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Abstract. In light of recent coral reef ecosystems, there
has been significantly degraded biodiversity in coral reef
ecosystems by anthropogenic disturbance and global climate
change. Studies on the genetic diversity and connectivity
of coral populations are very important. However, there
are very few studies of population genetics of corals in
the Gulf of Thailand. In this study, we used four microsatellite
loci to examine the genetic structure of the broadcast
spawning coral Porites lutea populations. Our results
revealed that P. lutea populations had relatively low genetic
diversity. A significant genetic difference was detected
among populations (p < 0.001). Population differentiation
among study sites was examined using pairwise Fsr
comparison. The highest Fsr values were observed between
Ko Taiphlao and Ko Prong, while the lowest one was
observed between Ko Samet and Ko Kula, Ko Samet and
Ko Thong Lang. Principal coordinate analysis (PCoA)
based on Fsr values showed that genetic connectivity was
not influenced with the geographic location and distance
between study sites. Genetic structure analyses also
indicated closely knit genetic units within all study sites
in the Gulf of Thailand. Our study provides important
data of the connectivity and genetic diversity of P. lutea
populations, and also supports coral reef conservation
and restoration in Thailand.

Keywords: connectivity, genetic diversity, Gulf of Thailand,
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1. Introduction

Coral reefs have the highest biodiversity in marine
ecosystems and provide high values of ecosystem
services (McCook et al. 2009). Scleracitnian
corals are major components of the coral reef
ecosystems and build the reef structures. However,
global warming has significantly reduced
biodiversity and poses a critical threat to the health
of corals. Coral reef ecosystems are vulnerable
to both natural and anthropogenic disturbances,
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including elevated seawater temperatures, nutrient
enrichment, destructive fishing and overexploitation,
which have collectively led to the degradation
of coral reefs worldwide. Furthermore, coral reefs
are under increasing threat from the compounding
impacts of global warming and ocean acidification.
(Hoegh-Guldberg et al. 2007; Burke et al. 2011,
Thomas et al. 2017). The elevation of sea surface
temperature, primarily attributed to global
warming, significantly impacts coral reef
ecosystems. This phenomenon disrupts the delicate
symbiotic relationships between coral hosts
and their endosymbiotic dinoflagellates, ultimately
leading to the widespread occurrence of coral
bleaching (Chen et al., 2018). The potential
for coral reefs to recover from disturbances
significantly depends on the patterns and strength
of population connectivity, primarily through
the highly variable process of planulae dispersal.
Consequently, population genetic studies provide
valuable information that can be applied to the
management of marine protected areas (Palumbi
2004; Ridgway et al. 2008; Underwood et al.
2009; Nakajima et al. 2012; van der Ven et al.
2021). Genetic diversity is a key driver of speciation
and adaptation, signifying a population's genetic
potential and adaptability. Higher genetic diversity
enhances genetic potential (Barrett and Schluter,
2008; Hoegh-Guldberg and Bruno, 2010; Thomas
et al. 2017; McManus et al. 2021). In Western
Australia, coral populations at lower latitudes
exhibited greater genetic potential compared
to those at higher latitudes. Corals in higher
latitudes were found to be more susceptible to
the impacts of global climate change, particularly
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when contrasted with their tropical counterparts.
These findings highlight the importance of
considering latitude-dependent genetic diversity
in conservation and climate resilience strategies
(Ayre and Hughes, 2004; Miller and Ayre, 2010;
Thomas et al., 2017).

The Gulf of Thailand is a shallow inlet of the
South China Sea located in the western part of
the Pacific Ocean. It is an important semi-enclosed
tropical sea. It has a relatively shallow average
depth of 45 m, with its deepest point reaching
80 m (Wattayakorn, 2006). In the Gulf of Thailand,
the coral communities can be categorized into
three groups based on variations in oceanographic
conditions. These groups include the inner part
of the Gulf of Thailand, the east and west coasts
of the Gulf of Thailand (Yeemin et al., 2006).
The distances separating the major reef groups
were found to be within 500 km.

