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Abstract. Although the population genetics of corals
have been intensively studied, the knowledge of population
boundaries, source-sink dynamics, and highly variable
population genetic structures in scleractinian corals in
Thailand is considerably limited. In this study, we aim to
examine population genetic patterns for the coral
Pocillopora damicornis from several locations in the
Gulf of Thailand. The samples were extracted and
genotyped using six microsatellite loci to analyze the
genetic structure of P. damicornis populations. Based on
the analyses, a total of 214 complete multilocus genotypes
from 241 coral fragments of P. damicornis were yielded
with the mean H, and He values for all loci across sites
of 0.810+0.060 (+SD) and 0.630+0.038 (xSD), respectively.
A significant difference was detected among populations
(p <0.001). The highest Fst values were found between
Ko Khang Khao samples (the Inner Gulf of Thailand)
and Ao Thien, Ko Tao samples (the Western Gulf of
Thailand), whereas the lowest value was found between
Ko Thalu (northwest, the Western Gulf of Thailand)
samples and Ko Klung Badan (the Inner Gulf of Thailand)
samples. Principle coordinate analysis (PCA) based on
FST values revealed that genetic connectivity was not
associated with the geographic location and distance
between sites. The results from this study are useful for
further exploring the connectivity and genetic diversity
of Pocillopora populations, and will also support coral
reef conservation in Thailand.

Keywords: population genetics, Pocillopora, connectivity,
microsatellite, Gulf of Thailand

1. Introduction

Coral reefs are the highest biological diversity of
marine ecosystems and are of ecological significance
and economic value (McCook et al. 2009). Reef-
building corals play an important role in the
structure and maintenance of coral reef ecosystems
and make the structure of coral reefs. However,
coral reefs are currently numerous threats and
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deteriorating worldwide due to natural or
anthropogenic disturbances, such as elevated
seawater temperatures, nutrient enrichment,
and destructive and overfishing, have degraded
coral reefs around the world and are also under
threat from global warming and ocean acidification
(Hoegh-Guldberg et al. 2007 ; Wilkinson et al.
2010; Burkeetal. 201 1), which has brought
about conservation and restoration efforts.
Marine sessile organisms are typically distributed
across a network of habitats in which geographically
separated locals, including corals have limited
adult movement, so the relatively short, pelagic
larval phase represents the primary opportunity
for dispersal. (Hanski 1998). Coral recovery
depends on the successful recruitment of new
coral colonies from surviving populations. The
ability of coral reefs to recover from disturbances
is highly influenced by the pattern and strength
of connectivity among populations through the
dispersal of planulae, which is highly variable.
Hence, population genetic studies provide
important information that can be applied for
managing marine protected areas (Palumbi 2004,
Cowen et al. 2007; Ridgway et al. 2008;
Underwood et al. 2009; Nakajima et al. 2012).

The scleractinian coral Pocillopora damicornis
is encountered on fringing reefs and found on
tropical Indo-Pacific coral reefs (Veron 2000).
P. damicornis has shown to be very sensitive to
many natural disturbances, including coral
bleaching (Yeemin et al. 1998; Marshall and
Baird 2000; McClanahan et al. 2008; Pengsakun
et al. 2012a), low salinity (Pengsakun 2013)
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and diseases (Ben-Haim and Rosenberg 2002,
Luna et al. 2007). According to the monitoring
on coral communities in Thai waters, almost
of P. damicornis colonies were bleached and
died due to the 2010 coral bleaching event
(Yeemin et al., 2010). Fortunately, this coral
species can potentially colonize on an available
substrate and it is a dominant coral recruit on
settle plates, based on the recruit settlement
experiments conducted in the Gulf of Thailand
(Pengsakun et al., 2012b).

