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Abstract. In light of recent coral reef ecosystems, there 

has been significantly degraded biodiversity in coral reef 

ecosystems by anthropogenic disturbance and global climate 

change. Studies on the genetic diversity and connectivity 

of coral populations are very important. However, there 

are very few studies of population genetics of corals in 

the Gulf of Thailand. In this study, we used four microsatellite 

loci to examine the genetic structure of the broadcast 

spawning coral Porites lutea populations. Our results 

revealed that P. lutea populations had relatively low genetic 

diversity. A significant genetic difference was detected 

among populations (p < 0.001). Population differentiation 

among study sites was examined using pairwise FST 

comparison. The highest FST values were observed between 

Ko Taiphlao and Ko Prong, while the lowest one was 

observed between Ko Samet and Ko Kula, Ko Samet and 

Ko Thong Lang. Principal coordinate analysis (PCoA) 

based on FST values showed that genetic connectivity was 

not influenced with the geographic location and distance 

between study sites. Genetic structure analyses also 

indicated closely knit genetic units within all study sites 

in the Gulf of Thailand. Our study provides important 

data of the connectivity and genetic diversity of P. lutea 

populations, and also supports coral reef conservation 

and restoration in Thailand. 
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1. Introduction 
 

Coral reefs have the highest biodiversity in marine 

ecosystems and provide high values of ecosystem 

services (McCook et al. 2009). Scleracitnian 

corals are major components of the coral reef 

ecosystems and build the reef structures. However, 

global warming has significantly reduced 

biodiversity and poses a critical threat to the health 

of corals. Coral reef ecosystems are vulnerable 

to both natural and anthropogenic disturbances, 

including elevated seawater temperatures, nutrient 

enrichment, destructive fishing and overexploitation, 

which have collectively led to the degradation 

of coral reefs worldwide. Furthermore, coral reefs 

are under increasing threat from the compounding 

impacts of global warming and ocean acidification. 

(Hoegh-Guldberg et al. 2007; Burke et al. 2011; 

Thomas et al. 2017). The elevation of sea surface 

temperature, primarily attributed to global 

warming, significantly impacts coral reef 

ecosystems. This phenomenon disrupts the delicate 

symbiotic relationships between coral hosts 

and their endosymbiotic dinoflagellates, ultimately 

leading to the widespread occurrence of coral 

bleaching (Chen et al., 2018). The potential 

for coral reefs to recover from disturbances 

significantly depends on the patterns and strength 

of population connectivity, primarily through 

the highly variable process of planulae dispersal. 

Consequently, population genetic studies provide 

valuable information that can be applied to the 

management of marine protected areas (Palumbi 

2004; Ridgway et al. 2008; Underwood et al. 

2009; Nakajima et al. 2012; van der Ven et al. 

2021). Genetic diversity is a key driver of speciation 

and adaptation, signifying a population's genetic 

potential and adaptability. Higher genetic diversity 

enhances genetic potential (Barrett and Schluter, 

2008; Hoegh-Guldberg and Bruno, 2010; Thomas 

et al. 2017; McManus et al. 2021). In Western 

Australia, coral populations at lower latitudes 

exhibited greater genetic potential compared 

to those at higher latitudes. Corals in higher 

latitudes were found to be more susceptible to 

the impacts of global climate change, particularly 
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when contrasted with their tropical counterparts. 

These findings highlight the importance of 

considering latitude-dependent genetic diversity 

in conservation and climate resilience strategies 

(Ayre and Hughes, 2004; Miller and Ayre, 2010; 

Thomas et al., 2017). 

 

The Gulf of Thailand is a shallow inlet of the 

South China Sea located in the western part of 

the Pacific Ocean. It is an important semi-enclosed 

tropical sea. It has a relatively shallow average 

depth of 45 m, with its deepest point reaching 

80 m (Wattayakorn, 2006). In the Gulf of Thailand, 

the coral communities can be categorized into 

three groups based on variations in oceanographic 

conditions. These groups include the inner part 

of the Gulf of Thailand, the east and west coasts 

of the Gulf of Thailand (Yeemin et al., 2006). 

The distances separating the major reef groups 

were found to be within 500 km. 

 

Massive coral P. lutea, a reef building coral species, 

plays a crucial ecological role by broadcasting 

its gametes. P. lutea significantly contributes to 

the formation and maintenance of coral reefs 

across the Indo-Pacific region. (Stat and Gates 

2011; Tanzil et al. 2013; Veron 2000). P. lutea 

is known for its tolerance and adaptability to 

climate change and various forms of anthropogenic 

disturbance (Xu et al., 2017; Qin et al., 2019; 

Sutthacheep et al. 2018a; Luo et al., 2022). 

This coral species has demonstrated tolerance 

to climate change and various anthropogenic 

disturbances, including severe coral bleaching 

events in 1998 and 2010 (Sutthacheep et al., 2013). 

