ORIGINAL PAPER

Growth and survival of coral micro-fragment in Chonburi Province, the Upper Gulf of Thailand

Thamasak Yeemin,^{a,*}, Nilnaj Chaithanavisut,^b Makamas Sutthacheep,^a Sittiporn Pengsakun,^a Wanlaya Klinthong,^a Charernmee Chamchoy,^a Wiphawan Aunkhongthong,^a

^aMarine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamak, Bangkapi, Bangkok, Thailand

^b Sichang Island Marine Animal Banks by Communities for Communities under the Royal Patronage of Her Royal Highness Princess Maha Chakri Sirindhorn, Amphoe Koh Sichang, Chonburi Province, Thailand

Received: 30 November 2023 / Revised: 31 December 2023 / Accepted: 31 December 2023

Abstract. Coral reefs are an important ecosystem with their unique characteristics and high biodiversity. They provide great benefits to the coastal communities and national economy. However, coral reefs and their ecosystem services have significantly declined. The advancement of coral restoration is necessary to develop improved techniques and methods, aiming to ensure the success of large-scale coral restoration projects. This study aims to compare the growth and survival rates of coral micro-fragments among four species, i.e, Diploastrea heliopora, Pavona desussata, Pavona varians and Lithophyllon undulatum in coral nursery plots at Ko Larn, Chonburi Province, the upper Gulf of Thailand. The results showed that the highest growth rate was observed in the coral micro-fragments with an initial size of 1 cm. D. heliopora had the highest growth rate (59.70%) and *P. varians* had the lowest micro-fragment growth rate (50.04%). The survival rate of every microfragment with initial sizes between 1 and 3 cm was higher than 95.67%. Among the initial sizes, there were significant differences in the survival rates of coral micro-fragments (One-way ANOVA, p < 0.05). The survival rates of D. heliopora and L. undulatum microfragments were higher than those of P. varians and P. *decussata* (Tukey's HSD, p < 0.05). This study highlights the critical importance of active coral reef restorations through the use of newly developed technologies of coral micro-fragmentation and colony fusion techniques, to enhance ecotourism, community-based tourism, and carbon-neutral tourism, as well as the efficacy and efficiency of efforts to restore coral reefs.

Keywords: Micro-fragmentation, Coral restoration, Growth, Survival, Gulf of Thailand

1. Introduction

Coral reefs are an essential ecosystem with their unique characteristics and high

biodiversity. They are distributed in tropical seas, providing great benefits to the well-being of coastal communities and national economy in terms of food sources, employment, tourism, coastal protection, pharmaceutical and cosmetic products and cultural importance. (Pittman and Brown 2011; Mace et al. 2012; Hicks et al. 2013; Yee et al. 2015; Thomas et al. 2017; Robinson et al. 2022). However, during the previous few decades, coral reefs and the ecosystem services they provide have significantly declined. They are the marine ecosystems most vulnerable to human activity, both locally and globally (Ayre and Hughes 2004; Underwood et al. 2009; van der Ven et al. 2021).

The degraded coral reefs are needed to be restored. Active coral restoration, which utilizes human efforts implemented revitalize the coral ecosystem, such as direct coral transplantation, coral gardening etc., provides a potential coral reef conservation and management (Hein et al. 2021; Quigley et al. 2022). Active coral restoration has been increasingly used as a tool to restore coral reefs at local scales, especially by the tourism industry (Omori et al. 2011; Young et al. 2012). The advancement of coral restoration is necessary to develop improved techniques and methods, aiming to enhance efficiency and ensure the success of both current and future large-scale coral restoration projects. Most

^{*}Corresponding author: thamasakyeemin@hotmail.com

importantly, the development of a method with low operational cost and ease of implementation needs to be highlighted. Coral restoration in Thailand has continuously been implemented using both asexual and sexual propagation methods. However, there are still several limitations, including lower genetic diversity of corals in the restoration projects, low survival and growth rates of coral larvae, and high operational costs (Palumbi 2004; Hoegh-Guldberg and Bruno 2010; Thomas et al. 2017; McManus et al. 2021). Therefore, coral reef restoration is an urgent issue in Thailand to enhance the marine and coastal ecosystem conservation, especially, to preserve the natural capital and promote the country's Ocean Health Index (Yeemin et al. 2006; Yeemin et al. 2012; Suraswadi and Yeemin 2013; Chen et al. 2018; Sutthacheep et al. 2022).