Studies on population genetics among larvae-
brooding of Pocillopora spp. have been studied
French Polynesia (Magalon et al. 2004), Raja
Ampat, Indonesia (Starger et al. 2008), Kane‘ohe Bay
(Gorospe and Karl 2013) and Okinawa Island,
Japan (Nakajima et al., 2017). In the Indo-West
Pacific, the populations of P. damicornis mainly
have different levels of local inbreeding and
clonality (Ayre et al., 1997; Adjeroud and
Tsuchiya 1999; Sherman et al., 2006;
Whitaker 2006; Souter et al., 2009). A recent
study has revealed that the levels of population
genetic structure are significantly different,
indicating the limitation of gene flow among
the regions in the Indo-West Pacific as well as
within regions in the tropical Eastern Pacific
(Combosch and Vollmer 2011). However,
knowledge of population boundaries, source-
sink dynamics, and highly variable population
genetic structures in scleractinian corals is
considerably limited (van Oppen 2006; Hellberg
2007; Jones et al. 2009; Souter et al. 2009).

The Gulf of Thailand is a semi-enclosed
tropical sea, located in the South China Sea.
The Gulf is quite shallow with mean depth of
only 45 m. The deepest part is only 80 m deep.
(Wattayakorn, 2006). In the Gulf of Thailand,
three group of the coral communities can be
classified based on the difference of oceanographic
conditions, consisting of the inner part of the
Gulf of Thailand, the east and west coasts of the
Gulf of Thailand (Yeemin et al., 2006). The
distances between major reef groups were less
than 500 km. This study aims to examine
population genetic patterns for the coral
P. damicornis at several location in the
Gulf of Thailand.
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2. Materials and Methods

2.1 Study sites and sample collection

A total of 214 P. damicornis samples were
collected from five locations throughout the
Gulf of Thailand. Three sites within the Mu Ko
Sichang, Chonburi Province (Ko Sak, Ko Klung
Badan, Ko Khang Khao), one site within the
Rayong Province (Hin Phoeng), two sites within
the Prachuab Kirikhan Province (Ko Thalu (NW),
Ko Thalu (SW)), three sites within the Ko Tao,
Chumphon Province (Ao Thein, Ao Hin Wong,
Ao Kluatheon) and three sites within the Ko Samui,
Surat Thani Province (Ko Taen, Laem Sed,
Hin Angwang) (Figure 1). Fragments of
P. damicornis were collected from 241 colonies;
one fragment was taken from each colony. Coral
fragments were preserved in 100% ethanol in
1.5 ml eppendorf tubes and then were kept in
the laboratory until further processing.

2.2 Genomic DNA Extraction, sequencing and
microsatellite genotyping

The coral skeletons from tubes containing coral
tissues and were removed, and genomic DNA
was extracted from coral tissue samples using
DNeasy Blood and Tissue kit as specified by
the manufacturer using the instructions for total
DNA extraction from animal tissue (Qiagen,
Valencia, CA, USA). Samples were genotyped
using six microsatellite loci (Table 1) to analyze
the genetic structure of P. damicornis populations.
10 pL total volumes contained 0.5 pL. DNA
template. We amplified the extracted DNA by
PCR (polymerase chain reaction) method
(adding two primer sets to one PCR (Nakajima
et al. 2012)) using fluorescently labelled primers
(Table 1). The cycling protocol was modified
as 94 °C for 5 minutes, followed by 35 cycles
at 94 °C for 30 seconds, 54 °C for 30 seconds,
72 °C for 1 minute and a final extension for 30
minutes. Allelic variations were visualized on
an ABI 3100 XL sequencer (Applied Biosystems).
Genotype calling were analysed using GeneMapper
version 4.0 (Applied Biosystems). and each
genotype was visually checked.
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Figure 1. Map of the Gulf of Thailand showing twelve study sites: (A) Ko Sak (KS), Ko Klung Badan
(KB), Ko Khang Khao (KK), the Inner Gulf of Thailand, (B) Hin Phoeng (HP), the Eastern Gulf of
Thailand, (C) Ko Thalu (northwest, TNW) and Ko Thalu (southwest, TSW), the Western Gulf of
Thailand, (D) Ao Thein, (AT) , Ko Tao, Ao Hin Wong, (HWO) , Ko Tao, Ao Kluatheon (AKT), Ko

Tao, the Western Gulf of Thailand, (E) Ko Taen

(Kta), Ko Samui, Laem Sed (LS), Ko Samui, Hin

Angwang (HWA), Ko Samui, the Western Gulf of Thailand.

