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Abstract. We define a Pupa graph PP (k, [, S, ], [13, 3],
weer [Tne1,Sn—1], 1) which is a cubic 3-connected plane
graph. In this paper, we show that a Pupa graph is
hamilton-connected if n > 2, both k£ and / are even, 1;
is odd, and s; = 0 forevery i € {2,3,...,n—1}.
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1. Introduction

Let ¢ = (V(G),E(G)) be a simple undirected
graph, and p,q € V(G). A path from p to g is
denoted by pq —path. A hamilton path
(respectively, A hamilton cycle) is a path
(respectively, a cycle) passing through all
vertices of G. Note that A hamilton pq —
path is a hamilton path from p to g. A graph
G is hamiltonian if G has a hamilton cycle.
Moreover, G is hamilton-connected if for every
p,q € V(G), there is a hamilton pq — path.
Note that a hamilton-connected graph is a
hamiltonian graph. A degree of a vertex u,
denoted by deg u, is a number of edges that
have u as an endvertex. A graph is cubic if all
vertices have degree three. A graph G is 3-
connected if for any u,v € V(G), G — {u,v}
is connected.

A hamiltonian problem is a well-known
problem in graph theory that applies to
computer graphics and logistics. Tait (Tait
1884) conjectured that a cubic 3-connected
graph is hamiltonian. Later, Tutte (Tutte 1946)
disproved this by showing a nonhamiltonian
cubic 3-connected plane graph called Tutte
graph. However, there is open problems about
cubic  3-connected plane graphs such that
Barnette’s conjecture (Barnette 1969): a cubic
3-connected bipartite graph is hamiltonian. In
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this paper, we show a family of 3-connected
cubic plane graph that is a hamilton-connected.

A leaf is a vertex of degree 1. Let CP be a
Caterpillar graph embedded on a plane. A
spine S of a caterpillar CP is CP - X where X is
a set of all leaves of CP. Note that S is a path
with vertices vy, V,,...,v, . Assume that a
caterpillar CP has no vertex of degree two and
its spine S has at least two vertices. A Pupa
graph PP is a plane graph obtained from a
Caterpillar graph CP with its spine S by

(1) construct the outer cycle passing through
all leaves of CP, and

(2) for each v; € V(S), replacing it by a cycle
D; of size deg v;.

By this construction, all vertices of PP have
degree three and removing any two vertices
from PP, the remaining graph is still connected.
Then PP is a cubic 3-connected plane graph
and cycles Dy, D;, ..., and D, corresponding
to vertices v;, V,, ..., and, v,, respectively.
Define a Head graph H, (respectively, H,) as a
graph induced by all vertices of D,
(respectively, D, ) and all neighbors of D,
(respectively, D,,) in the outer cycle.

Moreover, for i € {2,3,...,n — 1}, a Body
graph B; is a graph induced by all vertices of D;
and all neighbors of D; in the outer cycle.

For n>2, we let a Pupa graph PP =
PP(k' [rZI 52], [T3, 53]' L] [Tn—p Sn—1]; l)

where k,1,75,73,..., Th—1, S2,53,-++,Sn-1
are nonnegative integer. Note that k > 2,1 >
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2,and 1; +5; = 1. Welabel all vertices of PP
as in Figure 2.

From this labeling, we have V(D;) =
{}’1'621;6__12:---; iik} and V(Dy) =
{xn, b1, by, ..., b;}. Then |V(D;)| =k + 1 and
V(D) =1+1 Note that for i €

{1,2,...,n— 1}, an edge y;x;,, joins between
D; and D; 4. Foreachcycle D;,i € {2,...,n —
1}, a path P! from x; to y; in clockwise
direction passing through %!, %, ..., ﬁﬁi and a

path P} from y; to x; in clockwise direction
Then 1; =
[V(PH|and s; = |V(P))|. Note that 77 and S;
represent the number of vertices on D; which
has a neighbor in upper side and lower side of
the outer cycle, respectively.  Note that
[V(D)| =1 +s;+2 for all i€{2,....,.n—
1} . Moreover, for each x € V(D;) , its
x . We show
examples of Pupa graphs that |V (D;)| is even
for some i€{1,2,...,n}, and there is no
hamilton xy-path as in Figure 3

passing through wi,ws,...,ws, .

neighbor in outer cycle is

2
4,3
2 Ur, 3 u% U, Il,‘:' ug

a 2 2 2 3 3,3 4
! wi  Ws w2 Wi wg,

4
w; Wy Sn-1

n—1 - -
g wi

1 b]

Figure 2. A Pupa graph PP(k, [13, S;], [13,S3), -+ +» [Tne1) Sn-1l], D)-
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Figure 3. Pupa graphs PP(2,5) and PP(3,[2,2],3) have no hamilton xy-path.

