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Abstract. Although the population genetics of corals 

have been intensively studied, the knowledge of population 

boundaries, source-sink dynamics, and highly variable 

population genetic structures in scleractinian corals in 

Thailand is considerably limited. In this study, we aim to 

examine population genetic patterns for the coral 

Pocillopora damicornis from several locations in the 

Gulf of Thailand. The samples were extracted and 

genotyped using six microsatellite loci to analyze the 

genetic structure of P. damicornis populations. Based on 

the analyses, a total of 214 complete multilocus genotypes 

from 241 coral fragments of P. damicornis were yielded 

with the mean Ho and He values for all loci across sites 

of 0.810±0.060 (±SD) and 0.630±0.038 (±SD), respectively. 

A significant difference was detected among populations   

(p < 0.001). The highest FST values were found between 

Ko Khang Khao samples (the Inner Gulf of Thailand) 

and Ao Thien, Ko Tao samples (the Western Gulf of 

Thailand), whereas the lowest value was found between 

Ko Thalu (northwest, the Western Gulf of Thailand) 

samples and Ko Klung Badan (the Inner Gulf of Thailand) 

samples. Principle coordinate analysis (PCA) based on 

FST values revealed that genetic connectivity was not 

associated with the geographic location and distance 

between sites. The results from this study are useful for 

further exploring the connectivity and genetic diversity 

of Pocillopora populations, and will also support coral 

reef conservation in Thailand. 
 

 Keywords: population genetics, Pocillopora, connectivity, 

microsatellite, Gulf of Thailand 
 

1. Introduction 
 

Coral reefs are the highest biological diversity of 

marine ecosystems and are of ecological significance 

and economic value (McCook et al. 2009). Reef-

building corals play an important role in the 

structure and maintenance of coral reef ecosystems 

and make the structure of coral reefs. However, 

coral reefs are currently numerous threats and 

deteriorating worldwide due to natural or 

anthropogenic disturbances, such as elevated 

seawater temperatures, nutrient enrichment, 

and destructive and overfishing, have degraded 

coral reefs around the world and are also under 

threat from global warming and ocean acidification 

(Hoegh-Guldberg et al. 2007; Wilkinson et al. 

2010 ; Burke et al. 2011 ) , which has brought 

about conservation and restoration efforts. 

Marine sessile organisms are typically distributed 

across a network of habitats in which geographically 

separated locals, including corals have limited 

adult movement, so the relatively short, pelagic 

larval phase represents the primary opportunity 

for dispersal. (Hanski 1998). Coral recovery 

depends on the successful recruitment of new 

coral colonies from surviving populations. The 

ability of coral reefs to recover from disturbances 

is highly influenced by the pattern and strength 

of connectivity among populations through the 

dispersal of planulae, which is highly variable. 

Hence, population genetic studies provide 

important information that can be applied for 

managing marine protected areas (Palumbi 2004; 

Cowen et al. 2007; Ridgway et al. 2008; 

Underwood et al. 2009; Nakajima et al. 2012). 

 
The scleractinian coral Pocillopora damicornis 

is encountered on fringing reefs and found on 

tropical Indo-Pacific coral reefs (Veron 2000). 

P. damicornis has shown to be very sensitive to 

many natural disturbances, including coral 

bleaching (Yeemin et al. 1998; Marshall and 

Baird 2000; McClanahan et al. 2008; Pengsakun 

et al. 2012a), low salinity (Pengsakun 2013) 
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and diseases (Ben-Haim and Rosenberg 2002, 

Luna et al. 2007). According to the monitoring 

on coral communities in Thai waters, almost 

of P. damicornis colonies were bleached and 

died due to the 2010 coral bleaching event 

(Yeemin et al., 2010). Fortunately, this coral 

species can potentially colonize on an available 

substrate and it is a dominant coral recruit on 

settle plates, based on the recruit settlement 

experiments conducted in the Gulf of Thailand 

(Pengsakun et al., 2012b). 