One of the potential strategies for active restoration is the use of coral micro-fragmentation, which promotes high growth rates of coral fragments. (Bayraktarov et al. 2019; Knapp et al. 2022; Lock et al. 2022; Page et al. 2023). The main advantage of the coral micro-fragments is that the fusion of small coral colonies to form a larger colony can produce gametes faster. The selection of parent corals for micro-fragmentation is also essential to obtain the genetically desirable coral fragments with high stress-tolerant traits. Moreover, it is important to promote the genetic diversity of coral populations in restoration sites similar to that in natural coral reefs and support a sustainable bioeconomy of marine and coastal resources. (Boström-Einarsoon et al. 2020; Combilet et al. 2022). Sutthacheep et al. (2023) reported the first coral micro-fragmentation study in Porites lutea and found that micro-fragments with an initial diameter of 1 cm exhibited a high growth rate of up to 51.32% in 9 months. This study aims to compare the growth and survival rates of coral microfragments among four species with the potential for coral breeding in reef restoration efforts in Thailand.

2. Materials and Methods

2.1 Study site

Ko Larn, Chonburi Province, the upper Gulf of Thailand, is selected for this study (Figure 1).

The coral nursery plot was constructed at Ao Nuan, southeast of Ko Larn. The nursery plot was made from welded steel into a rectangular frame with 0.5 meter in width, 1.0 meter in length, and 0.7 meter in height. The frame was applied with anti-rust paint and covered with a plastic net, providing a space for coral micro-The metal frame was placed fragments. approximately 50 centimeters above the sandy substrate to prevent sediment accumulation and scraping by macro-benthic invertebrates. The coral nursery plot was located on a coral reef at a suitable water depth, approximately between 3-5 meters (Figures 2 and 3). The environment is favorable for the growth of corals. For example, there are a few macro-benthic invertebrates and reef fishes, which may affect the survival rates of coral micro-fragments. The nursery plot also has the potential to be a destination for ecotourism.

2.2 Coral micro-fragment preparation

Diploastrea heliopora, Pavona desussata, Pavona varians and Lithophyllon undulatum were selected in this study. A set of criteria, including the lack of partial mortality, bleaching, invasive organisms, and coral diseases, was used to select all colonies from these four species (Figure 4). Ten selected colonies were acclimatized in a nursery pond for at least 24 hours. Then, coral fragments of approximately 10x10 cm were cut and transferred to a culture pond equipped with an aerated system and seawater circulation. Micro-fragments were prepared by cutting the coral fragments into 1, 2, and 3 cm using an electric cutter while being cooled in seawater. The rubber gloves were used to avoid direct contact with the coral tissue during handling. The coral micro-fragments were then placed in a container with swirling seawater to reduce stress and mucus.

The coral micro-fragments were adhered to circular cement plates with a radius of 5 cm, which were pre-soaked in seawater for 48 hours to acclimate. The epoxy glue was used to attach four micro-fragments per plate, with 1 cm of space between each micro- fragment. A SCUBA diver then attached the plates with coral micro-fragments to the nursery plot using a plastic net and cable tie. Each nursery plot contained a total of 15 cement plates in five rows, spaced approximately 10 cm apart and numbered for monitoring the growth and survival rates of the coral micro-fragments (Figure 5).

2.3 Data analysis

In the coral nursery plots, seawater temperature, light intensity, salinity, pH, dissolved oxygen (DO),

oil or grease, suspended solid content, and sedimentation rate were monitored throughout the study.

The growth and survival rates of coral micro-fragments were monitored from June 2022 to February 2023 by measuring changes in the area of coral micro-fragments. The growth and survival rates of the coral micro-fragments were analyzed using a one-way ANOVA to determine the statistical differences between the groups. To identify which groups differed significantly from each other in terms of growth and survival rates, Tukey's Honestly Significant Difference (Tukey's HSD) test was applied.