Massive coral P. lutea, a reef building coral species,
plays a crucial ecological role by broadcasting
its gametes. P. lutea significantly contributes to
the formation and maintenance of coral reefs
across the Indo-Pacific region. (Stat and Gates
2011; Tanzil et al. 2013; Veron 2000). P. lutea
is known for its tolerance and adaptability to
climate change and various forms of anthropogenic
disturbance (Xu et al., 2017; Qin et al., 2019;
Sutthacheep et al. 2018a; Luo et al., 2022).
This coral species has demonstrated tolerance
to climate change and various anthropogenic
disturbances, including severe coral bleaching
events in 1998 and 2010 (Sutthacheep et al., 2013).
The scleractinian coral Porites complex are dominant
corals generally found in coral reefs in the Gulf
of Thailand. substantial genetic diversity and
connectivity in P. lutea populations across the
South China Sea were reported by using nuclear
markers such as the internal transcribed spacer
and beta-tubulin. Notably, their study did not
reveal any discernible genetic structure or influential
factors (Huang et al. 2018). Similarly, high
genetic diversity in P. lutea was documented in
populations near Sanya, Lembeh Strait (LB), and
Indonesia (Tian et al. 2014; Niu et al. 2015).
However, studies on population genetics of P. lutea
are very limited. The objective of this study is
to investigate population genetic patterns of the
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coral P. lutea at several geographic locations in
the Gulf of Thailand.

2. Materials and Methods

2.1 Study sites and sample collection

P. lutea samples were collected from 16 locations
throughout the Gulf of Thailand. Fragments of
P. lutea were collected from a total of 120 colonies
at three locations in Mu Ko Sichang Chonburi
Province, one location in Mu Ko Samet, Rayong
Province, four locations in Mu Ko Chang, Trat
Province, four locations the Mu Ko Chumphon,
Chumphon Province and four locations in Mu
Ko Angthong, Surat Thani Province (Figure 1).
A small fragment was taken from each colony.
The coral fragments were preserved in 1.5 ml
eppendorf tubes containing 100% ethanol and
then were kept in the laboratory for DNA extraction.
P. lutea were identified based on morphological
characteristics. The collected samples of P. lutea
were re-confrmed by ITS before DNA extraction
(Huang et al. 2018).

2.2 Genomic DNA extraction, sequencing and
microsatellite genotyping

The genomic DNA was extracted from coral
tissue samples using DNeasy Blood and Tissue
kit following the manufacturer’s protocol (Qiagen,
Valencia, CA, USA). Four microsatellite loci
for analysis the genetic structure of P. lutea
populations in this study (Table 1). Primers PI01,
P102, P104, and P110 were from Basiita et al.
(2016). A total volume of 10 pL contained 0.5 pL
DNA template. The extracted DNA was amplified
by PCR method, (Nakajima et al. 2012) using
fluorescently labelled primers. The cycling
protocol was modified as 94 °C for 1 minutes,
followed by 40 cycles at 94 °C for 30 seconds,
53 °C for 30 seconds, 72 °C for 75 seconds and a
final extension for 5 minutes. Fragments were
analyzed using capillary electrophoresis, on an
ABI 3100 XL sequencer (Applied Biosystems).
Analysing genotype calling was conducted by
using GeneMapper version 4.0 (Applied Biosystems).
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Figure 1. Map of the Gulf of Thailand showing sixteen study sites: (A) Mu Ko Sichang, (B) Mu Ko Samet,
(C) Mu Ko Chang, (D) Mu Ko Chumphon, and (E) Mu Ko Angthong

Figure 2. Underwater photographs showing the Porites lutea colonies at the study sites
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2.3 Statistical analyses

The alleles numbers, allele frequencies,
observed heterozygosity (Ho) and expected
heterozygosity (He), number of private alleles,
and inbreeding coefficient (Fis) values were
analyzed using the GenAlEx software (version
6.5) (Peakall and Smouse 2012). Fis values
were used to investigate the deviation from
Hardy-Weinberg equilibrium (HWE) because
of gaps between Ho and He under HWE showing
proportion to the value of Fis. F-statistics from
analysis of molecular variance (AMOVA)
was applied to test the significance of all estimates
based on 999 random permutations in order
to measure the proportion of genetic variation
between locations. A low pairwise Fst reveals

a high extent of gene flow and vice versa.
The levels of statistical significance for all
pairwise tests were P<<0.05. Pairwise geographic
distances between locations were also analyzed
by GenAlEx software to estimate the scale
of populations (Nakajima et al. 2009).
STRUCTURE analyses were conducted
according to the assumptions with no prior
population information. Each run consisted
of 100,000 iterations with a burn-in of 100,000
for each value of K, from K = 1-10. For each
K, the run was replicated ten times. The most
likely value of K was analyzed using
STRUCTURE HARVESTER (Earl and
VVonHoldt 2011.

