

ORIGINAL PAPER

Seasonal change of phytoplankton at Hat Pak Meng, the Andaman Sea

Orathep Muresare^a, Siriluck Rongprakhon^a, Supakarn Paodung^a, Rattanawadee Niamsiri^a, Wanlaya Klinthong^a, Atchaneeey Boonprakob^b, Manoch Wongsuryrat^c, Thamasak Yeemin^{a,b}, Makamas Sutthacheep^{a,b,*}

^a Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand

^b Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok, Thailand

^c Hat Chao Mai National Park, Department of National Parks, Wildlife and Plant Conservation, Sikao, Trang Province 92150

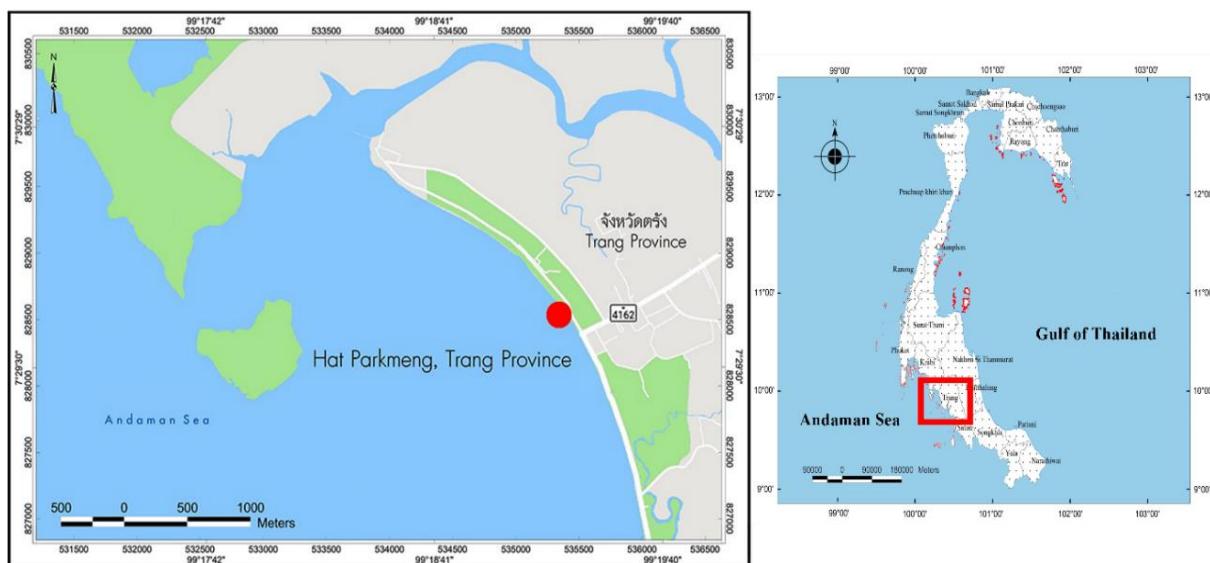
*Corresponding author: smakamas@hotmail.com

Received: 14 October 2018 / Revised: 27 November 2018 / Accepted: 18 December 2018

Abstract. Phytoplankton is a very important food source for economically important marine organisms, particularly bivalves. However, ecological studies of phytoplankton in Thai waters are quite limited. The seasonal variation of phytoplankton in coastal areas is related to several physicochemical and biological factors. This study aimed to examine the seasonal variation on composition and abundance of phytoplankton at Hat Pak Meng beach, Trang Province, the Andaman Sea. Sampling was carried out during dry (February, March and April) and a rainy season (September, October, November), using a standard 20 μm mesh plankton net with a mouth diameter of 30 cm, equipped with a flow meter, by horizontal hauls during day time. Thirty-one different taxa of phytoplankton were recorded. The dominant phytoplankton groups in the dry season were *Coscinodiscus* sp., *Chaetoceros* sp. and *Protoperidinium* sp., while in the rainy season the last was replaced by *Ceratium* sp. The fluctuation in rainfall regimes induces changes in physicochemical and biological factors which lead to seasonal variation of the composition of phytoplankton taxa.