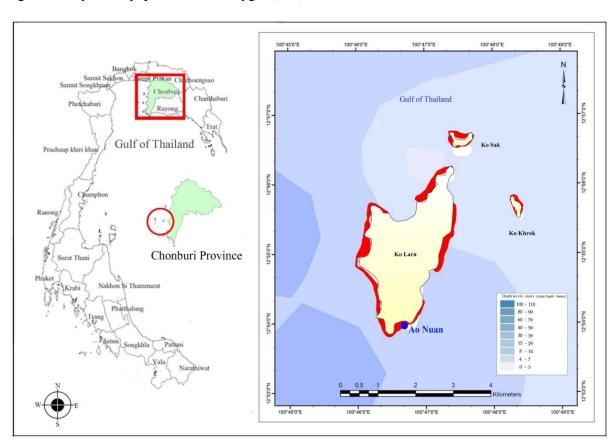


Figure 1. Location of the study site at Ao Nuan, Ko Larn

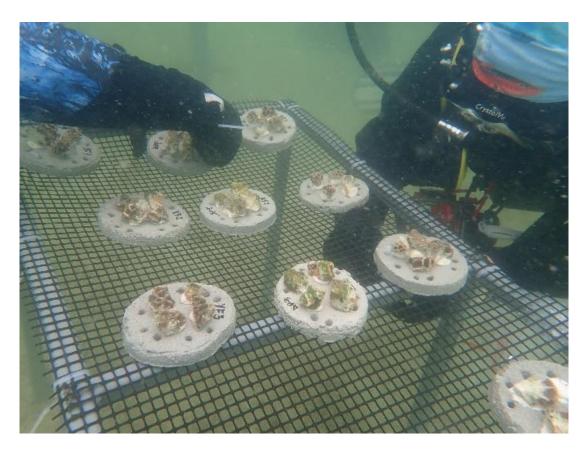
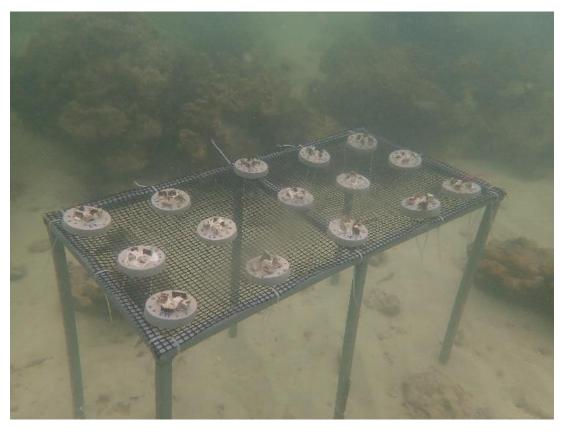



Figure 2. SCUBA divers set up a coral nursery plot at the study site.

Figure 3. A coral nursery plot on a coral reef, about 3-5 meters in depth, at Ko Larn.

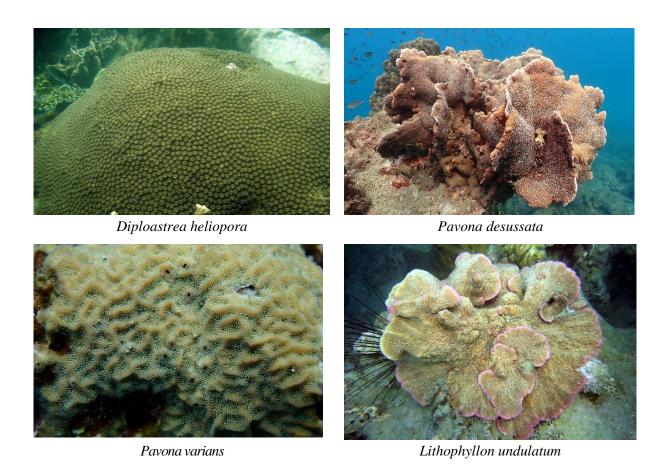


Figure 4. Four selected coral species for preparing micro-fragments

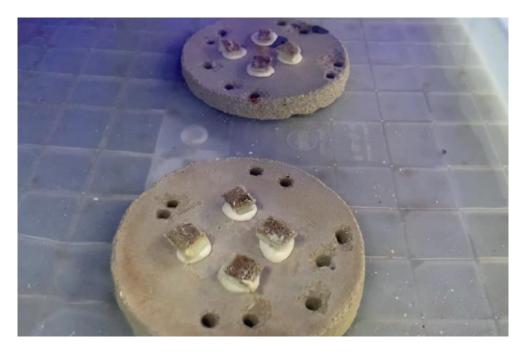


Figure 5. Cement plates for attaching coral micro-fragments.

