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Abstract. The ceiling function of a real number x,
denoted by [x], is the least integer greater than or equal
to x. In this article, the solution sets of [x]? — ¢ =
0,[x?] —c =0 and x[x] — ¢ =0, where c is a real
number are shown.
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1. Introduction

Finding solutions of the equation is a basic study
in mathematics. Starting with the linear equation
ax —b = 0, where a and b are real number

and a # 0, we see that x = S is the solution.

For the quadratic equation ax? + bx + ¢ = 0,
where a, b and c are real numbers and a # 0,

we see that if b2 — 4ac = 0, then the equation

—-b+Vb2-4ac a
2a

has real solutions and x = re the

solution.

The floor function of a real number x, denoted
by | x|, is the greatest integer less than or equal
to x. The function is introduced in calculus. In
2020, Matsko [3] interested in the floor function
and replaced x in the quadratic equation x? +
bx + ¢ = 0 by [x]. The behaviors of solutions
of equations: (1) |x]?+ blx]+c=0,
Q|x|*+bx+c=0, 3) x|x|]+bx+c=
0, (4) |x%]+bx+c =0, (5 x|x| + b|x] +
c=0,(6) x>+ b|x| +c=0, and (7) |x?] +
b|x| +c =0, are posed. The solutions are
depended on b and c. In 2024, W. Kitcharoensubdee
et. al. [2] obtained the solution sets of the
quadratic equations,

(Eq.1) |x]* —c =0, (Eq.2) |x*]—c=0,
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(Eq3)x|x] —c =0, (Eq4) |x|*>+blx] =0,
(Eq.5) x|x] + bx = 0, (Eq.6) x|x]| + b|x] =0,
(Eq.7) |x])? + bx = 0, (Eq.8) |x]* + b|x] =0,

by taking b = 0 or ¢ = 0 in the quadratic
equations of Matsko. They said that it is easy
to find the solution set of the linear equation
a|lx] + b = 0. The following theorem shows
the solution sets of the first three equations,

(Eq.1) - (Eq.3).

Theorem 1.1 [2]

(i) |x]?> — ¢ = 0 has a solution if and only if ¢
is a square integer. In the case that it has a
solution, the solution set is [—v/c, —V/c + 1) U
[Ve, Ve + 1).

(ii) |x?] — ¢ = 0 has a solution if and only if
c € N U {0}. In the case that it has a solution,

the solution set is (—Vc+1, —\/E] U
[Ve, Ve +1).

Theorem 1.2 [2] Letc # 0 and S be a
solution set of x|x| — ¢ = 0.

(1) If there is an n € N such that ¢ €
(n?,n(n+ 1)), then S = {%}

(i1) If there is an n € N such that ¢ €
((n—1)n,n?),then S = {— %}

(ii1) If there is an n € N such that ¢ =
n?, then S = {—n,n}.

(iv) If c< 0 or thereisan n €N
suchthat c = n(n + 1), then § = Q.

In Chapter 3 of calculus textbook [1], the
authors presented the ceiling function of a real
number X, denoted by [x]. It is the least
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integer greater than or equal to x. Some
properties about the ceiling function are the
following.

Let x be a real number and n be an integer.
1. [x] = x if and only if x is an integer.

2. x<[x]<x+1

3.[x] =nifandonlyifn—1<x < n.

We are interested in the solution sets of the
linear equation and the quadratic equation
when x is replaced by [x]. For the linear equation
a[x] + b = 0, where a and b are real numbers
and a # 0, we see that such equation has a
solution if and only if a divides b. If it has a

solution, then (—Z -1,- Z] 1s the solution set.

In this article, the solution sets of equations,
[x]?—c=0,[x?*] —c=0andx[x] — c = 0,
where c is a real number, are shown.

2. Results

In this section, we obtain sufficient and necessary
conditions for equations, [x]?—c =0,
[x2] — ¢ = 0 and x[x] — ¢ = 0, where c is a
real number, to have solutions and then the
solution sets are shown. First, we begin with
[x]? —c=0.

Theorem 2.1 Let ¢ be a real number. Then,
[x]? — ¢ = 0 has a solution if and only if ¢ is
a square integer.