 
Studies on population genetics among larvae-

brooding of Pocillopora spp. have been studied 

French Polynesia (Magalon et al. 2004), Raja 

Ampat, Indonesia (Starger et al. 2008), Kane‘ohe Bay 

(Gorospe and Karl 2013) and Okinawa Island, 

Japan (Nakajima et al., 2017). In the Indo-West 

Pacific, the populations of P. damicornis mainly 

have different levels of local inbreeding and 

clonality (Ayre et al., 1997; Adjeroud     and 

Tsuchiya 1999; Sherman et al., 2006; 

Whitaker 2006; Souter et al., 2009). A recent 

study has revealed that the levels of population 

genetic structure are significantly different, 

indicating the limitation of gene flow among 

the regions in the Indo-West Pacific as well   as 

within regions in the tropical Eastern Pacific 

(Combosch and Vollmer 2011). However, 

knowledge of population boundaries, source-

sink dynamics, and highly variable population 

genetic structures in scleractinian corals is 

considerably limited (van Oppen 2006; Hellberg 

2007; Jones et al. 2009; Souter et al. 2009).  

 

The Gulf of Thailand is a semi-enclosed 

tropical sea, located in the South China Sea. 

The Gulf is quite shallow with mean depth of 

only 45 m. The deepest part is only 80 m deep. 

(Wattayakorn, 2006). In the Gulf of Thailand, 

three group of the coral communities can be 

classified based on the difference of oceanographic 

conditions, consisting of the inner part of the 

Gulf of Thailand, the east and west coasts of the 

Gulf of Thailand (Yeemin et al., 2006). The 

distances between major reef groups were less 

than 500 km. This study aims to examine 

population genetic patterns for the coral       

P. damicornis at several location in the        

Gulf of Thailand. 

2. Materials and Methods 

 
2.1 Study sites and sample collection 

A total of 214 P. damicornis samples were 

collected from five locations throughout the 

Gulf of Thailand. Three sites within the Mu Ko 

Sichang, Chonburi Province (Ko Sak, Ko Klung 

Badan, Ko Khang Khao), one site within the 

Rayong Province (Hin Phoeng), two sites within 

the Prachuab Kirikhan Province (Ko Thalu (NW), 

Ko Thalu (SW)), three sites within the Ko Tao, 

Chumphon Province (Ao Thein, Ao Hin Wong, 

Ao Kluatheon) and three sites within the Ko Samui, 

Surat Thani Province (Ko Taen, Laem Sed,  

Hin Angwang) (Figure 1). Fragments of              

P. damicornis were collected from 241 colonies; 

one fragment was taken from each colony. Coral 

fragments were preserved in 100% ethanol in 

1.5 ml eppendorf tubes and then were kept in 

the laboratory until further processing. 

 
2.2 Genomic DNA Extraction, sequencing and 

microsatellite genotyping 

The coral skeletons from tubes containing coral 

tissues and were removed, and genomic DNA 

was extracted from coral tissue samples using 

DNeasy Blood and Tissue kit as specified by 

the manufacturer using the instructions for total 

DNA extraction from animal tissue (Qiagen, 

Valencia, CA, USA). Samples were genotyped 

using six microsatellite loci (Table 1) to analyze 

the genetic structure of P. damicornis populations. 

10 μL total volumes contained 0.5 μL DNA 

template. We amplified the extracted DNA by 

PCR (polymerase chain reaction) method 

(adding two primer sets to one PCR (Nakajima 

et al. 2012)) using fluorescently labelled primers 

(Table 1). The cycling protocol was modified 

as 94 oC for 5 minutes, followed by 35 cycles 

at 94 oC for 30 seconds, 54 oC for 30 seconds, 

72 oC for 1 minute and a final extension for 30 

minutes. Allelic variations were visualized on 

an ABI 3100 XL sequencer (Applied Biosystems). 

Genotype calling were analysed using GeneMapper 

version 4.0 (Applied Biosystems). and each 

genotype was visually checked. 
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Figure 1. Map of the Gulf of Thailand showing twelve study sites: (A) Ko Sak  (KS), Ko Klung Badan 

(KB), Ko Khang Khao (KK), the Inner Gulf of Thailand, (B) Hin Phoeng (HP), the Eastern Gulf of 

Thailand, (C) Ko Thalu (northwest, TNW) and Ko Thalu (southwest, TSW), the Western Gulf of 

Thailand, (D)  Ao Thein, (AT) , Ko Tao, Ao Hin Wong, (HWO) , Ko Tao, Ao Kluatheon (AKT), Ko 

Tao, the Western Gulf of Thailand, (E)   Ko Taen  (Kta), Ko Samui, Laem Sed (LS), Ko Samui, Hin 

Angwang (HWA), Ko Samui, the Western Gulf of Thailand. 