Then we assume that |V (D;)| is odd for every
i €{1,2,...,n}. Note that both k and [ are
even, and 1;+s; is odd for every i€
{2,3,...,n — 1}. Furthermore, we also assume
that s; =0 for every i€{2,3,...,n—1}.
Then the main result of this paper is as follows.

Theorem 1.1: For every natural number n > 2,
even natural numbers k& [/, and odd natural
numbers 1y, 73,...,7,—1, a Pupa graph
PP(k,[ry,0],[r3,0],..., [rn—1, 0], 1)is hamilton-
connected.

We prove Theorem 1.1 for the case thatn = 2
andn = 3 in Theorem 2.4, and Theorem 4.6,
respectively.

2. Head graph
We recall a Head graph H as in figure 4.

Note that if H = H; (respectively H = H,,),
thenm = k and z = y; (respectively, m = [
and z = x,,, ). We also let Z°4¢ =
{c1,63,C5,.., Cp_1}, 278 =

{co,€4,C0-- s Cm}

7Z°% = (¢, ¢3,Cqpv.., Gy} and Z€V" =

{C,,C4,Cq,--.,C}. We generate all possible
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cases and then get hamilton paths on a Head
graph as follows.

Lemma 2.1: Let H be a Head graph and p €
V(H). Then

(1) if p # z, then there is a hamilton pz —path,

(2) if pezeddyzeven | then there is a
hamilton pc,, —path, and

(3) if p € Zzevenu Z°4e | then there is a
hamilton pc; —path.

a
w

Figure 4. A Head graph H.
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Figure 5. Examples of paths in Lemma 2.1 (1), (2), and (3) in the first row, the second row, and the third row,
respectively.

Next, we construct two disjoint paths, S and 7,
and show that V(S)uV(T)=V(H), and
V(S) NV(T) = @ in the following lemmas.

Lemma 2.2: Let p,q € V(H),p # q. Then
there is a pp’ —path S and a qq’ — path T,
such that p',q' € {z,¢cy,c, }, VS)UV(T) =
V(H), and V(S) nV(T) = Q.

Lemma 2.3: Let p € V(H) — {z}. Then there
are paths S and 7 such that V(S) UV (T) =
V(H), and V(S) N V(T) = @ as follows.

(1)if p = ¢; € Z°%4, then Sis a pc; —path
and T'is a zc,,, — path,

(2)if p = ¢; € Z°Y®" ,then Sis a pc, —path
and T'is a zc; — path, and

(3)if p =c; € Z°4 y Z¢®" then Sisa
pz —path and T'is a c¢;c,, — path.

For a case that n =2, a Pupa graph PP =
PP(k, 1) has no a Body graph. Then we show
the first part of main theorem as follows.
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Theorem 2.4: For every even natural numbers
k and [, a pupa graph PP (k, ) is hamilton-
connected.

Proof Let p, q be distinct vertices of a Pupa
graph PP. We will show a hamilton pq —path
Py in the following cases.

Case 1: both p and q are in V(H,).
(respectively, V(H;) )
By symmetry, we will show only the case that
p,q EV(Hy). From Lemma 2.2, there is a
pu —path Sand a qv — path T such that u,v €
{1 a1, a3, VS UV(T) = V(Hy), and
V(S) N V(T) = @. Then we have the following
subcases.

Subcase 1.1: u=y; andv = a,.

From Lemma 2.1(1), there is a
hamilton b;x, — path M in H,. Then

Py : pSy;,x,Mb;,a,Tq.

Subcase 1.2: u = y; and v = ay.

From Lemma 2.1(1), there is a
hamilton b;x, — path M in H,. Then

Py : pSy;,x,Mby,a,Tq.

Subcase 1.3: u = a, and v = q.
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From Lemma 2.1(2), there is a hamilton b, b; —
path M in H,. Then Py : pSay, bjMb, a,Tq.

Case2: p € V(H;) and q € V(H,). Define
subsets of V(H,) 7044 zeven 7odd 7Feven iy
the same way as Zodd’ Zeven’ Z—odd ) Z—even.
Note that V(H;) = {y;} U Zlodd U Zeven y
Z04d y zgven Similary, Z9%¢ , zgven, 7944

and Z§Y¢™ are defined as subsets of V (H,).

Note that V(H,) = {x,} U Z24¢ y Z§ve" y
7944 y Zzgven Then we have the following
subcases.

Subcase 2.1: p # y; and q # x,. From
Lemma 2.1(1), there is a hamilton py; — path
M in H, , and there is a hamilton gx, — path
N in H, . Then Py : pMy,,x,Nq. Subcase

2.2: p€Z2%y 7" and q = x,
(respectively, p =y, and q € Z94% y Zgven),
By symmetry, we will show only the case that
p € Z2% y 78" and q = x,. From Lemma
2.1(2), there is a hamilton pa;, — path M in
H; and from Lemma 2.1(1), there is a hamilton
X;by — path N in H, Then Py :
pMay,byNx, . Subcase 2.3: p € {y;} U
zeveny 7994 and q = x, (respectively,
p=yiand q € {x;} UZ5¥" U Z39%).