Proof. Let ¢ be a real number. Assume that
[x]? — ¢ = 0 has a solution. Let a be a solution
of [x]? — ¢ = 0. Then, [a]? — ¢ = 0. That is,
¢ = [a]?. Since [a] is an integer, c is a square
integer.

Next, assume that ¢ is a square integer. There
is an integer n such that ¢ = n?. Since n? =
Mm% [n]>—c =c—c=0. Therefore,
[x]? — ¢ = 0 has a solution.

Theorem 2.2 Let ¢ be a real number. If [x]? —
¢ = 0 has a solution, then the set

(—e 1, V2] U (Ve ~ 1,V
is the solution set.
Proof. Let ¢ be a real number and S be the
solution set of [x]? —c = 0. Assume that
[x]? — ¢ = 0 has a solution. By Theorem 2.1,
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¢ is a square integer. There is an integer n

such that ¢ =n? > 0. Assume that a € S.

Then, [a]? —n? =0. Thus, [a]= —n or

[a] = n. This implies that
a€(—n—1,-nlu(n-1,nj.

Since ¢ = n?, Vc = n. Then, S € (—\/E —

1, —Vc] U (Ve — 1,+/c].

Next, assume that a € (—\/E -1, —\/E] U

(+/c = 1,+/c]. Then, [a] = —n or [a] = n.

This implies that [a]? — n? = n? —n? = 0.

Thus, a € S.

Therefore, S = (—\/E -1, —\/E] U (\/E —

1,+/c] is the solution set of [x]? —c = 0.
Next, we consider [x?] — ¢ = 0.

Theorem 2.3 Let ¢ be a real number. Then,
[x2] — ¢ = 0 has a solution if and only if ¢ is
a non-negative integer.

Proof. Let ¢ be a real number and a be a
solution of [x2] — ¢ = 0. Then, [a?] — ¢ = 0.
That is, [a®] = c. Since a? = 0 and [a?] is an
integer, ¢ = [a?] is a non-negative integer.
Next, assume that ¢ is a non-negative integer.
Then, [(v/¢)?] — ¢ =c—c = 0. That is, V/c
is a solution of [x2] — ¢ = 0. Therefore,
[x2] — ¢ = 0 has a solution.

By Theorem 2.3, we see thatif c < O orc is a
real number such that ¢ is not an integer, then
[x2] — ¢ = 0 has no solutions. The following
theorem shows the solution set of [x?] — ¢ = 0.

Theorem 2.4 Let ¢ be a real number and S be
the solution set of [x%] — ¢ = 0.

1.Ifc = 0, then S = {0}.

2. If ¢ is a positive integer, then S =
[—Ve, —Ve — 1) u (Ve — 1,+/c].
Proof. Let ¢ be a real number and S be the
solution set of [x%] — ¢ = 0.

1. If ¢ =0, by Theorem 2.3, [x?
¢ = 0 has a solution. Let a € S. Then, [a?
0. That is, a2 = 0. Then, a = 0. Thus,
{0}. Since [0%] = 0, {0} € S. Therefore,
{0} is the solution set of [x?] — ¢ = 0.

2. If ¢ is a positive integer, by
Theorem 2.3, [x2] — ¢ = 0 has a solution. Let
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a € S. Then, [a?] — ¢ = 0. That is, [a?] = c.
Then, a? € (c—1,c],ie. c—1<a?<c.
Thus, Vc — 1 < |a| < V. Thatis, Ve — 1 <
la| and |a] < V.

Then, (—Vc—1<a or vc—1>a) and
—/c < a <+c. Thus, a € [—Vc,—Vc—1)

U((c—1,v/c]. This implies that S C
[—Vc, —Vec — 1) u (We — 1,/c].

Next, assume that
a€ [V, —Vc—1)uURc—1,V/c]. We

see that ¢ —1<a? <c. Then, [a?]=rc.
That is, [a?] — ¢ = 0. Thus,
[—Vc,—Vec—1)u (Wec —1,4/c] € S.
Therefore, S = [—\/E, —c—1)U

(vc — 1,+/c] is the solution set of [x2] —
c=0.

Finally, we consider x[x] — ¢ = 0 in Lamma
2.5 - 2.10 depending on the value c.

Lemma 2.5 Let ¢ be a real number and S be the
solution set of x[x] —c = 0.If ¢ < 0, then
S =0.