Keywords: phytoplankton, Andaman Sea, diatoms, abundance

1. Introduction


Phytoplankton are the main primary producers through all shallow water ecosystems, playing a key role in maintaining the structure and functioning of marine coastal communities (Malone et al. 2016). Abundance and composition of this group show a great spatiotemporal variation on coastal areas due to their sensitivity to seasonal variations in salinity, pluviosity, temperature and nutrient availability (Berg & Newell 1986; Varela 1996; Stolte et al. 1994, Troccoli et al. 2004). Several characteristics drive this dynamism, such as their size and rapid growth rates due to high nutrient intake (Malone 1980; Stolte et al. 1994). Thus phytoplankton are usually the first

group to respond to changes in environmental conditions, especially when they affect the available nutrients (Livingston 2000; Paerl et al. 2003). As the energetic base for the marine food web, changes in phytoplankton composition is reflected in all marine faunal communities (Legendre and Le Fèvre 1995; Sokołowski et al. 2012). Therefore, understanding the dynamics of seasonal variation in phytoplankton communities is extremely important to predict the potential effects of periodic environmental changes on coastal fauna, especially to primary consumers such as zooplankton.

2. Materials and Methods

2.1 Study site and sample collection

This study was conducted at Hat Pak Meng, Trang Province. Phytoplankton sampling was carried out during dry season (February, March and April) and rainy season (September, October) in 2018. Samples were collected using a standard 20 μm mesh planktonic net with a mouth diameter of 30 cm, equipped with a flow meter, by horizontal hauls in day time. The samples were preserved in a 10% buffer formalin solution. In a laboratory, specimens were then identified to genus level and counted under a compound light microscope. The abundance of each phytoplankton group was expressed in individuals/ m^3 (ind./ m^3). The environmental parameters (temperature, salinity, pH, and dissolved oxygen) were recorded by using the Handheld pH and Conductivity Monitoring - YSI - Model 63 with 100-foot cables

Figure 1. Location of the sampling site at Hat Pak Meng

2.2 Statistical analysis

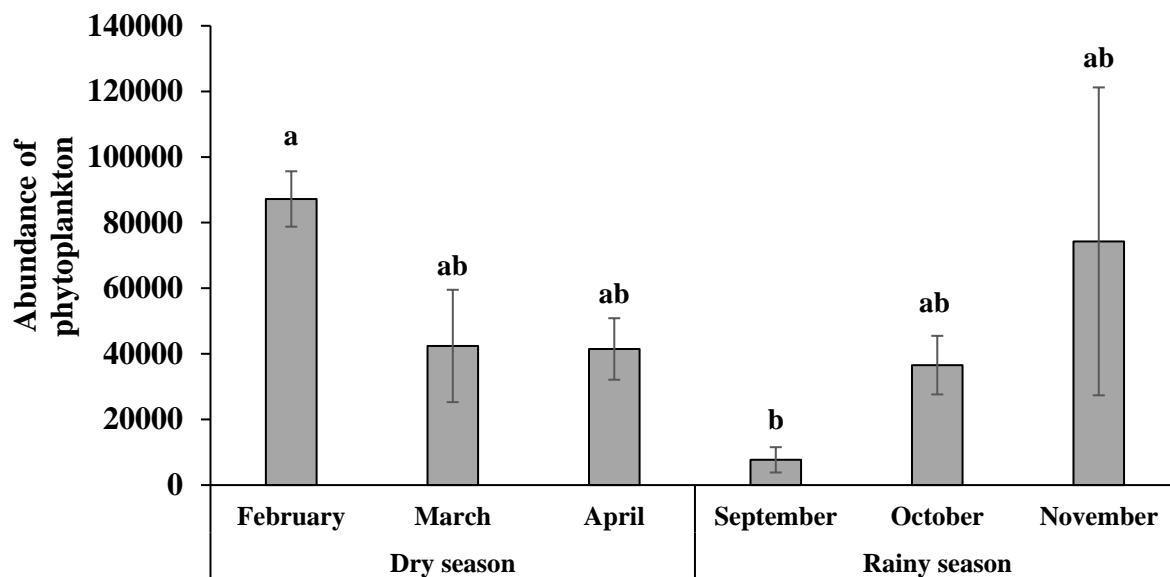
One-way ANOVA with Fisher's LSD was performed to detect the difference of plankton density between seasons, using R program version 3.5.0 with "vegan" package. The spearman's correlations was used to identify the correlation between dominant genera and environmental parameters.