 

2.3 Statistical analyses 

The numbers of alleles, allele frequencies, 

observed heterozygosity (Ho) and expected 

heterozygosity (He), number of private alleles, 

and inbreeding coefficient (FIS) values (Peakall 

and Smouse 2012) were calculated using the 

GenAlEx software (version 6.5). FIS values 

were applied to examine the deviation from 

Hardy-Weinberg equilibrium (HWE) because 

gaps between Ho and He under HWE are in 

proportion to the value of FIS. F-statistics via 

analysis of molecular variance (AMOVA) was 

used to test the significance of all estimates 

based on 999 random permutations in order to 

measure the proportion of genetic variation 

between sites. A low pairwise FST indicates a 

high extent of gene flow and vice versa. Statistical 

significance levels for all pairwise tests were 

P<0.05. Pairwise geographic distances between 

sites were also calculated by GenAlEx software 

to estimate the scale of populations analyzed 

(Nakajima et al. 2009) 

 

3. Results 

 

A total of 214 complete multilocus genotypes 

from 241 coral fragments of P. damicornis 

were gathered. Mean Ho and He values for all 

loci across sites ranged from 0.125 to 1.000 
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Table 1. Details for six polymorphic microsatellite loci developed for Pocillopora damicornis as calculated from 

genotypes of 38 individuals 

Locus Primer sequence (5′-3′) Repeat motif Size (bp) Fluorescence tag 

PV2 

F: GCCAGGACCCATTTATACTCC 

R: TGCAGTGTTCTACTTGTCAGTGC 
(GA)20 130-196 FAM 

Pd3-002 

F: ATCCGAATACAAGCGAAACG 

R: CAAAGCTTCTATCAGAAAATGCAA 
(AAC)10 195–243 NED 

Pd3-004 

F: ACCAGACAGAAACACGCACA 

R: GCAATGTGTAACAGAGGTGGAA 
(ATG)8 160-180 VIC 

Pd3-005 

F: AGAGTGTGGACAGCGAGGAT 

R: GTTCCTTCGCCTTCGATTTT 
(TGA)9 200-230 VIC 

Pd3-EF65 

F: TGTGCAGGTGTTGTGACTGA 

R: TGTCTTTTTCACTTTTGCTTCAA 

(GTT)5, 

(TGC)11 
259–281 FAM 

Pd2-AB79 

F: GGAGATGGATGGAGACTGCT 

R: U19-AGTGCACGCACTAGATAGA 

(GT)5(CT)2 

GT(CT)3 
140-170 VIC 

 

Table 2. Population statistic (± sd); N = total number of sample colonies, Ho = observed heterozygosity 

(Mean ±SD), He = expected   heterozygosity (Mean ±SD); departures from Hardy–Weinberg equilibrium 

are expressed as FIS (Mean ±SD) 

 Study site N Mean Ho Mean He Mean FIS 

Inner Gulf of Thailand (IG) 

 Ko Sak (KS) 16 1.000 0.654 -0.531 

Ko Klung Badan (KB) 15 0.967 0.572 -0.689 

Ko Khang Khao (KK) 17 0.941 0.621 -0.533 

Eastern Gulf of Thailand (EG) 

 Hin Phoeng (HP) 30 0.900 0.761 -0.186 

Western Gulf of Thailand (WG) 

 Ko Thalu (northwest, TNW) 23 0.935 0.619 -0.533 

Ko Thalu (southwest, TSW) 18 0.361 0.759 0.522 

Ao Thein, Ko Tao (AT) 16 0.125 0.117 -0.067 

Ao Hin Wong, Ko Tao (HWO) 16 0.750 0.803 0.061 

Ao Kluatheon, Ko Tao (AKT) 21 0.952 0.769 -0.238 

Ko Taen, Ko Samui (Kta) 20 0.975 0.671 -0.458 

Laem Sed, Ko Samui (LS) 14 1.000 0.561 -0.803 

Hin Angwang, Ko Samui (HWA) 8 0.813 0.648 -0.256 

 Total or mean (±SD) 214 0.810±0.060 0.630±0.038 -0.309±0.080 

and 0.117 to 0.561, respectively, and the total 

mean values were 0.810±0.060 (±SD) and 

0.630±0.038 (±SD), respectively (Table 2). 