The scleractinian coral Porites complex are dominant 

corals generally found in coral reefs in the Gulf 

of Thailand. substantial genetic diversity and 

connectivity in P. lutea populations across the 

South China Sea were reported by using nuclear 

markers such as the internal transcribed spacer 

and beta-tubulin. Notably, their study did not 

reveal any discernible genetic structure or influential 

factors (Huang et al. 2018). Similarly, high 

genetic diversity in P. lutea was documented in 

populations near Sanya, Lembeh Strait (LB), and 

Indonesia (Tian et al. 2014; Niu et al. 2015). 

However, studies on population genetics of P. lutea 

are very limited. The objective of this study is 

to investigate population genetic patterns of the 

coral P. lutea at several geographic locations in 

the Gulf of Thailand. 

 

2. Materials and Methods 

 
2.1 Study sites and sample collection 

P. lutea samples were collected from 16 locations 

throughout the Gulf of Thailand. Fragments of 

P. lutea were collected from a total of 120 colonies 

at three locations in Mu Ko Sichang Chonburi 

Province, one location in Mu Ko Samet, Rayong 

Province, four locations in Mu Ko Chang, Trat 

Province, four locations the Mu Ko Chumphon, 

Chumphon Province and four locations in Mu 

Ko Angthong, Surat Thani Province (Figure 1). 

A small fragment was taken from each colony. 

The coral fragments were preserved in 1.5 ml 

eppendorf tubes containing 100% ethanol and 

then were kept in the laboratory for DNA extraction. 

P. lutea were identified based on morphological 

characteristics. The collected samples of P. lutea 

were re-confrmed by ITS before DNA extraction 

(Huang et al. 2018). 

 
2.2 Genomic DNA extraction, sequencing and 

microsatellite genotyping 

The genomic DNA was extracted from coral 

tissue samples using DNeasy Blood and Tissue 

kit following the manufacturer’s protocol (Qiagen, 

Valencia, CA, USA). Four microsatellite loci 

for analysis the genetic structure of P. lutea 

populations in this study (Table 1). Primers Pl01, 

Pl02, Pl04, and P110 were from Basiita et al. 

(2016).  A total volume of 10 μL contained 0.5 μL 

DNA template. The extracted DNA was amplified 

by PCR method, (Nakajima et al. 2012) using 

fluorescently labelled primers. The cycling 

protocol was modified as 94 oC for 1 minutes, 

followed by 40 cycles at 94 oC for 30 seconds, 

53 oC for 30 seconds, 72 oC for 75 seconds and a 

final extension for 5 minutes. Fragments were 

analyzed using capillary electrophoresis, on an 

ABI 3100 XL sequencer (Applied Biosystems). 

Analysing genotype calling was conducted by 

using GeneMapper version 4.0 (Applied Biosystems). 
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Figure 1. Map of the Gulf of Thailand showing sixteen study sites: (A) Mu Ko Sichang, (B) Mu Ko Samet,           

(C) Mu Ko Chang, (D) Mu Ko Chumphon, and (E) Mu Ko Angthong 

 

  

Figure 2. Underwater photographs showing the Porites lutea colonies at the study sites 
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2.3 Statistical analyses 

The alleles numbers, allele frequencies,  

observed heterozygosity (Ho) and expected 

heterozygosity (He), number of private alleles, 

and inbreeding coefficient (FIS) values were 

analyzed using the GenAlEx software (version 

6.5) (Peakall and Smouse 2012). FIS values 

were used to investigate the deviation from 

Hardy-Weinberg equilibrium (HWE) because 

of gaps between Ho and He under HWE showing 

proportion to the value of FIS. F-statistics from 

analysis of molecular variance (AMOVA) 

was applied to test the significance of all estimates 

based on 999 random permutations in order 

to measure the proportion of genetic variation 

between locations. A low pairwise FST reveals 

a high extent of gene flow and vice versa. 

The levels of statistical significance for all 

pairwise tests were P<0.05. Pairwise geographic 

distances between locations were also analyzed 

by GenAlEx software to estimate the scale 

of populations (Nakajima et al. 2009).  

STRUCTURE analyses were conducted 

according to the assumptions with no prior 

population information. Each run consisted 

of 100,000 iterations with a burn-in of 100,000 

for each value of K, from K = 1–10. For each 

K, the run was replicated ten times. The most 

likely value of K was analyzed using  

STRUCTURE HARVESTER (Earl and 

VonHoldt 2011. 