Proof. Let ¢ be a real number such that ¢ <
0. Suppose that S # @. Then, there is a real
number a € S. That is, a[a] = c. Since ¢ <
0, ala] < 0.

If a > 0, then [a] > 0. This implies
that a[a] > 0, a contradiction.

If a <0, then [a] < 0. This implies
that a[a] = 0, a contradiction.
Therefore, S = @.

Lemma 2.6 Let ¢ be a real number and S be
the solution set of x[x] —c=0.1If ¢ =0,
then S = (—1,0].

Proof. Let ¢ = 0 and S be the solution set of
x[x] —c=0.

1. We will show that (—1,0] € S. Assume that
x € (—1,0]. Then, [x] = 0. That is, x[x]
0. Thus, (—1,0] € S.

2. We will show that S € (—1,0]. Suppose that
there is a real number a € S such that a &€
(—1,0]. Then, a[a] = 0.

If a > 0, then [a] > 0. Thus, aa] >0, a
contradiction.
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Ifa < —1, then [a] £ —1. Thus, af[a] > 0, a
contradiction.
Therefore, S = (—1,0] is the solution set of

x[x] = 0.

Lemma 2.7 Let ¢ be a real number and S be
the solution set of x[x] —c = 0. If there is a
positive integer n such that ¢ € ((n — 1)n,n?),
C

then § = {;}

Proof. Let ¢ be a real number and S be the solution
set of x[x] —c = 0. Assume that there is a
positive integer n such that ¢ € ((n — 1)n, n?).
That is, 0 < (n — 1)n < ¢ < n?. Then, n —
1 < < < n. This implies that [<| = n. We will

show that § = {%}
1. We will show that { } € S. Since % E] —
1-

C
n
c= %(n) —-c=0, % is a solution of x[x
¢ =0.Then, {*} 5.
n
2. We will show that § © {%} Suppose that

there is a real number a € S such that a # %

Since ¢ € ((n — 1)n,n?), we see that n? —
c>0, (n—1n-c <0andn—1<%<
n. Then, F] =n.
n
C C
Case I:a > —. Then, [a] = H Thus, ala] —
c> %(n) — ¢ = ¢ — ¢ = 0, a contradiction.
Case2: 0 < a < —. Then, [a] < [El Thus,
n n

a[a]—c<%(n)—c=c—c=0,
a contradiction.
Case 3: —-n<a <0. Then, —(n—1)<
a<0. We see that, —(n—1) <[a] <0.
Thus,

alal —c< (—n)(—-(n—=1)) —c=n(n-—
1) — ¢ < 0, a contradiction
Case 4: a < —n. Then, [a] < [-n] = —n.
Thus,
alal] —c > (-n)(—n) —c=n?—-c >0,
a contradiction.
From cases 1, 2 and 3, we can conclude that

e ()

Therefore, we can conclude that S = {%}
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Lemma 2.8 Let ¢ be a real number and S be
the set of solution of x[x] — ¢ = 0. If there is
a positive integer n such that ¢ = n?, then
S ={-nn}.

Proof. Let ¢ be a real number and assume that
there is a positive integer n such that ¢ = n?.
That is, ¢ > 0. We will show that § =

{—n,n}.
1. We will show that {-n,n} € S
If x=-n, then x[x] —c=

(—n)[-n] —n? = n? —n? = 0. Thus, —n is
a solution of x[x] — ¢ = 0.

If x = n, then x[x] —c = (n)[n] —
n? = n? —n? = 0. Thus, n is a solution
ofx[x] —c = 0.

Thus, {—n,n} € S.

2. We will show that S € {—n,n}.
Suppose that there is a real number a € S such
that a >nor-n<a<nora < —-n.

Case 1: a > n. Then, [a] > n. We see
that a[a] — ¢ > n(n) — n? = 0,

a contradiction.

Case2: —n<a<n.

If 0 < a < n, then [a] < n. Thus,
afa] — ¢ < n(n) —n? = 0, a contradiction.

If —n < a < 0, then [a] > —n. Thus,
alal] —c < (-n)(—n) —n? =0,a
contradiction.

Case 3: a < —n. Then,
Thus, ala] — ¢ > (—n)(—n)
contradiction.

From cases 1 and 2, S € {—n, n}.

Therefore, we can conclude that S =

{—n,n}.

