, Johnson CR (1998) Spatio-temporal variation in coral recruitment at different scales on Heron Reef, southern Great Barrier Reef. *Coral Reefs* 17:71-82

Eakin CM, Sweatman HPA, Brainard RE (2019) The 2014-2017 global-scale coral bleaching event: insights and impacts. *Coral Reefs* 38:539-545

Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. *Mar Pollut Bull* 50:125-146

Feng M, Colberg F, Slawinski D, Berry O, Babcock R (2016) Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia. *J Marine Syst* 164:1-12

Fisk DA, Harriott VJ (1990) Spatial and temporal variation in coral recruitment on the Great Barrier Reef: implications for dispersal hypotheses. *Mar Biol* 107:485-490

Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. *Science* 340:69-71

Gouezo M, Golbuu Y, Fabricius K, Olsudong D, Mereb G, Nestor V, Wolanski E, Harrison P, Doropoulos C (2019) Drivers of recovery and reassembly of coral reef communities. *Proceedings of the Royal Society B* 286:20182908

Harriott VJ, Banks SA (1995) Recruitment of scleractinian corals in the Solitary Islands Marine Reserve, a high latitude coral dominated community in eastern Australia. *Mar Ecol Prog Ser* 123:155-161

Harriott VJ (1992) Recruitment patterns of scleractinian corals in an isolated subtropical reef system. *Coral Reefs* 11:215-219

Harriott VJ, Fisk DA (1987) A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. *Mar Ecol Prog Ser* 37:201-208

Heron SF, Maynard JA, Van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world's coral reefs 1985-2012. *Sci Rep* 6:1-14

Ho MJ, Dai CF (2014) Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. *Zool Stud* 53:1-10

Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, et al. (2017) Global warming and recurrent mass bleaching of corals. *Nature* 543:373-377

Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, et al. (2018) Global warming transforms coral reef assemblages. *Nature* 556:492-496

Klinthong W, Saenghaisuk C, Yuchareon M, Sutthacheep M, Yeemin T (2013) Coral recruitment on settlement panels at Mu Ko Surin before and after the 2010 coral bleaching phenomenon. In: *Proceedings of 39th Congress on Science and Technology of Thailand*, p 5

Klinthong W, Yeemin T, Sutthacheep M, Pengsakun S (2014) Coral larval supply at impacted reefs from the 2010 coral bleaching event: a case study in the Andaman Sea. In: Proceedings of the 40th Congress on Science and Technology of Thailand, pp 721-726

Klinthong W, Yeemin T, Sutthacheep M, Suebpala W, Niamsiri R (2015) Coral recruitment on settlement panels at Ko Samui before and after the 2010 coral bleaching phenomenon. Proceedings of the 41st Congress on Science and Technology of Thailand, pp 500-506

Klinthong W, Yeemin T, Sutthacheep M, Samsuvan W, Niemsiri R, Phoaduang S, Chunhabundit S (2018) Coral recruitment patterns on settlement panels in Mu Ko Chumphon, the Western Gulf of Thailand. In: Proceedings of 44th Congress on Science and Technology of Thailand, p 332-336

Kough AS, Paris CB (2015) The influence of spawning periodicity on population connectivity. *Coral Reefs* 3:1-5

Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. *Coral Reefs* 23:367-377

Møller AP, Flensted-Jensen E, Laursen K, Mardal W (2014) Fertilizer leakage to the marine environment, ecosystem effects and population trends of waterbirds in Denmark. *Ecosystems* 18:30-44

Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. *Environ Res* 108:131-139

Mundy CN (2000) An appraisal of methods used in coral recruitment studies. *Coral Reefs*. 19:124-131

Mwachireya SA, Nzioka AM, Mutiso DN (2017) Coral recruit-algae interactions in coral reef lagoons are mediated by riverine influences. *Int J Ecol* 1351854

Penin L, Michonneau F, Baird AH, Connolly SR, Pratchett MS, Kayal M, Adjeroud M (2010) Early post-settlement mortality and the structure of coral assemblages. *Mar Ecol Prog Ser* 408:55-64

Prouty NG, Goodkin NF, Jones R, Lamborg CH, Storlazzi CD, Hughen KA (2013) Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda. *Mar Chem* 154:55-66.

Randall CJ, Negri AP, Quigley KM, Foster T, Ricardo GF, Webster NS, et al. (2020) Sexual production of corals for reef restoration in the Anthropocene. *Mar Ecol Prog Ser* 635:203-232

Ritson-Williams R, Arnold S, Fogarty N, Steneck RS, Vermeij M, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. *Smithson Contrib Mar Sci* 38:437

Sammarco PW (1991) Geographically specific recruitment and post-settlement mortality as influences on coral communities: the cross-continental shelf transplant experiment. *Limnol Oceanogr* 36:496-514

Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal, *Mar Ecol Prog Ser* 436:291-305

Sutthacheep M, Yeemin T, Ruangthong C (2020) Coral recruitment and self-seeding potential in Mu Ko Samet , the Gulf of Thailand. *Ramkhamhaeng International Journal of Science and Technology* 3:7-16

Tomascik T (1991) Settlement patterns of Caribbean scleractinian corals on artificial substrata along a eutrophication gradient, Barbados, West Indies. *Mar Ecol Prog Ser* 77:261-9

Veron J, Stafford-Smith M, DeVantier L, Turak E. (2015) Overview of distribution patterns

of zooxanthellate Scleractinia. Front Mar Sci 2:1-19

Wallace CC (1985) Seasonal peaks and annual fluctuations in recruitment of juvenile scleractinian corals. Mar Ecol Prog Ser 21:289-298

Wallace CC, Bull GD (1981) Patterns of juvenile coral recruitment on a reef front during a spring-summer spawning period. Proc 4th Int Coral Reef Sump Manila 2:345-350