2.3 Statistical analyses

The numbers of alleles, allele frequencies,
observed heterozygosity (Ho) and expected
heterozygosity (He), number of private alleles,
and inbreeding coefficient (Fis) values (Peakall
and Smouse 2012) were calculated using the
GenAlEx software (version 6.5). Fis values
were applied to examine the deviation from
Hardy-Weinberg equilibrium (HWE) because
gaps between Ho and He under HWE are in
proportion to the value of Fis. F-statistics via
analysis of molecular variance (AMOVA) was
used to test the significance of all estimates
based on 999 random permutations in order to

measure the proportion of genetic variation
between sites. A low pairwise Fst indicates a
high extent of gene flow and vice versa. Statistical
significance levels for all pairwise tests were
P<0.05. Pairwise geographic distances between
sites were also calculated by GenAlEx software
to estimate the scale of populations analyzed
(Nakajima et al. 2009)

3. Results

A total of 214 complete multilocus genotypes
from 241 coral fragments of P. damicornis
were gathered. Mean Ho and He values for all
loci across sites ranged from 0.125 to 1.000
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Table 1. Details for six polymorphic microsatellite loci developed for Pocillopora damicornis as calculated from

genotypes of 38 individuals

Locus Primer sequence (5'-3') Repeat motif Size (bp) Fluorescence tag

F: GCCAGGACCCATTTATACTCC

PV2 R: TGCAGTGTTCTACTTGTCAGTGC (GA0 130-196 FAM
F: ATCCGAATACAAGCGAAACG

PA3-002 | o CAAAGCTTCTATCAGAAAATGCAA | (AACID 195-243 NED
F: ACCAGACAGAAACACGCACA

Pd3-004 R: GCAATGTGTAACAGAGGTGGAA (ATG)s 160-180 vic
F: AGAGTGTGGACAGCGAGGAT

Pd3-005 R: GTTCCTTCGCCTTCGATTTT (TGA)s 200-230 vic
F: TGTGCAGGTGTTGTGACTGA (GTTYS.

PA3-EFES | . 1GTCTTTTTCACTTTTGCTTCAA (TGC)11 259-281 FAM

o pABTS F: GGAGATGGATGGAGACTGCT (GT)s(CT)2 0170 e
R: U19-AGTGCACGCACTAGATAGA GT(CT)s

Table 2. Population statistic (+ sd); N = total number of sample colonies, H, = observed heterozygosity
(Mean +SD), He = expected heterozygosity (Mean £SD); departures from Hardy—Weinberg equilibrium

are expressed as Fis (Mean +£SD)

Study site N Mean Ho Mean He Mean Fis
Inner Gulf of Thailand (1G)
Ko Sak (KS) 16 1.000 0.654 -0.531
Ko Klung Badan (KB) 15 0.967 0.572 -0.689
Ko Khang Khao (KK) 17 0.941 0.621 -0.533
Eastern Gulf of Thailand (EG)
Hin Phoeng (HP) 30 0.900 0.761 -0.186
Western Gulf of Thailand (WG)
Ko Thalu (northwest, TNW) 23 0.935 0.619 -0.533
Ko Thalu (southwest, TSW) 18 0.361 0.759 0.522
Ao Thein, Ko Tao (AT) 16 0.125 0.117 -0.067
Ao Hin Wong, Ko Tao (HWO) 16 0.750 0.803 0.061
Ao Kluatheon, Ko Tao (AKT) 21 0.952 0.769 -0.238
Ko Taen, Ko Samui (Kta) 20 0.975 0.671 -0.458
Laem Sed, Ko Samui (LS) 14 1.000 0.561 -0.803
Hin Angwang, Ko Samui (HWA) 8 0.813 0.648 -0.256
Total or mean (+SD) 214 0.810+0.060 0.630+0.038 -0.309+0.080

and 0.117 to 0.561, respectively, and the total
mean values were 0.810+0.060 (xSD) and
0.630+0.038 (xSD), respectively (Table 2).
Departures in population heterozygosity from
HWE were indicated by mean Fis values, which
ranged from -0.067 to -0.803 at all sites (Table 2).