2

[a] < —n.
Nl —

|
n“=20,a

Lemma 2.9 Let ¢ be a real number and S be
the solution set of x[x] — ¢ = 0. If there is a
positive integer n such that ¢ € (n%,n(n +

C
1)). then § = {—=}.
Proof. Let ¢ be a real number and S be the set
of solution of x[x] — ¢ = 0. Assume that
there is a positive integer n such that ¢ €
(n?,n(n+ 1)). Thatis, 0 <n? <c <
n(n + 1). Then, n<%<n+1and—(n+
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1) < =% < —n. Thus, [~ 5] = —n. We will
n n
C
show that § = {— ;}.
1. We will show that {— %} c S. Since

f-4]-c-—fm-c-o0

—% is a solution of x[x] — ¢ = 0. Then,

C
tales
2. We will show that § © {— %} Suppose that
there is a real number a € S such that a #
C

n
Case 1: a > n. Then, [a] > n and
a =n+ 1. Thus,
alal—c>nm+1)n—-c>0,
a contradiction.
Case 2: 0 < a < n. Then, [a] £ n.
Thus,
alal] —c < (M)(n) —c=n?—-c<0,
a contradiction.

Case3: —=< a<0. Then, [—£] <

n n
[a] < 0. Since ¢ € (n%2,n(n+1)), —(n+
1) < —-< —n.Thus, [-]

that
el - < (-9)[-] o=

c

(—;)(—n)—c-c—c-O,
a contradiction.

Case 4: a < ——. Then, [a] < [— E].

n n
Since ce(m®nn+1), —-(n+1)<
—f<-n. Thus, [— E] = —n. We sce that
n n

el -e> (29 -
(—%)(—n)—c=c—c=0,

a contradiction.
From cases 1,2,3and 4, S C {— %}

Therefore,
-2

Lemma 2.10 Let ¢ be a real number and S be
the solution set of x[x] — ¢ = 0. If there is a
positive integer n such that ¢ = n(n + 1),
then § = Q.

—n. We see

we conclude that S =
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Proof. Let ¢ be a real number and S be the solution
set of x[x] — ¢ = 0. Suppose that there is a
positive integer n such that ¢ =n(n+ 1)
and S # @. Let a € S. Then, a[a] —c = 0.
That is, afa] —n(n+1)=0. So ala] =
n(n+1). If a € (—1,0], then [a] = 0. This
implies that a[a] = 0 which is impossible.
Then, a € (—1,0].
Case 1:a >0.Then,0 < [a] -1 <a <

[a]. This implies that

(Ta]l = 1) < [al(Jal — 1) < a[a]
Since afa]=nn+1), (|a]
[a]l(Ja] — 1) < n(n+ 1) < [a]?.

Then, [a] — 1 < /n(n + 1) < [a]. Thus,
[Vn(n+1)] = [a]. 2.1

Since n? <n(n+1) < (n+1)%, n<

Jn(n+1) <n+ 1 Thus,

al?.

<
-1)2<

[n(n+1D]=n+1. (2.2)
From (2.1) and (2.2), we see that
[a] =[yn(n+1)] =n+1. (2.3)

Since a[a] =n(n+ 1), n(n+ 1) =afa] =
a(n + 1). Thus, a = n. We see that
[a] = n.

From (2.3) and (2.4), it is impossible.
Case 2: a<—1. Then [a]—1<a<[a] <
0. Since afal=nn+1)>0, [a]=*0.
Then, [a] — 1 < a < [a] <0. Thus, ([a] —
D% > [a]([a] — 1) > a[a] = [a]?.

Since af[a] = n(n+1) > 0, ([a] — 1)? >
n(n + 1) = [a]?. Then,[a] — 1 <
—yJ/n(n+1) < [a]. Thus,

[-yn(n+1)] = [a]. (2.5)
Since n2 <n(n+1) < (n+1)% n<
\/m <n+1. Then—(n+1) <
—yJ/n(n+ 1) < —n. Thus,

(2.4)

[—v/n(n+1)] = —n. (2.6)
From (2.5) and (2.6),
[a] = [-yn(n+ 1)] = —n. (2.7)

Since a[a] =n(n+ 1), n(n+ 1) = ala] =
a(—n). Thus,
a=—Mm+1and[a]=—-(n+1)(2.8)
From (2.7) and (2.8), it is impossible.
Therefore, S = @.
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Before concluding the solution set of x[x] —
¢ = 0, we show Lemma 2.11 that is used in
the proof of Theorem 2.12.