3. Results

A total of 39 phytoplankton genera were recorded in this study, belonging to six different families, consisting of one blue-green algae (Cyanophyceae), 27 genera of diatoms (Bacillariophyceae, Coscinodiscophyceae, and Mediophyceae) and 11 genera of dinoflagellates (Dinophyceae and Noctilucophyceae) (Table 1.). The richness of genera between seasons was similar, 28 phytoplankton genera were found during the rainy season while in the dry season 31 genera were recorded. The dominant phytoplankton genus was *Chaetoceros* sp. followed by *Coscinodiscus* sp. during both seasons.

The highest density of phytoplankton was recorded during the dry season ($87,208.07 \pm 8,448.29$ ind./m³), while the lowest one was found in rainy season ($7,696.39 \pm 3,855.94$ ind./m³) as shown in Figure 2. However, the average abundance of phytoplankton found in the summer season ($57,061.22 \pm 21,320.98$

ind./m³) was not significantly different from those found during winter season ($39,607.22 \pm 27,383.77$ ind./m³).


During the investigation period, water temperature varied between 28.94 ± 0.13 - 32.17 ± 0.09 °C (Table 2). All parameters showed a narrow range of variation. The dominant genera *Chaetoceros* was positively correlated with salinity ($p=0.55$), while *Rhizosolenia* sp. showed a positive correlation with salinity ($p=0.61$), and was negatively correlated with pH value ($p=0.70$). The abundance of dinoflagellate *Ceratium* was positively correlated with pH value ($p=0.60$). However, the *Ceratium* spp. exhibited negatively correlation with salinity ($p=0.73$) (Table 3.).