Departures in population heterozygosity from 

HWE were indicated by mean FIS values, which 

ranged from -0.067 to -0.803 at all sites (Table 2). 

 

 The variance calculated by AMOVA was 0.149 

(15 %) for among regions and 0.820 (85 %) 

within populations (total value: 0.969).        

A significant difference was detected among 

populations (P < 0.001) (Table 3). 

 

Population differentiation among sampling sites 

was examined using pairwise FST comparison 

(Table 4). Pairwise FST values across study sites 

ranged from 0.004 to 0.425.  The highest FST 

values were found between Ko Khang Khao 

samples (the Inner Gulf of Thailand) and Ao Thien, 

Ko Tao samples (the Western Gulf of Thailand), 
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Table 3. Hierarchical analysis of molecular variance (AMOVA) analysis using GenAlEx software 

Source df Sum of squares Est. Var. % of the total variances P 

Among populations 11 63.4 0.149 15% <0.001 

Among individuals 

within populations 

214 175.5 0.820 85% <0.001 

Total 225 238.9 0.969   

 

Table 4. Pairwise FST values for all 12 populations as indices of genetic differentiation (below diagonal) 

and pairwise geographic distance (km) based on geographic coordinates of sampling sites (above diagonal) 

Region IG IG WG IG EG WG WG WG WG WG WG WG 

Study site KS KB AT KK HP TSW HWO AKT TNW Kta LS HWA 

KS  16.1 362.6 25.3 51.5 241.5 324.4 323.2 240.4 401.2 395.6 396.5 

KB 0.105  319.8 11.2 54. 5 234.10 318.1 316.1 232.3 398.4 390.9 396.0 

AT 0.310 0.215  349.9 284.5 116.5 2.3 2.83 114.3 81.70 78.1 80.8 

KK 0.074 0.157 0.425  83.6 263.9 347.9 347.7 262.9 426.06 419.8 420.8 

HP 0.045 0.053 0.236 0.051  203.4 302.3 256.9 211.5 370.14 347.6 358.3 

TSW 0.110 0.118 0.260 0.147 0.078  113.9 110.4 1.41 192.5 188.9 191.7 

HWO 0.092 0.073 0.245 0.104 0.042 0.036  2.2 113.5 81.2 75.9 78.4 

AKT 0.057 0.071 0.257 0.100 0.036 0.074 0.043  110.8 83.34 81.3 82.1 

TNW 0.109 0.004 0.237 0.144 0.047 0.113 0.060 0.062  192.81 189.7 192.5 

Kta 0.136 0.154 0.413 0.089 0.090 0.082 0.073 0.087 0.138  6.59 3.51 

LS 0.102 0.018 0.273 0.169 0.070 0.131 0.086 0.074 0.023 0.152  3.67 

HWA 0.172 0.100 0.416 0.155 0.103 0.133 0.094 0.122 0.080 0.155 0.103  

whereas the lowest value was found between 

Ko Thalu (northwest, the Western Gulf of 

Thailand) samples and Ko Klung Badan (the 

Inner Gulf of Thailand) samples. 

 

Principle coordinate analysis (PCA) based on 

FST values revealed that genetic connectivity 

was not associated with the geographic location 

and distance between sites (Figure 2). For 

example, Ao Thian site was located far from Ao 

Hin Wong and Ao Klua Theon, although these 

three sites are located on the eastern side             

of Ko Tao. 

 

 

4. Discussion 
 

Based on our findings, ten of the twelve 

populations of P. damicornis, collected from 

the Gulf of Thailand, showed the negative FIS 

values at each locus, showing that there was 

heterozygosity excess compared to the HWE 

expectation. According to the study of the 

genetic population in French Polynesia, the 

heterozygote excess may be due to the effect of 

clonality in P. damicornis (Adjeroud et al. 2014). 