Lemma 2.11 Letc > 0 and T = {x € N|(x —
1)x < c}. Then, there is the maximum positive
number in T.

Proof. We will show that T is the finite set.
Since1 €T, T+ @. Let x €T. Then, x €N
and (x —1x <c. Thus, x> —x—c<0.
This implies that

Hence, T is the finite set. Therefore, there is
the maximum positive number in T'.

From Lemmas 2.5 - 2.10, we conclude the solution
sets of x[x] — ¢ = 0 in the following theorem.

Theorem 2.12 Let ¢ be a real number. Then,
x[x] — ¢ = 0 has a solution if and only if ¢ >
0 and ¢ # n(n + 1) for all positive integer n.
Moreover, if x[x] — ¢ = 0 has a solution and
S is the solution set, then

1.S = (—1,0] when c = 0;

C . ..
2.5 = {;} when there is a positive

integer n such that ¢ € ((n — 1)n,n?);
3.S = {—n,n} when there is a
positive integer n such that ¢ = n?; and

4.5 = {— %} when there is a positive

integer m such that ¢ € (n?,n(n + 1)).
Proof. Let ¢ be a real number. If c < 0 or ¢ =
n(n + 1) for some positive integer n, then, by
Lemma 2.5 and Lemma 2.10, x[x]—c =0
has no solution.

Next, assume that ¢ > 0 and ¢ # n(n+ 1)
for all positive integer n. If ¢ = 0, then, by
Lemma 2.6, S = (—1,0] is the set of solutions.
In the case that ¢ > 0, let
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T={x€eN|(x—-1Dx <c}.
By Lemma 2.11, there is the maximum positive
number ny € T. Then,n; +1>nq, n1+1 €&
T and ¢ # ny(n; + 1). Thatis, (n; — 1)n; <
c<n(n +1).
If ¢ € ((n; — 1)ny,n?), by Lemma

27,8 = {i} is the set of solutions.
ny

Ifc =n? by Lemma2.8,S =
{—nq,n.} is the set of solutions.
If ¢ € (n?,n;(n; + 1)), by Lemma
29.5={-=
n

This completes the proof.

} is the set of solutions.

3. Conclusions

This article presents sufficient and necessary
conditions for three quadratic equations to have
solutions and their solution sets. For the
equations, [x]2—c =0 and [x?]—c =0,
where c is a real number, the conditions and
the solution sets in, Theorems 2.1 - 2.4, are
shown in Table 3.1.

For the equation x[x] —c = 0, in order to
understand the solution set in Theorem 2.11,
we present each positive integer n, the value ¢
and the solution set of x[x] — ¢ = 0 as Table 3.2.
In the future work, we interest in the solution
sets of the quadratic equations (Eq.4) - (Eq.8)
replaced by the ceiling function.

Table 3.1 The conditions and the solution sets of [x]?> — ¢ = 0 and [x%] — ¢ = 0, where ¢ is a real number

Equation Condition Solution Set
[x]?—c=0 C is a square integer S =(=Vc—1,-Vc]u (Ve = 1,+c]
[x2]—c=0 C is a non-negative integer

-c=0 S ={0}
-c€N S =[-Vc,—Vec— 1)U (Ve —1,c]

Table 3.2 Each positive integer n, the value ¢ and the solution sets of x[x] — ¢ = 0 obtained from Theorem 2.12.

The equation x[x] —¢c =0

Condition ¢<0 ¢=0
n=1 c€ (0,1 c=1 c€(1,2) c=2
n=2 ce(24) c=4 c € (4,6) c=6
n=3 c€(6)9) c=9 c€(912) c=12
n=4 c € (12,16) c=16 ¢ € (16,20) c=20
n=>5 c € (20,25) c=25 c € (25,30) c=30
n==6 ¢ € (30,36) c=36 c € (36,42) c=42
n c € (n—1)n,n?) c=n? c € mtnn+1)) c=nn+1)
Solution §= _ . C S = . cC _
Set S=0 (-1,0] 5= {E} {—n,n} $=1 n} 5=0
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