 

 
Table 1. Details for four polymorphic microsatellite loci developed for Porites lutea as calculated from genotypes of       

120 individuals 

Locus Primer sequence (5′-3′) Repeat motif 

Pl01 F: TCATTCAATACCTTCTCAAGATTCA 

R: TGGTATTTCATACATTATTTCCCTTG 

(AG)11 

Pl02 F: GTCATCGTCATCACCATCCA 

R: GAGCCGAACAGATTTCAACC 

(ACC)6 

Pl04 F: TTGCCCCATTCCAATAACTG 

R: GGAAAGACGAAATTAAATAGCCC 

(AAC)7 

P110 F: CACCATAATCATGAGATTTACTATTGA 

R: GAATCAACCAATGGCAGTCC 

(AC)9 

 

3. Results 

 

A total of 120 complete multilocus genotypes 

of P. lutea were analyzed. In our study 

populations, mean Ho and He values for all 

loci across sites were in a range of 0.667 - 1.000 

and 0.472 - 0.750, respectively. The total mean  

 

 

values were 0.862±0.026 and 0.644±0.020, 

respectively. Departures in population 

heterozygosity from HWE were indicated by 

mean FIS values, which ranged from -0.167 to 

-0.679 at all sites (Table 2) 
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Table 2. Population statistic (±SD) of P. lutea populations; Ho = observed heterozygosity (Mean±SD), He = expected 

heterozygosity (Mean ±SD); departures from Hardy–Weinberg equilibrium is expressed as FIS (Mean ±SD) 

 
Study site Mean Ho Mean He Mean FIS 

Mu Ko Sichang 
   

 Ko Khang Khao 0.875 0.734 -0.187 

 Ko Prong 0.667 0.472 -0.417 

 Ko Kham 1.000 0.639 -0.643 

Ko Samet 0.857 0.705 -0.220 

Mu Ko Chang    

 Ko Bai Dang 0.833 0.528 -0.568 

 Ko Thong Lang 0.900 0.710 -0.264 

 Ko Thian 1.00 0.594 -0.679 

 Ko Yak Yai 0.833 0.639 -0.318 

Mu Ko Chumphon    

 Ko Ngam Yai 0.875 0.625 -0.414 

 Ko Lawa 0.875 0.719 -0.215 

 Ko Kula 0.875 0.609 -0.433 

 Ko Rang Kachiu 1.000 0.750 -0.335 

Mu Ko Angthong    

 Ko Taiphlao 0.667 0.528 -0.295 

 Ko Hindap 0.667 0.583 -0.167 

 Ko Sam Sao 1.000 0.750 -0.354 

 Ko Wua Kanthang 0.875 0.719 -0.217 

Mean (±SD) 0.862±0.026 0.644±0.020 -0.358±0.041 
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The variance calculated by AMOVA was 

0.023 (3%) for among regions and 0.868 

(97%) within populations (total value: 0.890). A 

significant difference was detected among 

populations (P < 0.001) (Table 3). 

 

Table 3. Hierarchical analysis of molecular variance (AMOVA) using GenAlEx software 

Source df 
Sum of 

squares 
Est. Var. 

% of the total 

variances 
P 

Among populations 15 11.662 0.023 3% <0.001 

Among individuals  120 89.683 0.868 97% <0.001 

within individuals      

Total 135 101.346 0.890   

Population differentiation among locations 

was investigated using pairwise FST comparison 

(Table 4). Pairwise FST values across locations 

ranged from 0.013 to 0.211. The highest FST 

values were observed between Ko Taiphlao 

and Ko Prong, whereas the lowest value was 

found between Ko Samet and Ko Kula,  

Ko Samet and Ko Thong Lang. 

 

Table 4. Pairwise FST values for all 16 populations of P. lutea in the Gulf of Thailand 

Study site 
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Ko Samet 0.000 
               

Ko Taiphlao 0.082 0.000               

Ko Hindap 0.068 0.106 0.000              

Ko Sam Sao 0.043 0.171 0.119 0.000             

Ko Wua Kanthang 0.020 0.072 0.070 0.051 0.000            

Ko Bai Dang 0.081 0.049 0.036 0.160 0.079 0.000           

Ko Thong Lang 0.013 0.135 0.095 0.022 0.037 0.129 0.000          

Ko Thian 0.030 0.159 0.134 0.049 0.029 0.168 0.031 0.000         

Ko Yak Yai 0.031 0.170 0.117 0.043 0.070 0.151 0.024 0.062 0.000        

Ko Ngam Yai 0.061 0.015 0.059 0.135 0.050 0.024 0.105 0.133 0.138 0.000       

Ko Lawa 0.037 0.172 0.101 0.015 0.052 0.152 0.015 0.050 0.033 0.132 0.000      

Ko Kula 0.013 0.128 0.085 0.055 0.029 0.114 0.021 0.019 0.056 0.098 0.049 0.000     

Ko Rang Kachiu 0.031 0.132 0.095 0.033 0.051 0.107 0.025 0.075 0.029 0.096 0.036 0.057 0.000    