Hence, heterozygotes with better characteristics 

such as proper size, high clonal growth rate, 

high survival rate, etc., can enhance the success 

of their clonal propagation, leading to natural
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Fig. 2. Plot of the principal coordinate analysis based on a co-variance with standardized data; Ko Sak 

(KS), Ko Klung Badan (KB), Ko Khang Khao (KK), the inner Gulf of Thailand, Hin Phoeng (HP), the 

eastern Gulf of Thailand, Ko Thalu (northwest, TNW), Ko Thalu (southwest, TSW),  Ao Thein, (AT), Ao Hin 

Wong, (HWO),         Ao Kluatheon (AKT), Ko Taen  (Kta), Laem Sed (LS), Hin Angwang (HWA), the 

western Gulf of Thailand. 

 

coral populations. On the other hand, some coral 

populations and loci exhibited a significantly 

positive FIS value, illustrating the occurrence of 

heterozygote deficiency. This may be influenced 

by several factors, e. g. null alleles and inbreeding 

as it was found in P. damicornis along the Great 

Barrier Reef, Australia (Ayre et al. 1997). 

Furthermore, the occurrence of micro-scale 

Wahlund effects can also induce the heterozygote 

deficiency because of genetic patchiness, i.e., the 

admixture of several differentiated cohorts, as 

observed in some reef organisms (Selkoe et al. 2010). 

 

In this study, the observed coral populations 

had a low level of genotypic diversity, indicating 

that this may result from asexual reproduction 

in coral recruitment and population maintenance 

of P. damicornis in the Gulf of Thailand. These 

findings are in accordance with the results of 

some previous publications that observed    

P. damicornis in several geographical regions, 

for example, Australia, East Africa, Hawaii   

and Okinawa (Stoddart 1984; Adjeroud and 

Tsuchiya 1999; Souter et al. 2009; Gorospe and 

Karl 2013). Conversely, several works conducted 

in the Great Barrier Reef, West Papua New-

Guinea, Indonesia and the tropical Eastern Pacific 

reported that the high levels of genotypic richness 

in the population of P. damicornis are derived 

from its predominance of sexual reproduction 

(Ayre et al. 1997; Starger et al. 2008). Our 

findings also reveal that the degrees of asexual 

reproduction and clonality in P. damicornis 

varied geographically.    

 

In the Gulf of Thailand, the colonies of          

P. damicornis are generally distributed in the 

form of abundant patchy populations in shallow 

fringing reefs. Because the skeleton of        

P. damicornis is fragile, some human activities 

such as trampling, gleaning, fishing and 

anchoring, can generate negative impacts on 

leading to the high fragmentation rates and the 

survival rates of coral fragments. This might 

promote the high levels of clonality within local 

populations (Pinzón et al. 2012; Adjeroud et al. 

2014). The observed study sites in the Gulf   of 

Thailand, however, had a low level of 

fragmentation of P. damicornis, implying that 

the fragmentation of P. damicornis colonies is 

probably less common the Gulf of Thailand.     

It is possible that a high level of clonality 

could result from the production of asexual 

(pathenogenetic) larvae of P. damicornis.   

 

Twelve coral populations in the Gulf of Thailand 

observed in this study had a significant genetic 

differentiation, which can be linked to the marked 

variability in the reproductive strategies and 

genetic structure of P. damicornis across the 

geographic range in the Gulf of Thailand. The 

maintenance of local populations of P. damicornis 

in the Gulf of Thailand may be mainly enhanced 

by its asexual reproduction, contributing to the 
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elevation of clonality within populations and 

significant genetic differentiation among 

populations. However, gene flow among some 

populations in the Gulf of Thailand can also be 

observed, based on our analysis. Our findings 

agree with what Bell (1982) found on modelling 

the dispersal and population maintenance in a 

species with mixed modes of reproduction and 

mentioned that larvae generated from sexual 

reproduction tended to provide long-distance 

colonists and gene flow between distant 

populations. In contrast, asexual reproduction 

serves as a vital contributor for maintaining 

local populations (Adjeroud and Tsuchiya 1999; 

Adjeroud et al. 2014). Understanding of 

population genetic studies on scleractinian 

corals in the Gulf of Thailand is still limited and 

most researches were implemented as in an 

initial phase. Detailed studies are highly 

required and further findings should provide a 

clear explanation in various aspects, for example, 

genetic diversity, clonality and connectivity of 

other coral species in a marine ecosystem.  
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