By symmetry, we will show only the case that
p € 224 y Z8ve" and q = x,.

From Lemma 2.1(1, 3), there is a hamilton
pa, —path M in H; and from Lemma 2.1(1),
there is a hamilton x,b; — path N in H, . Then
Py : pMay, byNx,.

Figure 6. Examples of paths S and 7 in Lemma 2.2.
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Figure 7. Examples of hamilton pq —paths of PP(8, 6) in subcase 1.2 and 1.3 of Theorem 2.4.
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Figure 8. Examples of hamilton pg —paths of PP(8, 6) in subcase 2.1 and 2.3 in Theorem 2.4.

3. Body graph

Recall a Body graph B of PP(k,[r,,0],[r3,0],
cve»[Tn-1,0], 1) as in Figure 9.

Note thatif B = B; fori € {2,3,...,n—
then m r; and D = D;. We also let
U°% = {uy, Uz, Us, ..., Up_q}, UCYE" =
{Up, Uy, Ug, ..., Uy}, U =

{ty, 3, 1s,...,Uy_1} and U™ =
{u,, Uy, Ug, ..., Up} . We generate all possible
cases and then get hamilton paths on a Body
graph as follows.

13,

Lemma 3.1: Let B be a Body graph. If p €
{x,y} U U°% y " and q €
{x,y,uq,u,} — {p}, then there is a hamilton
pq —path.

Next, we construct two disjoint paths, S and 7,
and show that V(S) U V(T) =V(B), and
V(S) NV(T) = @ in the following lemmas.

Lemma 3: There are paths S and 7 such that
VvV =V(B),andV(S)NV(T) =9
as follows.

(H)Ifp e U°4d y Uev*m ,thenSisa pp, —
path and T is a yp, — path,

where {p,, p2} = {uy, x} (respectively, Sis a
pp, — path and T is a xp, — path, where

{r1, 02} = {um, y}).
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(2) If peue™u U4 | then S is a
pp, —path and T is a u,,p, — path,

where {pi,p,} = {us,x} (respectively, Sis a
pp, —path and T is a u;p, — path, where

{ru, 02} = {um, y}).

3) S={x} and T is a wuy—path
(respectively, S = {y} and T is a u,,x — path).

(4) Sisa xy —path and T is a uyu,,, — path.

Lemma 3.3: Let B be a Body graph and
p,0,q,q" € V(B). Then there are paths S and
T'such that V(S)uV(T) =V (B), and

V(S) NV(T) = @ as follows.

() fp=xand g =1y, thenS = {x}and T is
a yu,, — path.

(2) Ifp € {x,y} and q € U°% U U®"", then
S ={p}and Tis a qq’' — path
where q' € {x,y} — {p}.

() Ifp € {x,y} and q € U®”*™ U U°?4, then
S:x,y and T'is a qu, — path .

4) If p,q e U°%uy U™ | then S is a
pp’ —path and T'is a qq’ —path

where {p’,q'} = {x, y}.

(5) If p €Uy Jen and q € Uem U
U°44  then S is a pp’ —path and T is a
pp —p
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qq' — path where z; € {x,u,}, 7, € {y,upm},
and {p', q'} = {21, 2,}.

Finally, we also construct two disjoint paths, S
and 7,but V(S)UV(T) =V(H) — {x,y} in
the following.

Lemma 3.3: Let Bbe a Body graphand p,q €
Ueven y J°%4, Then there are a pp’ —path and
a qq' —path T such that {p’,q'} = {uy, um},
VSUV(T)=V(B)—{x,y}, and V(S)N
V(T) = 9.

4. Proof of Main result

To prove Theorem 1.1 for the case thatn > 3,
we split that theorem into five lemmas
depending on hamilton pg — path Py as
follows.
(1) p,q € V(H, U H;) in Lemma 4.1.
(i)p eV(U;)and q €V(U;), i+,
in Lemma 4.2.
(i) p,q € V(U;) in Lemma 4.3.
(iv)nisodd,p € V(H; U H,), and
q € V(U;) in Lemma 4.4.
(v)niseven,p € V(H; U H;) and
q € V(U;) in Lemma 4.5.

Next, let B; be a Body graph for i €
{2,3,...,n — 1}, by using Lemma 3.1, B; have
a hamilton xiuﬁi — path X;, and a hamilton
y;ut — path ¥;. Moreover, from lemma 3.2(1),
B; have an x;y; — path D; and aujul — path
P/ such that V(D/)UV(P) =V(B;), and
V(D)NnV(P)=@. Then we will use these
paths in the following lemmas.