4. Discussion

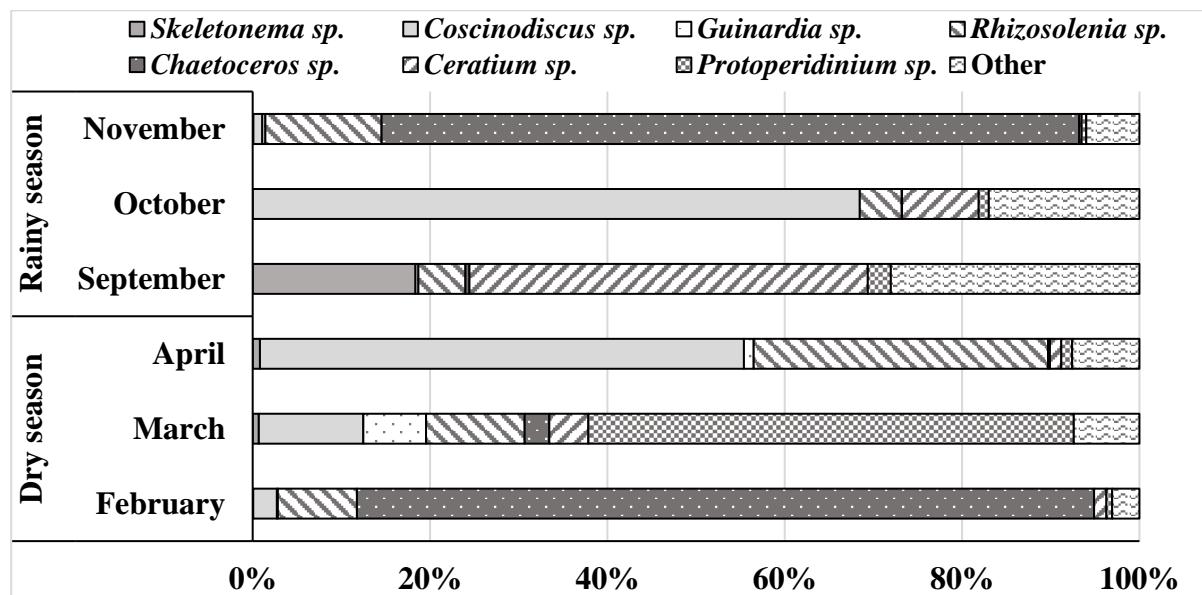

This study revealed the abundance of phytoplankton at Hat Pak Meng was high when compared with Similan islands and some coastal areas in Trang Province (Charoenvattanaporn et al. 2018; Iqbal et al. 2017; Tarangkoon et al. 2012). The abundant phytoplankton, *Coscinodiscus*, and *Ceratium* have been reported as abundant species in Trang and Phangnga Provinces (Iqbal et al. 2017; Charoenvattanaporn et al. 2018). In tropical regions, phytoplankton density varies from freshwater to estuarine zones and between dry to wet seasons (Varona-Cordero et al. 2010).

Table 1. A checklist of phytoplankton at Hat Pak Meng, Trang Province

Phylum	Class	Order	Family	Species
Cyanobacteria	Cyanophyceae	Oscillatoriales	Oscillatoriaceae	<i>Oscillatoria</i> sp.
Bacillariophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	<i>Bacillaria paxillifera</i>
				<i>Cylindrotheca closterium</i>
				<i>Nitzchia longissima</i>
				<i>Pseudo-nitzschia</i> sp.
		Naviculales	Naviculaceae	<i>Gyrosigma</i> sp.
				<i>Navicula</i> sp.
			Pleurosigmataceae	<i>Pleurosigma</i> sp.
		Surirellales	Entomoneidaceae	<i>Entomoneis</i> sp.
		Thalassionematales	Thalassionemataceae	<i>Thalassionema</i> sp.
Coscinodiscophyceae	Asterolamprales	Asterolampraceae		<i>Asterolampra</i> sp.
	Coscinodiscales	Coscinodiscaceae		<i>Coscinodiscus</i> sp.
				<i>Palmeria</i> sp.
		Rhizosoleniales	Probosciaaceae	<i>Proboscia</i> sp.
			Rhizosoleniaceae	<i>Guinardia</i> sp.
				<i>Rhizosolenia</i> sp.
		Triceratiales	Triceratiaceae	<i>Triceratium favus</i>
Mediophyceae	Chaetocerotales	Chaetocerotaceae		<i>Bacteriastrum</i> sp.
				<i>Chaetoceros</i> sp.
		Eupodiscales	Odontellaceae	<i>Odontella sinensis</i>
		Hemiaulales	Hemiaulaceae	<i>Cerataulina</i> sp.
				<i>Eucampia zodiacus</i>
				<i>Hemiaulus</i> sp.
		Lithodesmiales	Lithodesmiaceae	<i>Ditylum</i> sp.
		Thalassiosirales	Lauderiaceae	<i>Lauderia</i> sp.
			Skeletonemataceae	<i>Skeletonema</i> sp.
			Thalassiosiraceae	<i>Planktoniella</i> sp.
				<i>Thalassisira</i> sp.
Miozoa	Dinophyceae	Dinophysales	Dinophysaceae	<i>Dinophysis</i> sp.
		Gonyaulacales	Ceratiaceae	<i>Ceratium brevis</i>
				<i>Ceratium carriensis</i>
				<i>Ceratium declinatum</i>
				<i>Ceratium macroceros</i>
				<i>Ceratium massiliensis</i>
				<i>Ceratium trichoceros</i>
			Pyrocystaceae	<i>Pyrocystis lunula</i>
				<i>Pyrophacus</i> sp.
		Peridiniales	Protoperidiniaceae	<i>Protoperidinium</i> sp.
Noctilucophyceae	Noctilucales	Noctilucaceae		<i>Noctiluca</i> sp.