The variance calculated by AMOVA was 0.149
(15 %) for among regions and 0.820 (85 %)
within populations (total value: 0.969).
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A significant difference was detected among
populations (P < 0.001) (Table 3).

Population differentiation among sampling sites
was examined using pairwise Fst comparison
(Table 4). Pairwise Fst values across study sites
ranged from 0.004 to 0.425. The highest Fst
values were found between Ko Khang Khao
samples (the Inner Gulf of Thailand) and Ao Thien,
Ko Tao samples (the Western Gulf of Thailand),
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Table 3. Hierarchical analysis of molecular variance (AMOVA) analysis using GenAIEx software

Source df Sum of squares Est. Var. % of the total variances P
Among populations 11 63.4 0.149 15% <0.001
Among individuals 214 175.5 0.820 85% <0.001
within populations
Total 225 238.9 0.969

Table 4. Pairwise Fsr values for all 12 populations as indices of genetic differentiation (below diagonal)
and pairwise geographic distance (km) based on geographic coordinates of sampling sites (above diagonal)

Region IG IG WG IG EG WG WG WG WG WG WG WG
Study site KS KB AT KK HP TSW HWO AKT TNW Kta LS HWA
KS 16.1 3626 253 51.5 2415 3244 3232 2404 4012 3956 396.5
KB 0.105 319.8 112 54.5 23410 3181 3161 2323 3984 390.9 396.0
AT 0.310 0.215 3499 2845 1165 23 283 1143 81.70 781 80.8
KK 0.074 0.157 0.425 83.6 2639 3479 347.7 2629 426.06 419.8 420.8
HP 0.045 0.053 0.236 0.051 203.4 3023 2569 2115 370.14 347.6 358.3
TSW 0.110 0.118 0.260 0.147 0.078 1139 1104 141 1925 1889 1917
HWO 0.092 0.073 0.245 0.104 0.042 0.036 22 1135 812 759 784
AKT 0.057 0.071 0.257 0.100 0.036 0.074 0.043 110.8 83.34 813 821
TNW 0.109 0.004 0.237 0.144 0.047 0.113 0.060 0.062 192.81 189.7 1925
Kta 0.136 0.154 0.413 0.089 0.090 0.082 0.073 0.087 0.138 6.59 3.51
LS 0.102 0.018 0.273 0.169 0.070 0.131 0.086 0.074 0.023 0.152 3.67
HWA 0.172 0.100 0.416 0.155 0.103 0.133 0.094 0.122 0.080 0.155 0.103
whereas the lowest value was found between 4. Discussion

Ko Thalu (northwest, the Western Gulf of
Thailand) samples and Ko Klung Badan (the
Inner Gulf of Thailand) samples.

Principle coordinate analysis (PCA) based on
Fst values revealed that genetic connectivity
was not associated with the geographic location
and distance between sites (Figure 2). For
example, Ao Thian site was located far from Ao
Hin Wong and Ao Klua Theon, although these
three sites are located on the eastern side
of Ko Tao.

