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Abstract. Let  be a group and  a normal 
subgroup of . If the hyperoperation  is defined by 

  for all  , then  is 

a hypergroup. Since is normal subgroup of , 

 is hypergroup. In this paper, we let 

 and give some example 

that equals to . We take a 

hyperoperation  to construct cosets of any subgroup 

 of  instead of coset multiplication by the binary 
operation of  and studies some examples of this new 
structure of cosets. 
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1. Introduction 
 
A hypergroup is a branch of algebraic structure 
that extends the concept of a group into a more 
general form. In this paper, the hypergroup we 
are interested in studying will be defined from 
the group  and the normal subgroup  of 

, that is, if  is a group and  is a normal 
subgroup of , then  is a hypergroup 
where the hyperoperation  is defined by 

for all  
 
For any group  and  is a subgroup of  
for each ,  is called a 
left coset of  at  in , and 

 is called a right coset of  
at  in .Then  is a normal subgroup if 

 for all . A hyperoperation on a 
nonempty set  is a function 

 where  is the 
power set of . The value of  
under the function  denoted by , is called 
the hyperproduct of  and . A system 

 is called a hypergroupoid, that is,  
has the closure property. For  and 

 we define   

 

For a semihypergroup  is called a 
hypergroup if and only if for 
all  that is, the system  has the 
reproductive law. 
 
Coset of a hypergroup  

Let  be a group and  is a normal subgroup 
of , we define  by  

 for all  

Then we have  is a hypergroup. 
Moreover, if  is a subgroup of  such that 

 and , then 

 

is called a left coset of  in . We will 
define the set of all left cosets of  in  
by , that is, 
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In this section, we will consider some examples 
of the sets of all left cosets  in 

,where , and . 
Case:  for some prime number . 
 
Example 1. , , . We 
have 

       

 

 

 

 

 
 

 
 

 
Example 2. . We 
have 

   

 

 

 

 

 

 

 

 
 

 
 

 
 
 
 

Example 3. , , . We 
have 

  

    

 

     

  

   

   
   
   
   

 
Example 4. , , . We 
have 

 

  

  

  
 

  
  
 
 Example 5. . We   
 have 
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Example 6. . We 
have 

 

   

      

 

         

          
 

 
 

 
 

 
Case:  where   and   are distinct 
primes. 
 
Example 7. . We 
have 
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Example 9. 
. We have 

  

     

     

  

 

 

 
 

 

 

 
 

 
 

 
Example 10. 

 We 
have 
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Example 11. 
.We have 

 

 

      

             

    

   

 
     

 

 

 

 
 

 
 

 

 
 
Example 12.  We 
have 
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Example 13. We 
have 

  
 

 

 

      

     

      
 

     

       

 

     

     

      

 

    

      

 

     

! !"# $ % "& $ %+ ∪ +! !

!"# $ %&∪ + !

!!"# $# %&#!'# (# )&&=

! !"# $ % & $ '= + +! !

! !" #= ! !

!! "=
!! "=

! ! ! !" # " $ % &! " #= = = =! ! ! !

!" #! !" # $ # # % &! ! !" " "= …! ! !

! !" "

# $ %& ! !
" "

" "
∈ ∈

=
! !

" "# #

!"

# # " $!
"

"
∈

…
!

"#

! !"# $ % "& $ %'= + ∪ +! !

!"# $ %&∪…∪ + !

! !"# $ % "$ $ %+ ∪ +! !

!"# $ %&∪…∪ + !
!

! !"# $ % "& $ %+ ∪ +! !

!"# $ %&∪…∪ + !

! !"#$ % & %' (# '∪= + +! !

!!"# $# %& !'# (# )&&= ∪

!" #= !

!"# $ %= + !

! !" #= ! !

!! "=
! "#$%"&$'(")%*'("+,'-(%" "!"#$% C ' '=

!"#$ %! ≥

! ! !" # " $ %! " #= = =! ! !

!" #! !" # $ # # % &! ! !" " "= …! ! !

! !" "

# $ % & %! !
" "

" "
∈ ∈

=
! !

" "# #

!"

# $ %!
"

"
∈ !

" #L

! !"#$ % & #' % &= + ∪ +! !

! !"# # $ "% # $&∪ + ∪ +! !

! !"# $ % "& $ %+ ∪ +! !

! !"# $ % "& $ %'∪ + ∪ +! !

!

! !"# $ % "& $ %+ ∪ +! !

! !"# $ % "& $ %'∪ + ∪ +! !

! !"#$ % & #' % &(= + ∪ +! !

! !"# $ % "& $ %'+ ∪ +! !

!!"# $% !&#'%#= ∪
!"# $% !&#'%%∪
!!"# $# %# &'#!(# )# *# +''=

! !"# $ % & $ '= + +! !

! !" #= ! !

!! "=

!" !" !"# $ # % &! " #= = =! ! !

!" #! !" #$ # #$% &! ! !" " "= …! ! !

!" !"# #

$ % & !! !
" "

" "
∈ ∈

=
! !

" "# #

!"#

$ $ !% &!
"

"
∈ !

" #L

!" !"#$% & ' $( & '= + ∪ +! !

!"#!$ % &'∪ ∪ +! "

!" !"#! $ % #& $ %+ ∪ +! !

!"#!$ % &'∪ ∪ +! "

!

!" !"#!$ % & #! % &+ ∪ +! !

!"#!$ % &'∪ ∪ +! "

!" !"#$% & ' $( & '= + ∪ +! !

!" !"#$ % & #" % &'∪ + ∪ +! !

!" !"#! $ % #& $ %+ ∪ +! !

!" !"#$ % & #' % &(∪ + ∪ +! !

!!"# $% !&#'"% !(#'&% !)#'(%#= ∪ ∪ ∪

!"# $% !&#""% !'#"&%∪ ∪

!"#$%&&∪

!!"# $# %# &# '#("#($#(%)#=

!"# $# %# &# '#""#"$#"%((



 
 

Ramkhamhaeng International Journal of Science and Technology (2025) 8(3): 105-109 
  
 

 
 

 
109 

 
 

 
 
From the analysis of examples of the set of all 
left cosets of  in  under the 
hyperoperation  where , , 

 and . It can be seen that the 
three main cases be analyzed are the cases 
where ,  and  when  and 

 are distinct primes, we have the conclusion 
that every left coset  under the 
hyperoperation  is the same as the left coset 

 under the binary operation in . But what 
is different is the structure of each coset 
, that is, it is a collection of different cosets of 
the cosets of , that is, where each coset 

 is a subset of the coset and for each 
 is combined, it becomes the coset , 

that is, 
 

for all   

The inclusion of the example hypergroup 
 is a commendable strength of this 

work. This concrete example significantly 
enhances the paper's accessibility by providing 
a clear, illustrative context for the defined 
hyperoperation . It will be highly beneficial 
for readers attempting to visualize and 
understand the general construction of the 
hypergroup  and will aid future 
research in this area. 
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