Figure 2. Abundance of phytoplankton in dry and rainy season at Hat Pak Meng

Figure 3. Proportion of phytoplankton communities at Hat Pak Meng

Table 2. Environmental parameters at sampling site

Sampling periods	Environmental parameters			
	Temperature (°C)	Salinity (psu)	pH	DO (mg/L)
Dry season				
February	29.16±0.09	31.66±0.10	7.58±0.06	5.26±0.05
March	29.46±0.09	30.94±0.09	8.01±0.09	5.13±0.08
April	29.87±0.08	31.63±0.09	7.67±0.09	5.21±0.10
Rainy season				
September	28.94±0.13	31.05±0.11	8.18±0.03	5.27±0.08
October	32.17±0.09	31.10±0.13	8.18±0.09	4.24±0.05
November	31.88±0.13	32.86±0.13	8.02±0.06	4.65±0.09

Table 3. Correlation between the abundant phytoplankton and the environmental parameters

Species	Environmental parameters			
	Temperature	Salinity	pH	DO
<i>Ceratium</i> sp.	-0.16	-0.73	0.60	-0.06
<i>Chaetoceros</i> sp.	-0.16	0.55	-0.44	0.22
<i>Coscinodiscus</i> sp.	0.18	-0.08	-0.13	-0.41
<i>Rhizosolenia</i> sp.	0.23	0.61	-0.70	0.12

Additionally, physical variables such as water temperature and salinity exhibit significant effects on the hydrobiology of any aquatic ecosystem, and phytoplankton distribution and composition have been reported to relate to seasonal changes in freshwater flow, salinity, and turbidity, and nutrient availability (Barber and Smith 1981; Cushing 1989; Chang et al. 1992; Smith and Kemp 2001; Pelleyi et al. 2008; Costa et al. 2009; Nirmal Kumar et al. 2009).

The dominant phytoplankton genera varied between months but not between seasons. Phytoplankton are highly sensitive to environmental changes, responding not only with shifts in total biomass but also in composition (Winder and Sommer 2012), in fact, differences in tolerance to environmental conditions between different species have been reported in previous studies (Heino and Soininen 2006; Fariñas et al. 2015). Furthermore, composition variability might be also explained by other factors not addressed in study, such as nutrients, competition, and light intensity (Litchman and Klausmeier 2008). Phytoplankton association to seasonal variations in nutrient availability in the coastal waters of Thailand is still poorly understood and further investigation should be conducted to clarify this matter. The present study serves as a baseline for future research by reporting seasonal variability in dominant phytoplankton taxa at Hat Pak Meng, the Andaman Sea coast of Thailand.

Acknowledgments

We would like to thank the staff of Hat Chao Mai National Park, Department of National Parks, Wildlife, and Plant Conservation and the Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University for any supports during field surveys. This research was funded

by the National Science and Technology Development Agency (NSTDA).

References

Barber RT, Smith RL (1981) Coastal upwelling ecosystems. In Longhurst, A. R. (ed.), An Analysis of Marine Ecosystems. Academic Press, New York, pp. 31–68.

Berg JA, Newell RI (1986). Temporal and spatial variations in the composition of seston available to the suspension feeder *Crassostrea virginica*. *Estuarine, Coastal and Shelf Science*, 23, 375–386.

Chang FH, Vincent WF, Woods PH (1992) Nitrogen utilization by size-fractionated phytoplankton assemblages associated with an upwelling event off Westland, New Zealand. *New Zealand Journal of Marine and Freshwater Research*. 26: 287–301.

Charoenvattanaporn J, Satapoomin S, Khokiatiwong S, Pholpunthin P, Vongpanich V (2018) Spatial variability in the phytoplankton community along a transect across the Similan islands in the Andaman Sea: A case study 2007-2008. *Songklanakarin Journal of Science and Technology*. 40(4): 806–818

Costa LS, Huszar VL, Ovalle AR (2009) Phytoplankton functional groups in a tropical estuary: hydrological control and nutrient limitation. *Estuaries and Coasts*. 32: 508–521.

Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those

that are only weakly stratified. *Journal of Plankton Research*. 11: 1–13.

Fariñas TH, Bacher C, Soudant D, Belin C, Laurent B (2015) Assessing phytoplankton realized niches using a French National Phytoplankton Monitoring Network. *Estuarine Coastal and Shelf Science* 159: 15–27.

Heino J, Soininen J (2006) Regional occupancy in unicellular eukaryotes: a reflection of niche breadth, habitat availability, or size-related dispersal capacity? *Freshwater Biology*, 51, 672–685.

Iqbal TH, Hajisamae S, Khongpuang S (2017) Feeding Habits of Asian Green Mussel (*Perna viridis*): A Case Study from Andaman Sea and Gulf of Thailand. *Proceedings 5th Asian Academic Society International Conference*. Khon Kaen University pp. 480–485.

Legendre L, Le Fèvre J (1995) Microbial food webs and the export of biogenic carbon in oceans. *Aquatic Microbial Ecology*. 9: 69–77.

Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. *Annual Review of Ecology, Evolution, and Systematics*. 39: 615–639.

Livingston RJ (2000). Eutrophication processes in coastal systems: origin and succession of plankton blooms and effects on secondary production in Gulf Coast estuaries. CRC press.

Malone TC (1980) Algal size and phytoplankton ecology. In Morris I (eds), *The Physiological Ecology of Phytoplankton*. Blackwell Scientific, London, pp. 433–463.

Malone T, Azzaro M, Bode A, Brown E, Duce R, Kamykowski D, Kang SH, Kedong Y, Thorndyke M, Wang J, Park C, Calumpong H, Eghtesadi P (2016). Chapter 6. Primary production, cycling of nutrients, surface layer and plankton. In: *The first global integrated marine assessment world ocean*. Oceans and Law of the Sea, United Nations.

Nirmal Kumar JI; George B; Kumar RN; Sajish PR, Viyol S (2009) Assessment of spatial and temporal fluctuations in water quality of a tropical permanent estuarine system—Tapi, West coast India. *Applied Ecology and Environmental Research*. 7(3): 267–276.

Paerl HW, Valdes LM, Pinckney JL, Piehler MF, Dyble J, Moisander PH (2003). Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. *BioScience*. 53: 953–964.

Pelleyi S; Kar RN, Panda CRP (2008) Seasonal variability of phytoplankton population in the Brahmani estuary of Orissa, India. *Journal of Applied Sciences and Environmental Management*. 12(3): 19–23.

Smith EM, Kemp MW (2001) Size structure and the production/respiration balance in a coastal plankton assemblage. *Limnology and Oceanography*. 46: 473–485.

Sokołowska A, Wołowicza M, Asmusb H, Asmusb R, Carlierc A, Gasiunaitéd Z, Grémaree A, Hummelf H, Lesutienéd J, Razinkovasd A, Renaudg PE, Richardh P, Kędrai M (2012) Is benthic food web structure related to diversity of marine macrobenthic communities?. *Estuarine, Coastal and Shelf Science*. 108: 76–86.

Stolte W, McCollin T, Noordeloos AA, Riegman R (1994). Effect of nitrogen source on the size distribution within marine phytoplankton populations. *Journal of experimental marine biology and ecology*, 184: 83–97.

Troccoli L, Herrera-Silveira JA, Comín FA (2004). Structural variations of phytoplankton in the coastal seas of Yucatan, Mexico. *Hydrobiologia*, 519: 85–102.

Varela M (1996). Phytoplankton ecology in the Bay of Biscay. *Scientia Marina*. 60: 45–53.

Varona-Cordero F, Gutierrez-Mendieta FJ, Castillo MEMD (2010) Phytoplankton assemblages in two

compartmentalized coastal tropical lagoons (Carretas-Pereyra and Chantuto-Panzacola, Mexico). *Journal of Plankton Research*. 32(9): 1283–1299.

Winder M, Sommer U (2012) Phytoplankton response to a changing climate. *Hydrobiologia*. 698: 5–16.