Lemma 4.1: Let n > 3 and a Pupa graph PP =
PP(k,[r,,0],...,[m-1,0],D If pq€
V(H;) UV(H,), then there is a hamilton pg —
path in PP.

Proof We will show a hamilton pq —path Py
in the following cases.

Case 1: p,q € V(H,) (respectively, p,q €
V(Hy)).
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By symmetry, we will show only the case that
p,q €EV(Hy). From Lemma 2.2, there is a
pu —path Sand a qu — path 7, such that u,v €
v ay,a}, V(S) VV(T) = V(Hy), and V(S5)
NV(T) =@ . Then we have the following
subcases.

Subcase 1.1: u=y; andv = a,.

- For n is odd, from Lemma 2.1(2),
there is a hamilton b;b; — path M in H,. Then
Py : Sy, X, ,Y3,X,,..., X1, b1 Mb;, a4, Tq.

- For n is even, from Lemma 2.1 (1),
there is a hamilton x,,b; — path M in H,,.

Then Py :
pSy., Xy, Ys, Xy, oo, Y1, x,Mb;,a,Tq.
Subcase 1.2: u = y; and v = ay.

From Lemma 2.1(1), there is a hamilton
bix, —path M in H,. Then Py : pSy;,
D;,D3,...,D;_1,x,Mby,P,_1,Py_5,
..,P;,a;Tq. Subcase 1.3: u=a, andv =
ay.

- For n is odd, from Lemma 2.1(1),
there is a hamilton x,,b; — path M in H,,.

Then Py :
pSa,, biMx,, Y 1, Xpn_2,Yn_3,..., Yo, a;Tq.

- For n is even, from Lemma 2.1(2),
there is a hamilton b;b; — path M in H,,.

Then Py :
pSa,, biMby, X1, Yn_2, Xn_3,-.., X5, a,Tq.
Case2: p€eV(H,)and q € V(Hy,)
(respectively, p € V(H,) and q € V(H;) ).
By symmetry, we will show only the case that
p € V(H,) and q € V(H,). Recall

odd even ryodd Zeven
Zi ’ Zi , Zi Zi

ag wheni €

{1, n}. Then we have the following cases.

Subcase 2.1: nisodd,p # y; and q € {x,} U
Zrelven U Z_,?de

- For n is odd, from Lemma 2.1(1),
there is a hamilton py; — path M in Hy, and
from Lemma 2.1(1, 3), there is a hamilton
qb, — path N in H,,.

Then Py :

pMy,, X, ,Y3, Xy, ..., Xn_1,b1Nq.
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Figure 9. A Body graph B.
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Figure 10. Example of a hamilton pq — path in subcase 2.1 in Lemma 4.1.

Subcase 2.2: nis odd, p € {y;} U Z% y hamilton x,,_,u} ! — path K in B,_;. If p; =
Z87e" and q # x,,. v, ,then Py : pSyl,xz,Dé‘ ,D3, ...,

Dn Z'K Pn ZJPn 27 P2'u1'akTa1'qu
From Lemma 2.1(1, 2), there is a hamilton

pa, — path M in H,, and from Otherwise, Py :
Lemma 2.1(1), there is a hamilton qx,, — path ~ qSbh;,a;Ty1,%x,,D5,D3,...,D;_5, K, Py_s,
N in H,. Then Pi_y..., Py, u?, a;Sp.

Py : pMay, Y, ,X3,Y,,..., Y 1x,Nq.
Subcase 2.4: nis even, p # y, and q # x,,.
From Lemma 2.1(1), there is a hamilton py; —

path M in H,, and there is a hamilton qx,, —
path N in H,,. Then Py :

Subcase 2.3: nisodd, p € {y;} U Z{Ve"
799% and q € {x,} U Z24d y Zgven,

From Lemma 2.2 and 2.3(2, 3), there is a pMy,, X, ,Y3, Xy, ..., Va1, xnNg.
pp; — path S and a p,a, — path 7, such that
(r1, 2} = {1, ax}, V(S) UV(T) = V(H,), Subcase 2.5: nis even, p € Z04d y Zgven

andV(S)NV(T) =0
From Lemma 2.1(1, 2), there is a hamilton
qb; — path N in H,. By Lemma 3.1, there is a

and q = x,, (respectively, p = y; and
q € 2344 y Zgvem), By symmetry, we will
show only the case that p € Z244 y Z¢&ven