3. Results

3.1 Measurement of environmental factors

In the coral nursery plots, several environmental conditions were examined with respect to the growth and survival rates of micro-fragments of Diploastrea heliopora, Pavona desussata, Pavona varians, and Lithophyllon undulatum. During the study period from June 2022 to September 2023, the environmental factors, i.e. seawater temperature, salinity, pH, dissolved oxygen (DO), oil or grease, suspended solid content, and sedimentation rate were measured. The results indicated that the temperature range of the seawater was 21.95 to 32.81°C, with July 2022 recording the highest temperature and September 2022 recording the lowest (Figure 6). The range of light intensity was 14–11,980 lux, with June 2023 having the highest intensity and August 2022 having the lowest (Figure 7).

The salinity varied between 28.76 and 31.10 psu, with July 2022 recording the greatest salinity and August 2022 recording the lowest. The pH was 7.32 to 8.40, with September 2022 recording the highest value and March 2023 recording the lowest. There was a range of 4.58 to 6.95 mg/l of dissolved oxygen concentration; June 2022 had the highest concentration and June 2023 had the lowest. The transparency level varied from 1.0 to 3.5 meters, reaching its maximum in July 2022 and its minimum in September and October of the same year. During the study period neither oil nor grease were found. The range of suspended solid contents was 17.00 to 20.56 mg/l, with August 2022 recording the lowest level and June 2022 recording the highest. The sedimentation rates varied from 5.34 to 15.64 mg/cm²/day, the maximum rate was observed in June 2022, and the lowest in March 2023.

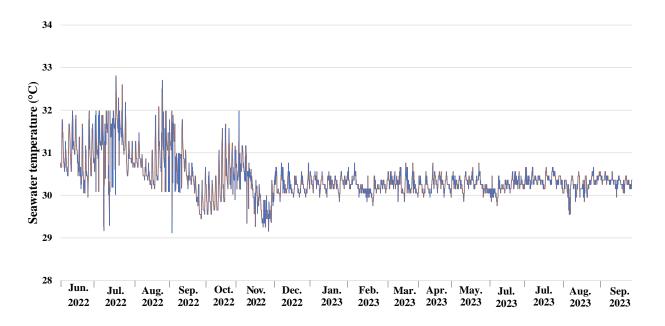


Figure 6. Seawater temperatures between June 2022 and September 2023 as recorded by a data logger

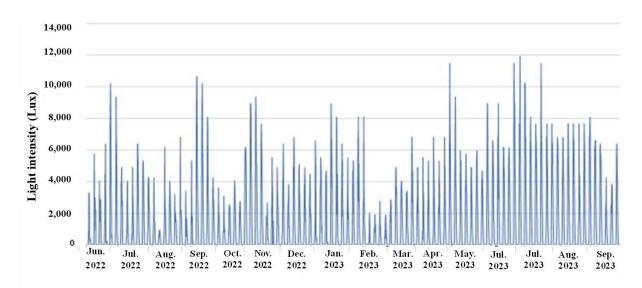


Figure 7. Data logger recording of light intensity from June 2022 to September 2023

3.2 Growth rate of micro-fragments in coral nursery plots

Four coral species were investigated in relation to the growth rates of coral micro-fragments in the coral nursery plots at Ao Nuan, Ko Larn: D. heliopora, P. decussata, P. varians, and L. undulatum. The highest growth rate was observed in the coral micro-fragments with an initial size of 1 cm, which were then followed by 2 and 3 cm (One-way ANOVA, p < 0.05). However, in D. heliopora, the initial size of 2 cm did not differ statistically significantly from the other sizes (Tukey's HSD, p > 0.05) (Figure 8).

The results showed that *D. heliopora* had the highest growth rate (59.70%) and *P. varians* had the lowest micro-fragment growth rate (50.04%) (Figure 9). Nevertheless, there was no statistically significant difference in the growth rates of micro-fragments among the coral species (One-way ANOVA, p > 0.05).

