

SHORT COMMUNICATION

Some Examples of a Hypergroup $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$

Withthawas Phanthawimol*, Adthasit Sinna, Sukit Sangwirotjanapart, Anant Luengnapalerd

Department of Mathematics, Faculty of Science, Ramkhamhaeng University

*Corresponding author: withthawas.p@rumail.ru.ac.th

Received: 31 October 2025 / Revised: 14 December 2025 / Accepted: 18 December 2025

Abstract. Let G be a group and N a normal subgroup of G . If the hyperoperation \circ_N is defined by $x \circ_N y = (xy)N$ for all $x, y \in G$, then (G, \circ_N) is a hypergroup. Since $m\mathbb{Z}_n$ is normal subgroup of \mathbb{Z}_n , $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ is hypergroup. In this paper, we let $G|_N H = \{g \circ_N H \mid g \in G\}$ and give some example that $G|_{m\mathbb{Z}_n} k\mathbb{Z}_n$ equals to $\mathbb{Z}_n / k\mathbb{Z}_n$. We take a hyperoperation \circ_N to construct cosets of any subgroup H of G instead of coset multiplication by the binary operation of G and studies some examples of this new structure of cosets.

Keywords: Hypergroup, Coset, Normal Subgroup

1. Introduction

A hypergroup is a branch of algebraic structure that extends the concept of a group into a more general form. In this paper, the hypergroup we are interested in studying will be defined from the group G and the normal subgroup N of G , that is, if G is a group and N is a normal subgroup of G , then (G, \circ_N) is a hypergroup where the hyperoperation \circ_N is defined by $x \circ_N y = (xy)N$ for all $x, y \in G$.

For any group G and N is a subgroup of G for each $x \in G$, $xN = \{xn \mid n \in N\}$ is called a *left coset* of N at x in G , and $Nx = \{nx \mid n \in N\}$ is called a *right coset* of N at x in G . Then N is a normal subgroup if $xN = Nx$ for all $x \in G$. A *hyperoperation* on a nonempty set H is a function

$\circ : H \times H \rightarrow P(H) \setminus \{\emptyset\}$ where $P(H)$ is the power set of H . The value of $(x, y) \in H \times H$ under the function \circ denoted by $x \circ y$, is called the *hyperproduct* of x and y . A system (H, \circ) is called a *hypergroupoid*, that is, (H, \circ) has the *closure property*. For $A, B \subseteq H$ and $x \in H$ we define

$$A \circ B = \bigcup_{a \in A} (a \circ b), A \circ x = \bigcup_{a \in A} a \circ x \quad \text{and} \quad x \circ A = \bigcup_{a \in A} x \circ a.$$

For a semihypergroup (H, \circ) is called a *hypergroup* if and only if $x \circ H = H \circ x = H$ for all $x \in H$, that is, the system (H, \circ) has the reproductive law.

Coset of a hypergroup $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$

Let G be a group and N is a normal subgroup of G , we define \circ_N by

$$x \circ_N y = (xy)N \quad \text{for all } x, y \in G.$$

Then we have (G, \circ_N) is a hypergroup. Moreover, if H is a subgroup of G such that $N \subseteq H$ and $g \in G$, then

$$g \circ_N H = \bigcup_{h \in H} g \circ_N h$$

is called a left coset of H in (G, \circ_N) . We will define the set of all left cosets of H in (G, \circ_N) by $G|_N H$, that is,

$$G|_N H = \{g \circ_N H \mid g \in G\}.$$

In this section, we will consider some examples of the sets of all left cosets $k\mathbb{Z}_n$ in $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$, where $G = \mathbb{Z}_n$, $N = m\mathbb{Z}_n$ and $H = k\mathbb{Z}_n$.

Case: $n = p$ for some prime number p .