34
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and ¢ = x,, . From Lemma 2.1(2), there is a
hamilton pa;, — path M in H,, and from
Lemma 2.1(1), there is a hamilton b, x,, — path
N in H,,. Then
Py:pMay,Y, ,X3,Y,, ..., Xn_1, b1 Nx,,.
Subcase 2.6: nis even, p € {y;} U Z7"°" U
794% and q = x,, (respectively, p = y, and

q € {x,} UZ&en y 799 ). By symmetry, we
will show only the case that p € {y;} U

zgven y 7994 and q = x,.From Lemma 2.2
and 2.3(2, 3), there is a pp; — path Sand a
p2a; — path 7, such that {p;,p,} =

v ae}, V() VV(T) = V(Hy), and V(S) N
V(T) = @. From Lemma 2.1(1, 2), there is a
hamilton x,b; — path N in H,,. By Lemma
3.1, there is a hamilton x,_,u} ! — path K
inB,_;.1f py =y, ,then Py:

PSY1,%2, D7 ,D3,..., Dp_5, K, Py,
P;_,,...,P;,u? a,Tay, biNgx,. Otherwise,
Py : x,Sb;,a,Ty;,x,,D;,D;3,...,D;_5,
K,P;_,, Pi_s, ..., Py u?, a;Sp.

Lemma 4.2: Let n >4 and a Pupa graph
PP = PP(k,[r,,0],...,[1h-1,0,D) . If pE€E
V(U))and q €V(B;),2<i<j<n-—1 then
there is a hamilton pq — path in PP.

Proof We will use Lemma 3.2 to construct
paths S;, S;, T;, T; and then use them to construct
a hamilton path Py as follows.

(1) There is an pp,; —path S; and a p,p’ —
path T;, such that {py,p,} = {ul,,y:},V(S) U
V(T;)) =V(B),V(S)NV(T;) =9, and

, _|xi,pe {y}u Uity ugren
_idme{mhﬂﬁw"UUﬁd

(2) There is an qq; —path S; and a q,q" —
path T}, such that {qy,q,} = {u] ,x;},V(S) U
V(Tl) = V(Bl), V(Sl) n V(Tl) = (Z), and

,_(¥ia € youpttu O
q = u-1]~']- ,q € {y]} U Ujeven U Ujodd
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Next, we construct paths P’ :

i i+1 ~i+1 r,
Urp U UL 5 X1 Vi and Q :

J p=* * * i+1 p* o i+1 =i+l
Uy, Pi_g, Piogy ey Prigy U Py U™, Uy

* —i+1 * * *
Dty Vi Div1yDigaren o Di_g, x5

Then we have a path P"" : pS;p;, P', p,T;p’
and Q"+ q5;0:,Q", 42T;q" .

Let p” € {a,y,} € V(H,) . Define a path
P(p',p"") as one of the following paths
depending on vertices p’, p"’ and integer i

P Yo, X Yice,.., Yo, 0",
P Yieu,XiooYica, .., Xo, 0"
P XY Xicq,., Yo, 0" or

P Xic1 Yo, Xicq, -
give the following.

- if i is odd, then P(x;,p"") = P(x;, a;) and
P(ui,p") = P(ui, y1).

- if i is even, then P(x;,p"") = P(x;,y,) and
P(x;,p") = P(uy, ay).

., X, p". Moreover, we

Similarly, let q"" € {b;,x,} € V(H,,) . Define
apath Q(q’,q"") as one of the following paths
depending on vertices p’, p"’ and integer j,n :

! n
4 Y1, Xjv2 Yivzr oo, Yo,
! n
4 Y1 Xjv2 Yiez o, Xn1, @7
! n
4 Xj+1, Vv, Xjiszr oo, Yoo1,q7 o1

9 Xj+1, Y42, X543, ..., X—1,q"". Moreover,
we give the following.

- if j, n is odd (or even), then Q(y;,q"") =

Q(yj by) and Q(u},q") = P(uy, xp).
- if j is odd and n is even (or j is even and n is
odd), then Q(y;,q"") = Q(yj,xn) and

Q(u},q") = Q(uy,, by).

By Lemma 2.1, there is a hamilton p"'a; —
path M in Hy, and, a hamilton q"'b; — path N
in H,. Combining all paths, we have Py :
pP"p’, P(p’,p"), p"May, biING", Q(q’, q"),
qu’Iq

Define subsets of V(B;)
U-Odd Ugven
1 [ |

odd even
Ui Ui

b b

in the same way as U°dd, yeven,
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U°dd Uevem . Note that V(B;) = {x;y;} U
Updd y ugven u TPdd U UEVe™. Then we show
the following.

Lemma 4.3 : Let n > 3 and a Pupa graph
PP = PP(k, [r,,0],...,[rn-1,0,).If p,q €
V(B;),2 <i < n—1, then there is a hamilton
pq — path in PP. Proof We will show a
hamilton pq —path Py in the following cases.