3.3 Survival rate of coral micro-fragments in coral nursery plots

The result showed that the survival rate of every micro-fragment with initial sizes

between 1 and 3 cm was higher than 95.67% Particularly, D. 10). heliopora outperformed (99.25%) in terms of survival rate, and was followed by P. decussata (96.78%), L. undulatum (97.35%), and P. varians (95.67%). Among the initial sizes, there were significant differences in the survival rates of coral micro-fragments (Oneway ANOVA, p < 0.05). While the microfragments of P. desussata had a much greater survival rate than its other initial sizes, the micro-fragments of D. heliopora with an initial size of 1 cm had a significantly lower survival rate than its other initial sizes. (Tukey's HSD, p < 0.05).

The results showed that survival rates of microfragments were significantly different among coral species (One-way ANOVA, p < 0.05). The survival rates of D. heliopora and L. undulatum micro-fragments were higher than those of P. varians and P. decussata. (Tukey's HSD, p < 0.05) (Figure 11). The results showed that, within a few months, the coral microfragments in the coral nursery plots, which had initially been of varying sizes, gradually fused to form large coral colonies (Figure 12).

37

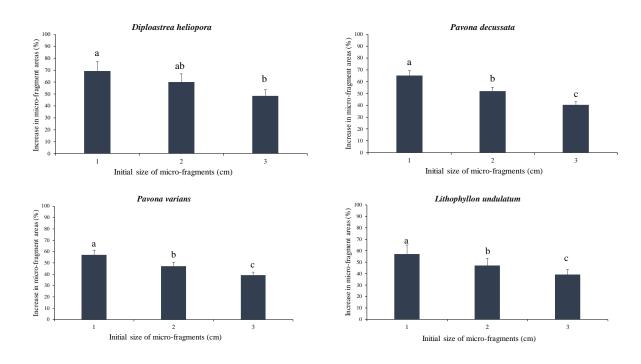


Figure 8. Mean growth rates of coral micro-fragments from coral nursery plots

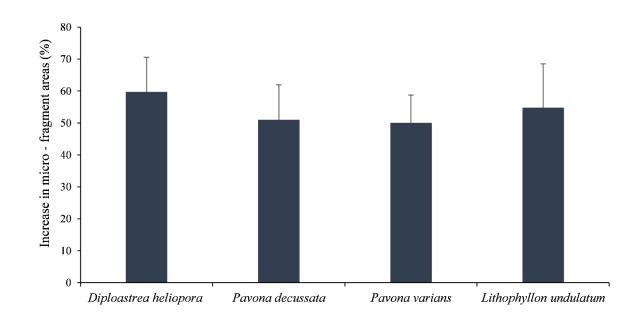


Figure 9. Mean growth rates of four different coral species' micro-fragments from coral nursery plots

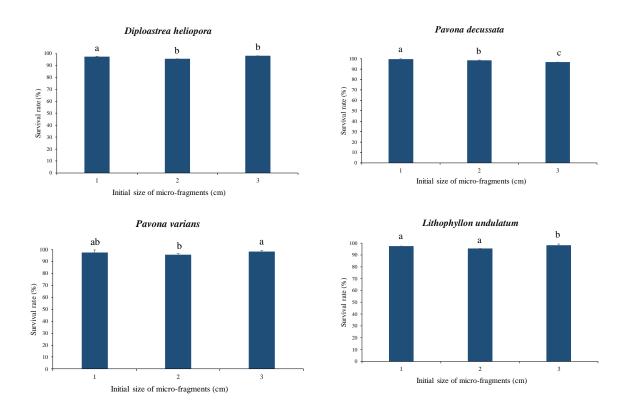


Figure 10. Mean survival rates of coral micro-fragments from coral nursery plots

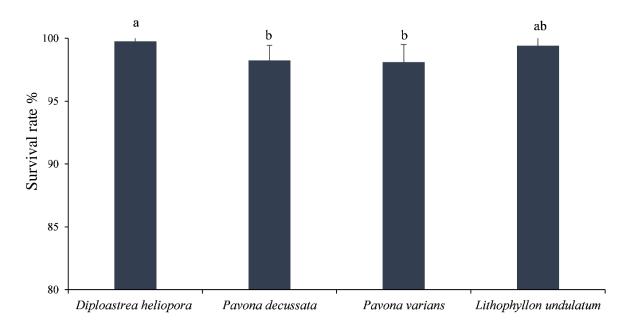


Figure 11. Mean survival rates of four different coral species' micro-fragments from coral nursery plots