Based on our findings, ten of the twelve
populations of P. damicornis, collected from
the Gulf of Thailand, showed the negative Fis
values at each locus, showing that there was
heterozygosity excess compared to the HWE
expectation. According to the study of the
genetic population in French Polynesia, the
heterozygote excess may be due to the effect of
clonality in P. damicornis (Adjeroud et al. 2014).
Hence, heterozygotes with better characteristics
such as proper size, high clonal growth rate,
high survival rate, etc., can enhance the success
of their clonal propagation, leading to natural
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Fig. 2. Plot of the principal coordinate analysis based on a co-variance with standardized data; Ko Sak
(KS), Ko Klung Badan (KB), Ko Khang Khao (KK), the inner Gulf of Thailand, Hin Phoeng (HP), the
eastern Gulf of Thailand, Ko Thalu (northwest, TNW), Ko Thalu (southwest, TSW), Ao Thein, (AT), Ao Hin

Wong, (HWO),
western Gulf of Thailand.

coral populations. On the other hand, some coral
populations and loci exhibited a significantly
positive Fis value, illustrating the occurrence of
heterozygote deficiency. This may be influenced
by several factors, e. g. null alleles and inbreeding
as it was found in P. damicornis along the Great
Barrier Reef, Australia (Ayre et al. 1997).
Furthermore, the occurrence of micro-scale
Wahlund effects can also induce the heterozygote
deficiency because of genetic patchiness, i.e., the
admixture of several differentiated cohorts, as
observed in some reef organisms (Selkoe et al. 2010).

In this study, the observed coral populations
had a low level of genotypic diversity, indicating
that this may result from asexual reproduction
in coral recruitment and population maintenance
of P. damicornis in the Gulf of Thailand. These
findings are in accordance with the results of
some previous publications that observed
P. damicornis in several geographical regions,
for example, Australia, East Africa, Hawaii
and Okinawa (Stoddart 1984; Adjeroud and
Tsuchiya 1999; Souter et al. 2009; Gorospe and
Karl 2013). Conversely, several works conducted
in the Great Barrier Reef, West Papua New-
Guinea, Indonesia and the tropical Eastern Pacific
reported that the high levels of genotypic richness
in the population of P. damicornis are derived
from its predominance of sexual reproduction
(Ayre et al. 1997; Starger et al. 2008). Our
findings also reveal that the degrees of asexual
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Ao Kluatheon (AKT), Ko Taen (Kta), Laem Sed (LS), Hin Angwang (HWA), the

reproduction and clonality in P. damicornis
varied geographically.

In the Gulf of Thailand, the colonies of
P. damicornis are generally distributed in the
form of abundant patchy populations in shallow
fringing reefs. Because the skeleton of
P. damicornis is fragile, some human activities
such as trampling, gleaning, fishing and
anchoring, can generate negative impacts on
leading to the high fragmentation rates and the
survival rates of coral fragments. This might
promote the high levels of clonality within local
populations (Pinzon et al. 2012; Adjeroud et al.
2014). The observed study sites in the Gulf of
Thailand, however, had a low level of
fragmentation of P. damicornis, implying that
the fragmentation of P. damicornis colonies is
probably less common the Gulf of Thailand.
It is possible that a high level of clonality
could result from the production of asexual
(pathenogenetic) larvae of P. damicornis.

Twelve coral populations in the Gulf of Thailand
observed in this study had a significant genetic
differentiation, which can be linked to the marked
variability in the reproductive strategies and
genetic structure of P. damicornis across the
geographic range in the Gulf of Thailand. The
maintenance of local populations of P. damicornis
in the Gulf of Thailand may be mainly enhanced
by its asexual reproduction, contributing to the
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elevation of clonality within populations and
significant genetic differentiation among
populations. However, gene flow among some
populations in the Gulf of Thailand can also be
observed, based on our analysis. Our findings
agree with what Bell (1982) found on modelling
the dispersal and population maintenance in a
species with mixed modes of reproduction and
mentioned that larvae generated from sexual
reproduction tended to provide long-distance
colonists and gene flow between distant
populations. In contrast, asexual reproduction
serves as a vital contributor for maintaining
local populations (Adjeroud and Tsuchiya 1999;
Adjeroud et al. 2014). Understanding of
population genetic studies on scleractinian
corals in the Gulf of Thailand is still limited and
most researches were implemented as in an
initial phase. Detailed studies are highly
required and further findings should provide a
clear explanation in various aspects, for example,
genetic diversity, clonality and connectivity of
other coral species in a marine ecosystem.
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