Case 1: p,q ¢ UVe" y Updd

By Lemma 3.3, there isa pp’ —path S and a
qq’ — path T, such that V(S) U V(T) = V(B)),
V(S) n V(T) =0, Z, € {XiJ uil}J Z; € {Yi' u}n}
and {p’,q'} = {z1,z,} . Assume without the
loss of generality that p’ = z; and q' = z,.

Let p"€f{apy,}<SV(H;) ad q"€
{by,x,} € V(H,). We define paths P(p’,p"")
and Q(q’,q") as in Lemma 4.2.

NQNRY

N A

By Lemma 2.1, there is a hamilton p''a;
M in H,, and, a hamilton q''b;

Combining all paths,
pSp’, P(p’,p"), p"May, biNg", Q(q’, q"),

q'Tq.

— path
— path Nin H,,.
we have Py :

Case 2: p,q € Ufv*" u U4

By Lemma 3.3, there is a pp’ —path S and a
qq’ — path 7, such that V(S) UV (T) =

V(B;) —

{xi 'yi}J V(S) N V(T) = @, and
{r',q'} = {ul,ul,}. Assume without the loss

of generality that p’ = u! and q' = ul,.

By Lemma 2.1, there is a hamilton y;a; —
path M in Hy, and, a hamilton x,,,b,
in H,,. Combining all paths, we have Py :
pSui, P, P_,,...,
axMy;,D;,D3,...,

* *
XyNby , Py, Pis, ...,

P;,
D*
i-1X

* *
iﬂyiJDi+1'Di+2""'

Py, urian .

o @

} } \4(‘_/‘ )

AN

e

Figure 11. Example of a hamilton pq — path in case 1 in Lemma 4.3.
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Figure 12. Example of a hamilton pq — path in case 2 in Lemma 4.3.
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Lemma 4.4: Let n >3 be odd and PP =
PP(k,[r3,0],...,[m-1,0],). f p€EV(H) U
V(H,) and q €V(B;),2<i<n-—1, then
there is a hamilton pq — path in PP.

Proof By symmetry, we will show only the case
that p € V(H;) . We will show a hamilton
pq —path Py in the following cases.

Case 1: i is odd.
According to vertices of H; and B; , we have
the following subcases.

Subcase 1.1: p € {y,;} U Z2% y Z¢"" and
q € {yJuuPitu Ug"" By Lemma 2.1,
there is a hamilton pa; — path M in Hy, and,
a hamilton x,,b; — path N in H,. By Lemma
3.2(1, 3), there is an gqp; —path S and a

pox; — path T, such that {p,,p,} =

{ur, ¥:}3, V() UV(T) =V(B),V(S) N
V(T) = @. Moreover, we define a path Qy :
Vi Dit1s D;+2» wor Dpo1, %0 Nby, P, Py,
..., Diyq,ur, . Then Py :

pMay, Y, X3, Y, ..., Yi_1, %, TD2, Qu, 1 59.

Subcase 1.2: p # y; and q € {x;} U U"" U
U?4e, By Lemma 2.1(1), there is a hamilton
py; — path M in H;, and, a hamilton x,b; —
path N in H,,. By Lemma 3.2(2, 4), there is
an qp; —path S and a p,u} — path T, such
that {py, po} = {ur,, ¥:},V(S) VV(T) =
V(By),V(S)NV(T) = @. Weusea path Qy
in subcase 1.1 and then Py :

PMy:, X5, Y3, Xay oo, Xi—1, USTD2, Quy P15q.

Subcase 1.3:p € {y,} U Zgv" y 794% and

q € {y;Juuge u U By Lemma 2.1(1,
3), there is a hamilton pa; — path M in H,,
and, a hamilton x,b; — path N in H,. By
Lemma 3.2(2, 4), thereis an qp; —path S and
apyuk, — path T, such that {py,p,} =

{ui, %}, VS UV(T) =V(B), V()N

V(T) = @. Moreover, we define a path

Q’H: Xis Di*—lr Di*—Z' ] D;, Y2, X2, ﬁfﬂzuﬁz,

P;,P;,...,Di_,,ul . Then Py :
p'Mal, biNx,, Y1, Xn-2, Yn_3, .
ur,Tp,, Q'n,0159.

'Yi+1'

Subcase 1.4: p =y, and q = x;. By Lemma
2.1(1, 2), there is a hamilton y,;a, — path M
in H;, and, a hamilton b;b; — path N in H,,.
By Lemma 3.2(3), there is S = {x;} and a
y,ut — path T, such that V(S) U V(T) =
V(B),V(S) nV(T) =@. Weuseapath Q'
in subcase 1.3 and then Py :
yiMa,, szprn—l_: Y2, Xn_3, .
Tui, Q'y, x; .

v Xiv1 Vi

Case 2: i is even.
We use Qy, Q" defined in case 1 and have
the following subcases.