Example 1. $G = \mathbb{Z}_2$, $N = 0\mathbb{Z}_2$, $H = 0\mathbb{Z}_2$. We have

$$\begin{aligned} G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H\} \\ &= \left\{ \bigcup_{h \in 0\mathbb{Z}_2} \bar{0} \circ_N h, \bigcup_{h \in 0\mathbb{Z}_2} \bar{1} \circ_N h \right\} \\ &= \{\bar{0} \circ_{0\mathbb{Z}_2} \bar{0}, \bar{1} \circ_{0\mathbb{Z}_2} \bar{0}\} \\ &= \{\bar{0} + \bar{0} + 0\mathbb{Z}_2, \bar{1} + \bar{0} + 0\mathbb{Z}_2\} \\ &= \{\bar{0} + 0\mathbb{Z}_2, \bar{1} + 0\mathbb{Z}_2\} \\ &= \{\{\bar{0}\}, \{\bar{1}\}\} \\ &= \mathbb{Z}_2 / 0\mathbb{Z}_2 \\ &= G / N \\ &= G / H \end{aligned}$$

Example 2. $G = \mathbb{Z}_2, N = 0\mathbb{Z}_2, H = 1\mathbb{Z}_2$. We have

$$\begin{aligned} G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H\} \\ &= \left\{ \bigcup_{h \in 1\mathbb{Z}_2} \bar{0} \circ_N h, \bigcup_{h \in 1\mathbb{Z}_2} \bar{1} \circ_N h \right\} \\ &= \{(\bar{0} \circ_{0\mathbb{Z}_2} \bar{0}) \cup (\bar{0} \circ_{0\mathbb{Z}_2} \bar{1}), \\ &\quad (\bar{1} \circ_{0\mathbb{Z}_2} \bar{0}) \cup (\bar{1} \circ_{0\mathbb{Z}_2} \bar{1})\} \\ &= \{(\bar{0} + \bar{0} + 0\mathbb{Z}_2) \cup (\bar{0} + \bar{1} + 0\mathbb{Z}_2), \\ &\quad (\bar{1} + \bar{0} + 0\mathbb{Z}_2) \cup (\bar{1} + \bar{1} + 0\mathbb{Z}_2)\} \\ &= \{(\bar{0} + 0\mathbb{Z}_2) \cup (\bar{1} + 0\mathbb{Z}_2), \\ &\quad (\bar{1} + 0\mathbb{Z}_2) \cup (\bar{0} + 0\mathbb{Z}_2)\} \\ &= \{\{\bar{0}\} \cup \{\bar{1}\}, \{\bar{1}\} \cup \{\bar{0}\}\} \\ &= \{\mathbb{Z}_2\} \\ &= \{\bar{0} + 1\mathbb{Z}_2\} \\ &= \mathbb{Z}_2 / 1\mathbb{Z}_2 \\ &= G / H. \end{aligned}$$

Example 3. $G = \mathbb{Z}_2$, $N = 1\mathbb{Z}_2$, $H = 1\mathbb{Z}_2$. We have

$$\begin{aligned} G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H\} \\ &= \left\{ \bigcup_{h \in 1\mathbb{Z}_2} \bar{0} \circ_N h, \bigcup_{h \in 1\mathbb{Z}_2} \bar{1} \circ_N h \right\} \\ &= \{(\bar{0} + 1\mathbb{Z}_2) \cup (\bar{1} + 1\mathbb{Z}_2), \\ &\quad (\bar{1} + 1\mathbb{Z}_2) \cup (\bar{0} + 1\mathbb{Z}_2)\} \\ &= \{\mathbb{Z}_2, \mathbb{Z}_2\} \\ &= \{\mathbb{Z}_2\} \\ &= \{\bar{0} + 1\mathbb{Z}_2\} \\ &= \mathbb{Z}_2 / 1\mathbb{Z}_2 \\ &= G / N \\ &= G / H \end{aligned}$$

Example 4. $G = \mathbb{Z}_3$, $N = 0\mathbb{Z}_3$, $H = 0\mathbb{Z}_3$. We have

$$\begin{aligned} G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \bar{2} \circ_N H\} \\ &= \left\{ \bigcup_{h \in 0\mathbb{Z}_3} \bar{0} \circ_N h, \bigcup_{h \in 0\mathbb{Z}_3} \bar{1} \circ_N h, \bigcup_{h \in 0\mathbb{Z}_3} \bar{2} \circ_N h \right\} \\ &= \{\bar{0} + 0\mathbb{Z}_3, \bar{1} + 0\mathbb{Z}_3, \bar{2} + 0\mathbb{Z}_3\} \\ &= \{\{\bar{0}\}, \{\bar{1}\}, \{\bar{2}\}\} \\ &= \mathbb{Z}_3 / 0\mathbb{Z}_3 \\ &= G / N \\ &= G / H \end{aligned}$$