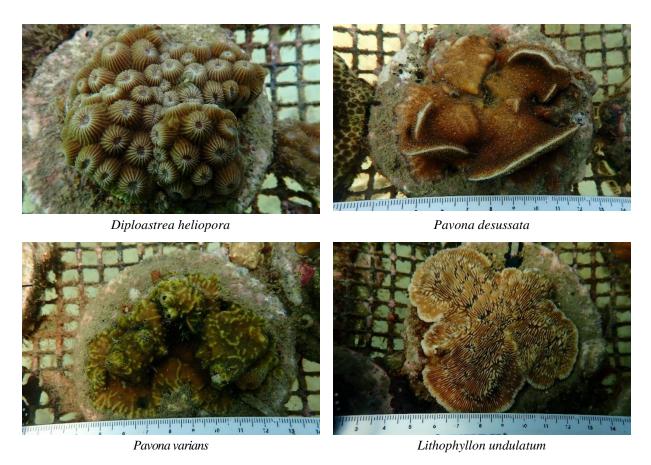


Figure 12. Large coral colonies were formed by the successful fusion of the coral micro-fragments.

4. Discussion

The present study shows that coral tissue may be quickly covered with the micro-fragmentation and fusing process on a range of provided substrates, offering an excellent opportunity for future restoration projects. Additionally, this study supports the earlier coral micro-fragmentation study of *Porites lutea* in the Gulf of Thailand (Sutthacheep et al. 2023) and advances our understanding of coral micro-fragmentation in *Diploastrea heliopora*, *Pavona desussata*, *Pavona varians*, and *Lithophyllon undulatum*.

The research results indicate that coral microfragments of varying sizes show diverse growth rates in coral nursery plots. In general, coral micro-fragments with an initial size of 1 cm from the nursery plots at Ko Larn had the highest growth rate. Our results aligned with earlier research that demonstrated faster coral growth rates in smaller coral fragments (Harrington et al. 2004; Lirman and Schopmeyer 2016; Steinberg 2021; Sutthacheep et al. 2023).

The findings of this study demonstrated that micro-fragments of different sizes had varied survival rates. Higher survival rates were observed in coral micro-fragments of *D. heliopora* and *P. varians* from the nursery plots with larger sizes. On the other hand, coral micro-fragments of *P. desussata* and *L. undulatum* from the nursery plots with smaller sizes showed greater survival rates. Simple outplanting experiments of *Porites compressa* and *Montipora capitata* were reported in Hawaii to support active reef restoration of slower growing species and raise the possibility of restoration success (Knapp et al. 2022).

According to their findings, outplanting medium fragments as soon as feasible

without the need for an intermediate culture in a nursery may be more economical. The significance of taking geographical variation in coral growth and survival after outplanting into account is emphasized. They also emphasize the importance of evaluating size and location-specific performance using short-term micro-fragmentation assays before outplanting in order to maximize the likelihood of success for active coral restoration projects and optimize the efficiency of active reef restoration efforts (Forsman et al. 2015; Knapp et al. 2022).

It is crucial to understand the physiological mechanisms that enable corals for rapid wound healing and stabilize themselves after physical injury. Lock et al. (2022) showed that when Porites lobata fragments are physically injured, they heal in two different ways: first, they regenerate the wound quickly around the incisions, and then they grow more slowly, which binds the colony to the substrate. The coral host responded quickly to acute physical damage and outplanting, resulting in markedly elevated energy production, disruption of calcium homeostasis, and endoplasmic reticulum (ER) stress, which raised rates of protein turnover and antioxidant expression. After a physical injury, phosphoinositide-mediated acute disruption of calcium homeostasis promotes the healing of wounds (Page et al. 2018; Lock et al. 2022).

In addition to *in situ* coral nursery plots, landbased culture can yield a higher rate of coral micro-fragment growth. Page et al. (2023) investigated the possibility of enhancing the development and health indices of microfragments of *P. compressa*, the Hawaiian coral, by the use of culture methods utilizing distinct algal fouling communities. They demonstrated that the Green Film approach yielded the greatest tank and plate metric health scores as well as the quickest microfragment mean growth during the winter, taking only 28 days to form the first row of new polyps. Large-scale restoration projects will benefit greatly from the use of standardized, time-efficient techniques for land-based culture that are intended to enhance coral fragment growth and production (Sneed et al. 2014; Page et al. 2023).