Ko Khang Khao 0.038 0.034 0.088 0.080 0.037 0.072 0.064 0.091 0.085 0.033 0.078 0.083 0.065 0.000   

Ko Prong 0.056 0.211 0.144 0.108 0.122 0.180 0.053 0.112 0.036 0.175 0.087 0.073 0.064 0.143 0.000  

Ko Kham 0.054 0.200 0.138 0.033 0.051 0.182 0.044 0.029 0.073 0.159 0.038 0.048 0.076 0.108 0.151 0.000 
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Principle coordinate analysis (PCoA) based 

on FST values showed that genetic connectivity 

was not correlated with the locations and 

distance between locations (Figure 3). According 

to plots of Delta K and LnP (D) from 

STRUCTURE analysis, with just three genetic 

clusters were detected as the optimal number 

(K = 3). Genetic structure analyses also indicated 

closely knit genetic units within all locations 

in the Gulf of Thailand (Figure 4) 

 

Figure 3. Principal coordinate analysis (PCoA) of P. lutea from the Gulf of Thailand 

 

Figure 4. Cluster analysis of Porites lutea in the Gulf of Thailand performed using STRUCTURE (optimal K=3). The y-

axis shows the membership probability of each location in distinct population clusters (different colors). Sampling 

locations are showed along the x-axis 

 

4. Discussion 
 

In this study, we analyzed a dataset encompassing 

120 coral fragments of P. lutea, all gathered 

from the Gulf of Thailand. Our examination 

of these genotypes consistently revealed FST 

values at each location, indicating an excess 

of heterozygosity when compared to the expected 

Hardy-Weinberg Equilibrium (HWE). Our results  

 

are different from previous research conducted 

by Niu et al. (2015), who reported high genetic 

diversity within P. lutea populations in Lembeh 

Strait (LB), Indonesia, using ITS nuclear markers. 

It is noteworthy that LB, located within the 

Coral Triangle, serves as a pivotal center for 

global coral populations, accommodating 

over 75% of reef-dwelling species worldwide 

(Dubinsky and Stambler 2011). Our results 
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suggest that the reproduction mode of P. lutea 

is largely by sexual propagation with abundant 

gene diversity. The genetic diversity of P. lutea 

populations was relatively high at Mu Ko 

Chumphon, Mu Ko Chang and Mu Ko Samet 

but decreased in the Mu Ko Sichang and Mu 

Ko Angthong. The adaptability of marine 

organisms is largely controlled by reproduction 

patterns and genetic diversity (Bernhardt and 

Leslie, 2013; Wu et al., 2021). Our findings 

suggest that low genetic diversity may hinder 

the adaptability of P. lutea in the Gulf of Thailand. 

Previous studies showed high genetic diversity 

values for two broadcast spawning coral species, 

Montastraea cavernosa and Pavona gigantea, 

found in the Western Atlantic and Mexican 

Pacific, respectively (Saavedra-Sotelo et al. 

2011; Goodbody and Gvringley et al. 2012). 

Our results suggest the increased vulnerability 

of P. lutea populations in Mu Ko Sichang 

and Mu Ko Angthong areas to the effects of 

climate change and human activities. Such 

vulnerability may be influenced by a variety 

of factors, including local environmental 

conditions and human interactions, highlighting 

the necessity for targeted conservation efforts 

within this specific region. 

 

The genetic connectivity of P. lutea is similar 

to that of Pocillopora damicornis, which was 

reported to be low genetic connectivity in the 

Gulf of Thailand (Sutthacheep, 2018b). These 

two coral species have different reproductive 

strategies. P. damicornis, being a brooder coral, 

retains embryos internally, limiting larval 

dispersal, while P. lutea reproduces through 

broadcast spawning, allowing for more extensive 

gamete dispersion in ocean currents. Moreover, 

the local hydrodynamics in the Gulf of Thailand, 

as indicated by Sojisuporn's study in 2010, 

wherein tides can converge or flow towards 

each other, further contribute to the patterns 

in genetic connectivity. These findings highlight 

the intricate interplay between reproductive 

biology, oceanic conditions, and genetic 

connectivity among coral populations. Larvae 

produced through sexual reproduction often 

play a crucial role as long-distance colonizers, 

contributing to gene flow between geographically 

distant populations (Adjeroud and Tsuchiya 

1999; Adjeroud et al. 2014; Edmunds et al. 

2018). 

 

Knowledge of population genetics studies on 

scleractinian corals in the Gulf of Thailand is 

currently limited, and the majority of 

research in this area is still in its initial phases. 

Nevertheless, detailed studies are highly 

required for studying population genetics in 

scleractinian corals in the Gulf of Thailand. 

Such research can provide valuable insights 

into the genetic diversity, connectivity of other 

coral species which are very important  

scientific information for protection and 

restoration of coral reefs in Thai waters.
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