Example 5. $G = \mathbb{Z}_3$, $N = 0\mathbb{Z}_3$, $H = 2\mathbb{Z}_3$. We have

$$\begin{aligned} w G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \bar{2} \circ_N H\} \\ &= \{(\bar{0} + 0\mathbb{Z}_3) \cup (\bar{1} + 0\mathbb{Z}_3) \cup (\bar{2} + 0\mathbb{Z}_3), \\ &\quad (\bar{1} + 0\mathbb{Z}_3) \cup (\bar{2} + 0\mathbb{Z}_3) \cup (\bar{0} + 0\mathbb{Z}_3), \\ &\quad (\bar{2} + 0\mathbb{Z}_3) \cup (\bar{0} + 0\mathbb{Z}_3) \cup (\bar{1} + 0\mathbb{Z}_3)\} \\ &= \{\{\bar{0}\} \cup \{\bar{1}\} \cup \{\bar{2}\}, \{\bar{1}\} \cup \{\bar{2}\} \cup \{\bar{0}\}, \{\bar{2}\} \cup \{\bar{0}\} \cup \{\bar{1}\}\} \\ &= \{\mathbb{Z}_3\} \\ &= \{\bar{0} + 2\mathbb{Z}_3\} \\ &= \mathbb{Z}_3 / 2\mathbb{Z}_3 \\ &= G / H \end{aligned}$$

Example 6. $G = \mathbb{Z}_3$, $N = 1\mathbb{Z}_3$, $H = 2\mathbb{Z}_3$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \bar{2} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 2\mathbb{Z}_3} \bar{0} \circ_N h \right\} \cup \left\{ \bigcup_{h \in 2\mathbb{Z}_3} \bar{1} \circ_N h \right\} \\
 &\quad \cup \left\{ \bigcup_{h \in 2\mathbb{Z}_3} \bar{2} \circ_N h \right\} \\
 &= \{(\bar{0} + 1\mathbb{Z}_3) \cup (\bar{1} + 1\mathbb{Z}_3) \cup (\bar{2} + 1\mathbb{Z}_3), \\
 &\quad (\bar{1} + 1\mathbb{Z}_3) \cup (\bar{2} + 1\mathbb{Z}_3) \cup (\bar{0} + 1\mathbb{Z}_3), \\
 &\quad (\bar{2} + 1\mathbb{Z}_3) \cup (\bar{0} + 1\mathbb{Z}_3) \cup (\bar{1} + 1\mathbb{Z}_3)\} \\
 &= \{\mathbb{Z}_3\} \\
 &= \{\bar{0} + 1\mathbb{Z}_3\} \\
 &= \mathbb{Z}_3 / 1\mathbb{Z}_3 \\
 &= G / N \\
 &= G / H
 \end{aligned}$$

Case: $n = pq$ where p and q are distinct primes.

Example 7. $G = \mathbb{Z}_6$, $N = 0\mathbb{Z}_6$, $H = 0\mathbb{Z}_6$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{5} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 0\mathbb{Z}_6} \bar{0} \circ_N h, \bigcup_{h \in 0\mathbb{Z}_6} \bar{1} \circ_N h \right. \\
 &\quad \left. \dots, \bigcup_{h \in 0\mathbb{Z}_6} \bar{5} \circ_N h \right\} \\
 &= \{\bar{0} + 0\mathbb{Z}_6, \bar{1} + 0\mathbb{Z}_6, \dots, \bar{5} + 0\mathbb{Z}_6\} \\
 &= \{\{\bar{0}\}, \{\bar{1}\}, \dots, \{\bar{5}\}\} \\
 &= \mathbb{Z}_6 / 0\mathbb{Z}_6 \\
 &= G / N \\
 &= G / H
 \end{aligned}$$

Example 8.

$G = \mathbb{Z}_6$, $N = 0\mathbb{Z}_6$, $H = 3\mathbb{Z}_6 = \{\bar{0}, \bar{3}\}$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{5} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 3\mathbb{Z}_6} \bar{0} \circ_N h, \bigcup_{h \in 3\mathbb{Z}_6} \bar{1} \circ_N h \right. \\
 &\quad \left. \dots, \bigcup_{h \in 3\mathbb{Z}_6} \bar{5} \circ_N h \right\} \\
 &= \{(\bar{0} + 0\mathbb{Z}_6) \cup (\bar{3} + 0\mathbb{Z}_6),
 \end{aligned}$$

$$\begin{aligned}
 &(\bar{1} + 0\mathbb{Z}_6) \cup (\bar{4} + 0\mathbb{Z}_6), \\
 &\quad \vdots \\
 &(\bar{5} + 0\mathbb{Z}_6) \cup (\bar{2} + 0\mathbb{Z}_6)\} \\
 &= \{\{\bar{0}, \bar{3}\}, \{\bar{1}, \bar{4}\}, \{\bar{5}, \bar{2}\}\} \\
 &= \{\bar{0} + 3\mathbb{Z}_6, \bar{1} + 3\mathbb{Z}_6, \bar{2} + 3\mathbb{Z}_6\} \\
 &= \mathbb{Z}_6 / 3\mathbb{Z}_6 \\
 &= G / H
 \end{aligned}$$