Table 1. Details for four polymorphic microsatellite loci developed for Porites lutea as calculated from genotypes of

120 individuals

Locus Primer sequence (5'-3") Repeat motif

P101 F: TCATTCAATACCTTCTCAAGATTCA (AG)11
R: TGGTATTTCATACATTATTTCCCTTG

PI02 F: GTCATCGTCATCACCATCCA (ACC)s
R: GAGCCGAACAGATTTCAACC

Pl04 F: TTGCCCCATTCCAATAACTG (AAC),
R: GGAAAGACGAAATTAAATAGCCC

P110 F: CACCATAATCATGAGATTTACTATTGA (AC)o
R: GAATCAACCAATGGCAGTCC

3. Results

A total of 120 complete multilocus genotypes
of P. lutea were analyzed. In our study
populations, mean Ho and He values for all
loci across sites were in a range of 0.667 - 1.000
and 0.472 - 0.750, respectively. The total mean
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values were 0.862+0.026 and 0.644+0.020,
respectively. Departures in population
heterozygosity from HWE were indicated by
mean FIS values, which ranged from -0.167 to
-0.679 at all sites (Table 2)
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Table 2. Population statistic (+SD) of P. lutea populations; H, = observed heterozygosity (MeantSD), H. = expected
heterozygosity (Mean £SD); departures from Hardy—\Weinberg equilibrium is expressed as Fis (Mean +SD)

Study site Mean H, Mean He Mean Fis

Mu Ko Sichang

Ko Khang Khao 0.875 0.734 -0.187

Ko Prong 0.667 0.472 -0.417

Ko Kham 1.000 0.639 -0.643
Ko Samet 0.857 0.705 -0.220
Mu Ko Chang

Ko Bai Dang 0.833 0.528 -0.568

Ko Thong Lang 0.900 0.710 -0.264

Ko Thian 1.00 0.594 -0.679

Ko Yak Yai 0.833 0.639 -0.318
Mu Ko Chumphon

Ko Ngam Yai 0.875 0.625 -0.414

Ko Lawa 0.875 0.719 -0.215

Ko Kula 0.875 0.609 -0.433

Ko Rang Kachiu 1.000 0.750 -0.335
Mu Ko Angthong

Ko Taiphlao 0.667 0.528 -0.295

Ko Hindap 0.667 0.583 -0.167

Ko Sam Sao 1.000 0.750 -0.354

Ko Wua Kanthang 0.875 0.719 -0.217

Mean (xSD) 0.862+0.026 0.644+0.020 -0.358+0.041
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The variance calculated by AMOVA was significant difference was detected among
0.023 (3%) for among regions and 0.868 populations (P < 0.001) (Table 3).
(97%) within populations (total value: 0.890). A

Table 3. Hierarchical analysis of molecular variance (AMOVA) using GenAlIEXx software

0,
Source df SHles Est. Var. 00 '_[he el P
squares variances

Among populations 15 11.662 0.023 3% <0.001

Among individuals 120 89.683 0.868 97% <0.001

within individuals

Total 135 101.346 0.890
Population differentiation among locations values were observed between Ko Taiphlao
was investigated using pairwise Fst comparison and Ko Prong, whereas the lowest value was
(Table 4). Pairwise Fst values across locations found between Ko Samet and Ko Kula,
ranged from 0.013 to 0.211. The highest Fst Ko Samet and Ko Thong Lang.

Table 4. Pairwise Fst values for all 16 populations of P. lutea in the Gulf of Thailand

g o = o
2 o & R g £
swyse 3 2§42 8 2 s £ s . 2o fogos
g £ I &8 2 & £ £ £ 2 § ¢ & ¢ & ¢
e £ £ £ £ £ ¢ £ £ £ £ £ £ £ £ <
Ko Samet 0.000
Ko Taiphlao 0.082 0.000
Ko Hindap 0.068 0.106 0.000
Ko Sam Sao 0.043 0.171 0.119 0.000
Ko Wua Kanthang 0.020 0.072 0.070 0.051 0.000
Ko Bai Dang 0.081 0.049 0.036 0.160 0.079 0.000
Ko Thong Lang ~ 0.013 0.135 0.095 0.022 0.037 0.129 0.000
Ko Thian 0.030 0.159 0.134 0.049 0.029 0.168 0.031 0.000
Ko Yak Yai 0.031 0.170 0.117 0.043 0.070 0.151 0.024 0.062 0.000
Ko Ngam Yai 0.061 0.015 0.059 0.135 0.050 0.024 0.105 0.133 0.138 0.000
Ko Lawa 0.037 0.172 0.101 0.015 0.052 0.152 0.015 0.050 0.033 0.132 0.000
Ko Kula 0.013 0.128 0.085 0.055 0.029 0.114 0.021 0.019 0.056 0.098 0.049 0.000
Ko Rang Kachiu  0.031 0.132 0.095 0.033 0.051 0.107 0.025 0.075 0.029 0.096 0.036 0.057 0.000
Ko Khang Khao ~ 0.038 0.034 0.088 0.080 0.037 0.072 0.064 0.091 0.085 0.033 0.078 0.083 0.065 0.000
Ko Prong 0.056 0.211 0.144 0.108 0.122 0.180 0.053 0.112 0.036 0.175 0.087 0.073 0.064 0.143 0.000
Ko Kham 0.054 0.200 0.138 0.033 0.051 0.182 0.044 0.029 0.073 0.159 0.038 0.048 0.076 0.108 0.151 0.000
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Principle coordinate analysis (PCoA) based
on Fsr values showed that genetic connectivity
was not correlated with the locations and
distance between locations (Figure 3). According
to plots of Delta K and LnP (D) from