The results showed that the micro-fragment growth rate in four coral species was comparatively high. After a few months, the coral micro-fragments began to fuse and were then transported to the coral restoration sites. The pilot coral restoration sites may serve as outdoor education centers for children, young people, and ecotourists (Young et al. 2012; Schopmeyer et al. 2017; Sutthacheep et al. 2023). This study emphasizes how crucial it is to actively restore coral reefs using recently developed especially coral technologies, microfragmentation and colony fusion techniques, in order to improve community-based tourism, ecotourism, and carbon-neutral tourism, as well as the efficiency and effectiveness of coral restoration projects.

Acknowledgements

This study was funded by the National Research Council of Thailand (NRCT) to Ramkhamhaeng University. We are most grateful to the staffs of the Department of National Parks, Wildlife, and Plant Conservation, the Department of Marine and Resources, and the Coastal Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, for their supports.

References

- Ayre DJ, Hughes TP. (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7(4): 273-278
- Bayraktarov E, Stewart-Sinclair PJ,
 Brisbane S, Boström-Einarsson L,
 Saunders MI, Lovelock CE, Wilson
 KA (2019) Motivations, success, and
 cost of coral reef restoration. Restor
 Ecol 27(5): 981-991
- Boström-Einarsson L, Babcock RC,
 Bayraktarov E, Ceccarelli D, Cook
 N, Ferse SCA,
 Hancock B, Harrison P, Hein M,
 Shaver E, Smith A, Suggett D,
 Stewart-Sinclair PJ, Vardi T,
 McLeod IM (2020) Coral
 restoration—a systematic review of
 current methods, successes, failures
 and future directions. PLOS ONE
 15(1):e0226631. DOI
 10.1371/journal.pone.0226631
- Chen T, Roff G, McCook L, Zhao J, Li S (2018) Recolonization of marginal coral reef flats in response to recent sea-level rise. JGR: Oceans 123(10):7618-7628
- Combillet L, Fabregat-Malé S, Mena S,
 Marín-Moraga JA, Gutierrez M,
 Alvarado JJ (2022) *Pocillopora* spp.
 growth analysis on restoration
 structures in an Eastern Tropical
 Pacific upwelling area. PeerJ, 10,
 e13248.DOI 10.1111/j.1526100X.2009.00562.x.
- Forsman ZH, Page CA, Toonen RJ, Vaughan D (2015) Growing coral larger and faster:

- micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3(1):e1313
 DOI 10.7717/peerj.1313.
- Harrington L, Fabricius K, De'ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85(12): 3428-3437. https://doi.org/10.1890/03-0744
- Hein MY, Vardi T, Shaver EC, Pioch S,
 Boström-Einarsson L, Ahmed M,
 McLeod IM (2021) Perspectives on
 the use of coral reef restoration as a
 strategy to support and improve reef
 ecosystem services. Front Mar Sci 8:
 299
- Hicks CC, Graham NAJ, Cinner JE. (2013)
 Synergies and tradeoffs in how
 managers, scientists, and fishers
 value coral reef ecosystem services.
 Glob Environ Change 23(1): 4441453
- Hoegh-Guldberg O, Bruno J F (2010) The impact of climate change on the world's marine ecosystems. Science 328: 1523-1528
- Knapp ISS, Forsman ZH, Greene A, Johnston EC, Bardin CE, Chan N, Wolke C, Gulko D, Toonen RJ (2022) Coral micro-fragmentation assays for optimizing active reef restoration efforts. PeerJ 10:e13653 DOI 10.7717/peerj.13653
- Lirman D, Schopmeyer S (2016) Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ, 4, e2597. https://doi.org/ 10.7717/peerj.2597