Example 9. $G = \mathbb{Z}_6$, $N = 0\mathbb{Z}_6$, $H = 5\mathbb{Z}_6 (= \mathbb{Z}_6)$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{5} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 5\mathbb{Z}_6} \bar{0} \circ_N h, \bigcup_{h \in 5\mathbb{Z}_6} \bar{1} \circ_N h \right. \\
 &\quad \left. \dots, \bigcup_{h \in 5\mathbb{Z}_6} \bar{5} \circ_N h \right\} \\
 &= \{(\bar{0} + 0\mathbb{Z}_6) \cup (\bar{1} + 0\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{5} + 0\mathbb{Z}_6), \\
 &\quad (\bar{1} + 0\mathbb{Z}_6) \cup (\bar{2} + 0\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{0} + 0\mathbb{Z}_6), \\
 &\quad \vdots \\
 &\quad (\bar{5} + 0\mathbb{Z}_6) \cup (\bar{0} + 0\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{4} + 0\mathbb{Z}_6)\} \\
 &= \{\{\bar{0}\} \cup \{\bar{1}\} \cup \{\bar{2}\} \dots \cup \{\bar{5}\}\} \\
 &= \{\mathbb{Z}_6\} \\
 &= \{\bar{0} + 5\mathbb{Z}_6\} \\
 &= \mathbb{Z}_6 / 5\mathbb{Z}_6 \\
 &= G / H
 \end{aligned}$$

Example 10.

$G = \mathbb{Z}_6$, $N = 2\mathbb{Z}_6$, $H = 2\mathbb{Z}_6 = \{\bar{0}, \bar{2}, \bar{4}\}$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{5} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 2\mathbb{Z}_6} \bar{0} \circ_N h, \bigcup_{h \in 2\mathbb{Z}_6} \bar{1} \circ_N h \right. \\
 &\quad \left. \dots, \bigcup_{h \in 2\mathbb{Z}_6} \bar{5} \circ_N h \right\} \\
 &= \{(\bar{0} + 2\mathbb{Z}_6) \cup (\bar{2} + 2\mathbb{Z}_6) \cup (\bar{4} + 2\mathbb{Z}_6), \\
 &\quad (\bar{1} + 2\mathbb{Z}_6) \cup (\bar{3} + 2\mathbb{Z}_6) \cup (\bar{5} + 2\mathbb{Z}_6), \\
 &\quad \vdots
 \end{aligned}$$

$$\begin{aligned}
 & (\bar{5} + 2\mathbb{Z}_6) \cup (\bar{1} + 2\mathbb{Z}_6) \\
 & \cup (\bar{3} + 2\mathbb{Z}_6) \} \\
 & = \{ \{\bar{0}, \bar{2}, \bar{4}\}, \{\bar{1}, \bar{3}, \bar{5}\} \} \\
 & = \{\bar{0} + 2\mathbb{Z}_6, \bar{1} + 2\mathbb{Z}_6\} \\
 & = \mathbb{Z}_6 / 2\mathbb{Z}_6 \\
 & = G / N \\
 & = G / H
 \end{aligned}$$

Example 11.