STRUCTURE analysis, with just three genetic
clusters were detected as the optimal number
(K = 3). Genetic structure analyses also indicated
closely knit genetic units within all locations
in the Gulf of Thailand (Figure 4)
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Figure 3. Principal coordinate analysis (PCoA) of P. lutea from the Gulf of Thailand
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Figure 4. Cluster analysis of Porites lutea in the Gulf of Thailand performed using STRUCTURE (optimal K=3). The y-
axis shows the membership probability of each location in distinct population clusters (different colors). Sampling

locations are showed along the x-axis

4. Discussion

In this study, we analyzed a dataset encompassing
120 coral fragments of P. lutea, all gathered
from the Gulf of Thailand. Our examination
of these genotypes consistently revealed Fst
values at each location, indicating an excess
of heterozygosity when compared to the expected
Hardy-Weinberg Equilibrium (HWE). Our results
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are different from previous research conducted
by Niu et al. (2015), who reported high genetic
diversity within P. lutea populations in Lembeh
Strait (LB), Indonesia, using ITS nuclear markers.
It is noteworthy that LB, located within the
Coral Triangle, serves as a pivotal center for
global coral populations, accommodating
over 75% of reef-dwelling species worldwide
(Dubinsky and Stambler 2011). Our results



Ramkhamhaeng International Journal of Science and Technology (2023) 6(2): 45-58

suggest that the reproduction mode of P. lutea
is largely by sexual propagation with abundant
gene diversity. The genetic diversity of P. lutea
populations was relatively high at Mu Ko
Chumphon, Mu Ko Chang and Mu Ko Samet
but decreased in the Mu Ko Sichang and Mu
Ko Angthong. The adaptability of marine
organisms is largely controlled by reproduction
patterns and genetic diversity (Bernhardt and
Leslie, 2013; Wu et al., 2021). Our findings
suggest that low genetic diversity may hinder
the adaptability of P. lutea in the Gulf of Thailand.
Previous studies showed high genetic diversity
values for two broadcast spawning coral species,
Montastraea cavernosa and Pavona gigantea,
found in the Western Atlantic and Mexican
Pacific, respectively (Saavedra-Sotelo et al.
2011; Goodbody and Gvringley et al. 2012).
Our results suggest the increased vulnerability
of P. lutea populations in Mu Ko Sichang
and Mu Ko Angthong areas to the effects of
climate change and human activities. Such
vulnerability may be influenced by a variety
of factors, including local environmental
conditions and human interactions, highlighting
the necessity for targeted conservation efforts
within this specific region.

The genetic connectivity of P. lutea is similar
to that of Pocillopora damicornis, which was
reported to be low genetic connectivity in the
Gulf of Thailand (Sutthacheep, 2018b). These
two coral species have different reproductive
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strategies. P. damicornis, being a brooder coral,
retains embryos internally, limiting larval
dispersal, while P. lutea reproduces through
broadcast spawning, allowing for more extensive
gamete dispersion in ocean currents. Moreover,
the local hydrodynamics in the Gulf of Thailand,
as indicated by Sojisuporn’s study in 2010,
wherein tides can converge or flow towards
each other, further contribute to the patterns
in genetic connectivity. These findings highlight
the intricate interplay between reproductive
biology, oceanic conditions, and genetic
connectivity among coral populations. Larvae
produced through sexual reproduction often
play a crucial role as long-distance colonizers,
contributing to gene flow between geographically
distant populations (Adjeroud and Tsuchiya
1999; Adjeroud et al. 2014; Edmunds et al.
2018).

Knowledge of population genetics studies on
scleractinian corals in the Gulf of Thailand is
currently limited, and the majority of
research in this area is still in its initial phases.
Nevertheless, detailed studies are highly
required for studying population genetics in
scleractinian corals in the Gulf of Thailand.
Such research can provide valuable insights
into the genetic diversity, connectivity of other
coral species which are very important
scientific information for protection and
restoration of coral reefs in Thai waters.
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