- Lock C, Bentlage B, Raymundo LJ (2022)
 Calcium homeostasis disruption
 initiates rapid growth after microfragmentation in the scleractinian
 coral *Porites lobata*. Ecol Evol
 12(9): e9345
- Mace GM, Norris K, Fitter AH (2012)
 Biodiversity and ecosystem services:
 A multilayered relationship. Trends
 Ecol Evol 27(1):19-26
- McManus LC, Forrest DL, Tekwa EW, Schindler DE, Colton MA, Webster MM, Pinsky ML (2021) Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. Glob Chang Biol 27(18):4307-4321
- Omori M (2011) Degradation and restoration of coral reefs: Experience in Okinawa, Japan. Mar Biol Res 7: 3-12
- Page CA, Muller EM, Vaughan DE (2018)
 Microfragmenting for the successful restoration of slow growing massive corals. Ecol Eng 123: 86-94.
 https://doi.org/10.1016/j.ecole ng.2018.08.017
- Page C, Perry R, Lager CVA, Daly J,
 Bouwmeester J, Henley EM,
 Hagedorn M (2023) Tank fouling
 community enhances coral
 microfragment growth. PeerJ
 11:e15723
 http://doi.org/10.7717/peerj.15723
- Palumbi SR (2004) Marine reserves and ocean neighborhoods: the spatial scale of marine populations and their management. Annu Rev Environ Resour 29: 31-68.

- Pittman SJ, Brown KA (2011) Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS One 6(1): e205 e283
- Quigley KM, Ramsby B, Laffy P, Harris J, Mocellin VJ, Bay LK. (2022) Symbioses are restructured by repeated mass coral bleaching. Sci Adv 8(49): eabq8349
- Robinson JP, Maire E, Bodin N, Hempson TN, Graham NA, Wilson SK (2022)
 Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth, 5(1), 98-108
- Schopmeyer SA, Lirman D, Bartels E, Gilliam DS, Goergen EA, Griffin SP, Walter CS (2017) Regional restoration benchmarks for *Acropora cervicornis*. Coral reefs 36: 1047-1057
- Sneed JM, Sharp KH, Ritchie KB, Paul VJ (2014) The chemical cue tetrabromopy- rrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc R Soc B: Biol Sci 281:20133086 DOI 0.1098/rspb.2013.3086
- Steinberg AA (2021) Optimization of growout of bouldering coral microfragments: land vs. offshore nursery. Master's thesis. Nova Southeastern University. Retrieved from NSU Works, (44) https://nsuworks.nova.edu/hcas_etd_ all/44
- Suraswadi P, Yeemin T (2013) Coral reef restoration plan of Thailand. Galaxea 15 (S): 428-433
- Sutthacheep M, Aunkhongthong W, Sangmaee N, Pengsakun S, Jungrak

- L, Kowinthawong C, Jowantha M, Yeemin T (2022) Assessing coral growth at the coral nurseries in Chumphon Province, the Western Gulf of Thailand. RIST 5(1): 10-17
- Sutthacheep M, Chaithanavisut N,
 Sangsawang L, Pengsakun S,
 Klinthong W, Aunkongthong W,
 Limpichat J, Yeemin T (2023)
 Growth rates of coral microfragments from a coral restoration
 project at Koh Larn, Chonburi
 Province, Thailand. RIST 6(1):30-40
- Thomas L, Kennington WJ, Evans RD, Kendrick GA, Stat M (2017) Restricted gene flow and local adaptation highlight the vulnerability of high-latitude reefs to rapid environmental change. Glob Chang Biol 23(6): 2197-2205
- Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2009) Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol Appl 19:18–29
- van der Ven RM, Heynderickx H, & Kochzius M (2021) Differences in genetic diversity and divergence between brooding and broadcast spawning corals across two spatial

- scales in the Coral Triangle region. Mar Biol 168: 17. https://doi.org/10.1007/s00227-020-03813-8
- Yee SH, Carriger JF, Bradley P, Fishe WS, Dyson B (2015) Developing scientific information to support decisions for sustainable coral reef ecosystem services. Ecol Econ 115(1): 39-50
- Yeemin T, Mantachitra V, Plathong S,
 Nuclear P, Klinthong W,
 Sutthacheep, M. (2012). Impacts of
 coral bleaching, recovery and
 management in Thailand.
 Proceedings of the 12th International
 Coral Reef Symposium, Cairns,
 Australia. pp. 9-13
- Yeemin T, Sutthacheep M, Pettongma R (2006) Coral reef restoration project in Thailand. Ocean Coast Manag 49: 562-575
- Young CN, Schopmeyer SA, Lirman D (2012) A review of reef restoration and coral propagation using the threatened genus *Acropora* in the Caribbean and Western Atlantic. Bull Mar Sci 88(4):1075-1098