$G = \mathbb{Z}_6, N = 2\mathbb{Z}_6, H = 5\mathbb{Z}_6 (= \mathbb{Z}_6)$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{5} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 5\mathbb{Z}_6} \bar{0} \circ_N h, \bigcup_{h \in 5\mathbb{Z}_6} \bar{1} \circ_N h, \dots, \bigcup_{h \in 5\mathbb{Z}_6} \bar{5} \circ_N h \right\} \\
 &= \left\{ (\bar{0} + 2\mathbb{Z}_6) \cup (\bar{1} + 2\mathbb{Z}_6) \right. \\
 &\quad \cup \dots \cup (\bar{5} + 2\mathbb{Z}_6), \\
 &\quad (\bar{1} + 2\mathbb{Z}_6) \cup (\bar{2} + 2\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{0} + 2\mathbb{Z}_6), \\
 &\quad \vdots \\
 &\quad (\bar{5} + 2\mathbb{Z}_6) \cup (\bar{0} + 2\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{4} + 2\mathbb{Z}_6) \} \\
 &= \{(\bar{0} + 2\mathbb{Z}_6) \cup (\bar{1} + 2\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{5} + 2\mathbb{Z}_6), \\
 &\quad (\bar{1} + 2\mathbb{Z}_6) \cup (\bar{2} + 2\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{0} + 2\mathbb{Z}_6), \\
 &\quad \vdots \\
 &\quad (\bar{5} + 2\mathbb{Z}_6) \cup (\bar{0} + 2\mathbb{Z}_6) \\
 &\quad \cup \dots \cup (\bar{4} + 2\mathbb{Z}_6) \} \\
 &= \{(\bar{0} + 2\mathbb{Z}_6) \cup (\bar{1} + 2\mathbb{Z}_6)\} \\
 &= \{\bar{0}, \bar{2}, \bar{4}\} \cup \{\bar{1}, \bar{3}, \bar{5}\} \\
 &= \{\mathbb{Z}_6\} \\
 &= \{\bar{0} + 5\mathbb{Z}_6\} \\
 &= \mathbb{Z}_6 / 5\mathbb{Z}_6 \\
 &= G / H
 \end{aligned}$$

Case: $n = p^k$ for some prime number p and $k \geq 2$

Example 12. $G = \mathbb{Z}_8, N = 4\mathbb{Z}_8, H = 2\mathbb{Z}_8$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{7} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 2\mathbb{Z}_8} \bar{0} \circ_N h, \bigcup_{h \in 2\mathbb{Z}_8} \bar{1} \circ_N h, \dots, \bigcup_{h \in 2\mathbb{Z}_8} \bar{7} \circ_N h \right\} \\
 &= \{(\bar{0} + 4\mathbb{Z}_8) \cup (\bar{2} + 4\mathbb{Z}_8) \\
 &\quad \cup (\bar{4} + 4\mathbb{Z}_8) \cup (\bar{6} + 4\mathbb{Z}_8),
 \end{aligned}$$

$$\begin{aligned}
 & (\bar{1} + 4\mathbb{Z}_8) \cup (\bar{3} + 4\mathbb{Z}_8) \\
 & \cup (\bar{5} + 4\mathbb{Z}_8) \cup (\bar{7} + 4\mathbb{Z}_8), \\
 & \vdots \\
 & (\bar{7} + 4\mathbb{Z}_8) \cup (\bar{1} + 4\mathbb{Z}_8) \\
 & \cup (\bar{3} + 4\mathbb{Z}_8) \cup (\bar{5} + 4\mathbb{Z}_8) \} \\
 &= \{(\bar{0} + 4\mathbb{Z}_8) \cup (\bar{2} + 4\mathbb{Z}_8), \\
 &\quad (\bar{1} + 4\mathbb{Z}_8) \cup (\bar{3} + 4\mathbb{Z}_8) \} \\
 &= \{ \{\bar{0}, \bar{4}\} \cup \{\bar{2}, \bar{6}\}, \\
 &\quad \{\bar{1}, \bar{5}\} \cup \{\bar{3}, \bar{7}\} \} \\
 &= \{ \{\bar{0}, \bar{2}, \bar{4}, \bar{6}\}, \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\} \} \\
 &= \{\bar{0} + 2\mathbb{Z}_8, \bar{1} + 2\mathbb{Z}_8\} \\
 &= \mathbb{Z}_8 / 2\mathbb{Z}_8 \\
 &= G / H
 \end{aligned}$$