Subcase 2.1: p #y; and q € {y;} U U2 U
UFYe"™. By Lemma 2.1(1), there is a hamilton
py; — path M in H,, and a hamilton x,,b; —
path N in H,,. By Lemma 3.2(1, 3), there is
an qp, —path S and a p,x; — path T, such
that {py, po} = {ur,, ¥:}, V(S) UV(T) =
V(By),V(S)NV(T) = @. Then Py :

PMy1, X5, Y3, Xy, ..., Vi1, X T P2, Qu, P15

Subcase 2.2: p € {y,;} U Z2% y Z&"" and
q € {x;} VU U UP? By Lemma 2.1(1,
2), there is a hamilton pa;, — path M in H,,
and , a hamilton x,,b; — path N in H,. By
lemma 3.2(2, 4), there is an qp; —path S and
a poul — path T, such that {p;,p,} =

{ur, ¥:3, V() UV(T) =V(B),V(S)N
V(T) = @. Then Py :

pPMay, Y, X3,Ys, ..., Xi_1,ui T2, Qu, P159.

Subcase 2.3:p € {y;} U Zgve" u 7994 and

q € {y;JuUg™ u U% By Lemma 2.1(1,
3), there is a hamilton pa; — path M in Hy,
and , a hamilton b, b; — path N in H,,. By
Lemma 3.2(2, 4), there is an gp; —path S and
apouk, — path T, such that {p;,p,} =

{ui, %}, VS UV(T) =V(B), V()N

V(T) = @. Then Py : pMa,,byNby, X,,_1,
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Y2, Xn-3,--, Yise, uﬁisz; Q'n0159.
Subcase 2.4: p = y; and q = x;. By Lemma
2.1(1), there is a hamilton y,a, — path M in
H;, and , a hamilton x,,b; — path N in H,,. By
Lemma 3.2(3), thereis S = {x;} and a y;u} —
path T, such that V(S) U V(T) = V(B,),
V() NV(T) =@. Then Py : y;Ma,,b;Nx,,
Yoou, Xn—2, Yoz Xip, ¥iTwi, Q' x;

Lemma 4.5: Let n > 4 be even and PP =
PP(k,[r2,0],...,[m-1,0],). f p€E V(H) U
V(H,) and q €V (B;),2<i<n-—1, then
there is a hamilton pq — path in PP. Proof By
symmetry, we will show only the case that p €
V(H,). We will use paths Qy, Q'yy defined in
Lemma 4.4 and show a hamilton pq —path Py
in the following cases.

Case 1: i is odd.
we have the following subcases.

Subcase 1.1: p € {y,;} U Z2% y Z¢"" and

q € {y;} VU U JFY®™. Use the same
proof as subcase 1.1 in Lemma 4.4.

Subcase 1.2: p # y; and q € {x;} U U"" U
U?4%. Use the same proof as subcase 1.2 in
Lemma 4.4.

Subcase 1.3:p € {y;} U Zgve" u 7994 and

q € {y;Juuge™ u U% By Lemma 2.1(1,
3), there is a hamilton pa; — path M in Hy,
and , a hamilton b;b; — path N in H,. By
Lemma 3.2(2, 4), thereis an qp; —path S and
ap,uf, —path T, such that {p;, p,} =
{ul, .}, V(S) UV(T) = V(B), V(S) n

V(T) = @. Then Py : pMa,,byNby, X,,_1,
Vo2, Xn-3,.-., Yise, uﬁisz; Q' 1159

Subcase 1.4: p =y, and q = x;.By Lemma
2.1(1, 2), there is a hamilton y,;a, — path M

in Hy, and, a hamilton x,b; — path N in H,,.

By Lemma 3.2(3), there is S = {x;} and a

y;ut — path T, such that V(S) U V(T) =
V(By),V(S)NV(T) = @. Then Py : y,Ma,,
biNxp, Yn 1, Xn—2, Yu-z, o, Xivr, ¥iTug, Q' X

P

g

) 4 <
\

Figure 14. Example of a hamilton pg — path in subcase 1.3 in Lemma 4.4.
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Case 2: i is even. We use Qy, Q' defined in
case 1 and have the following subcases.

Subcase 2.1: p #y; and q € {y;} U U2 U
UFYe"™. By Lemma 2.1(1), there is a hamilton
py; — path M in H,, and a hamilton x,,b; —
path N in H,,. By Lemma 3.2(1, 3), there is
an qp, —path S and a p,x; — path T, such
that {py, po} = {ur,, ¥:},V(S) UV(T) =
V(By),V(S)NV(T) = @. Then Py :

PMy1, X5, Y3, Xy, ..., Vi1, X TP2, Qu, P15

Subcase 2.2: p € {y,;} U Z2% y Z&"" and
q € {x;} VU U UP? By Lemma 2.1(1,
2), there is a hamilton pa;, — path M in H,,
and, a hamilton x,b; — path N in H,,. By
lemma 3.2(2, 4), there is an qp; —path S and
ap,ul — path T, such that {p;,p,} =

{ur, ¥:}3, V() UV(T) =V(B),V(S)N
V(T) = @. Then Py :

pPMay, Y, X3,Ys, ..., Xi_1,ui T2, Qu, P159.