Example 13. $G = \mathbb{Z}_{16}, N = 8\mathbb{Z}_{16}, H = 2\mathbb{Z}_{16}$. We have

$$\begin{aligned}
 G|_N H &= \{\bar{0} \circ_N H, \bar{1} \circ_N H, \dots, \bar{15} \circ_N H\} \\
 &= \left\{ \bigcup_{h \in 2\mathbb{Z}_{16}} \bar{0} \circ_N h, \bigcup_{h \in 2\mathbb{Z}_{16}} \bar{1} \circ_N h, \dots, \bigcup_{h \in 2\mathbb{Z}_{16}} \bar{15} \circ_N h \right\} \\
 &= \{(\bar{0} + 8\mathbb{Z}_{16}) \cup (\bar{2} + 8\mathbb{Z}_{16}) \\
 &\quad \cup \dots \cup (\bar{14} + 8\mathbb{Z}_{16}), \\
 &\quad (\bar{1} + 8\mathbb{Z}_{16}) \cup (\bar{3} + 8\mathbb{Z}_{16}) \\
 &\quad \cup \dots \cup (\bar{15} + 8\mathbb{Z}_{16}), \\
 &\quad \vdots \\
 &\quad (\bar{15} + 8\mathbb{Z}_{16}) \cup (\bar{1} + 8\mathbb{Z}_{16}) \\
 &\quad \cup \dots \cup (\bar{13} + 8\mathbb{Z}_{16}) \} \\
 &= \{(\bar{0} + 8\mathbb{Z}_{16}) \cup (\bar{2} + 8\mathbb{Z}_{16}) \\
 &\quad \cup (\bar{4} + 8\mathbb{Z}_{16}) \cup (\bar{6} + 8\mathbb{Z}_{16}), \\
 &\quad (\bar{1} + 8\mathbb{Z}_{16}) \cup (\bar{3} + 8\mathbb{Z}_{16}) \\
 &\quad \cup (\bar{5} + 8\mathbb{Z}_{16}) \cup (\bar{7} + 8\mathbb{Z}_{16}) \} \\
 &= \{ \{\bar{0}, \bar{8}\} \cup \{\bar{2}, \bar{10}\} \cup \{\bar{4}, \bar{12}\} \cup \{\bar{6}, \bar{14}\}, \\
 &\quad \{\bar{1}, \bar{9}\} \cup \{\bar{3}, \bar{11}\} \cup \{\bar{5}, \bar{13}\} \\
 &\quad \cup \{\bar{7}, \bar{15}\} \} \\
 &= \{ \{\bar{0}, \bar{2}, \bar{4}, \bar{6}, \bar{8}, \bar{10}, \bar{12}, \bar{14}\}, \\
 &\quad \{\bar{1}, \bar{3}, \bar{5}, \bar{7}, \bar{9}, \bar{11}, \bar{13}, \bar{15}\} \}
 \end{aligned}$$

$$\begin{aligned}
 &= \{\bar{0} + 2\mathbb{Z}_{16}, \bar{1} + 2\mathbb{Z}_{16}\} \\
 &= \mathbb{Z}_{16} / 2\mathbb{Z}_{16} \\
 &= G / H
 \end{aligned}$$

From the analysis of examples of the set of all left cosets of H in G under the hyperoperation \circ_N where $G = \mathbb{Z}_n$, $N = m\mathbb{Z}_n$, $H = k\mathbb{Z}_n$ and $N \subseteq H$. It can be seen that the three main cases be analyzed are the cases where $n = p$, $n = pq$ and $n = p^k$ when p and q are distinct primes, we have the conclusion that every left coset $ao_N H$ under the hyperoperation \circ_N is the same as the left coset aH under the binary operation in G . But what is different is the structure of each coset $ao_N H$, that is, it is a collection of different cosets of the cosets of N , that is, where each coset $(ah)N$ is a subset of the coset aH and for each $(ah)N$ is combined, it becomes the coset aH , that is,

$$ao_N H = \bigcup_{h \in H} (ah)N = aH \quad \text{for all } a \in G.$$

The inclusion of the example hypergroup $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ is a commendable strength of this work. This concrete example significantly enhances the paper's accessibility by providing a clear, illustrative context for the defined hyperoperation \circ_N . It will be highly beneficial for readers attempting to visualize and understand the general construction of the hypergroup (G, \circ_N) and will aid future research in this area.

References

Birkhoff G, Bartee TC (1970) *Modern Applied Algebra*. McGraw-Hill Book Company, New York.

Corsini P (1993) *Prolegomena of Hypergroup Theory*. Aviani Editore, Udine, Italy.

Fraleigh JB (1980) *A First Course in Abstract Algebra*. Addison-Wesley, Reading, Massachusetts.

Phanthawimol W (2022) Coset of a hypergroup. *Journal of Science Ladkrabang*, 31(2), July–December 2022.

Pinter CC (1971) *Set Theory*. Addison-Wesley, Massachusetts.