Subcase 2.3: p € {y,} U Z&v" y 794% and
q € {y;} U™ U UP% By Lemma 2.1(1,
3), there is a hamilton pa; — path M in Hy,
and, a hamilton b, b; — path N in H,. By
Lemma 3.2(2, 4), thereis an qp; —path S and
apouk, — path T, such that {p;,p,} =
{ul, %}, V(S) UV(T) = V(B),
V(S)NV(T) = @. Then Py :
pMa,, bl'Nbl,Xn_l, Y2, Xp_3, .
U, Tp2, Q' 0159

'Yi+11

Subcase 2.4: p = y; and q = x;.By Lemma
2.1(1), there is a hamilton y,;a, — path M in
H,, and, a hamilton x,b; — path N in H,. By
Lemma 3.2(3), there is S = {x;} and a y,u} —
path T, such that V(S) U V(T) = V(B,),
V() NV(T) =@. Then Py : y;Ma,,b;Nx,,
Yoou, Xn—2, Yas oo Xip, ¥iTwi, Q' x;

Lemma4.5: Letn > 4 beevenand PP =
PP(k,[r3,0],...,[r-1,0], D). If p € V(H;) U
V(Hy,) andq € V(B;),2 <i <n—1, then
there is a hamilton pq — path in PP.

39

Proof By symmetry, we will show only the
case that p € V(H,). We will use paths

Qu, Q'y defined in Lemma 4.4 and show a
hamilton pq —path Py in the following cases.

Case 1: i is odd.we have the following
subcases.

Subcase 1.1: p € {y,;} U Z2% y Z¢"" and
q € {y;} VU U JEYe™. Use the same
proof as subcase 1.1 in Lemma 4.4.

Subcase 1.2: p # y; and q € {x;} U U"" U
U?44, Use the same proof as subcase 1.2 in
Lemma 4.4.

Subcase 1.3:p € {y;} U Z£¥e" u 7994 and

q € {y;Juuge™ u U% By Lemma 2.1(1,
3), there is a hamilton pa; — path M in Hy,
and, a hamilton b, b; — path N in H,. By
Lemma 3.2(2, 4), thereis an qp; —path S and
a pouk, —path T, such that {p;, p,} =
{uL, x 3, V(S UV (M) =V(By), V()N

V(T) = @. Then Py : pMay, byNby, X4,
Vo2, Xn-3,..., Yise, uﬁisz; Q' p159.

Subcase 1.4: p =y, and q = x;. By Lemma
2.1(1, 2), there is a hamilton y,;a, — path M

in H, and, a hamilton x,b; — path N in H,,.

By Lemma 3.2(3), there is S = {x;} and a

y;ut — path T, such that V(S) U V(T) =
V(B),V(S)NV(T) = @. Then Py : y;Ma,,
biNxp, Yn 1, X2, Yu—z, oo, i1, ¥iTug, Q' X

Case 2: i is even.we have the following
subcases.

Subcase 2.1: p #y; and q € {y;} U U2 U
UFYe™. Use the same proof as subcase 2.1 in
Lemma 4.4.

Subcase 2.2: p € {y,;} U Z2% y Z&"" and
q € {x;} VU™ U UP%. Use the same
proof as subcase 2.2 in Lemma 4.4.
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Subcase 2.3:p € {y;} U Z£ve" u 7994 and

q € {y;JuUuge™ u U By Lemma 2.1(1,
3), there is a hamilton pa; — path M in Hy,
and , a hamilton x,,b; — path N in H,,. By
Lemma 3.2(2, 4), thereis an qp; —path S and
apouk, — path T, such that {py,p,} =

{ul, %}, V(S) UV(T) = V(B), V()

V(T) = @. Then Py : pMay, b;Nx,,
Xn-1Yn-2Xn-3,..., Yiq1, uiisz' Q' 1159

Subcase 2.4: p = y; and q = x;. By Lemma
2.1(1), there is a hamilton y,a, — path M in
H,, and, a hamilton b;b; — path N in H,,.
By Lemma 3.2(3), there is S = {x;} and a

y;ut — path T, such that V(S) U V(T) =
V(B),V(S)NV(T) = @. Then Py : y;Ma,,
biNby,Yn 1, Xn-2,Yn-3,- -, Xiv1, ¥iTuy, Q'n, x;

Combining all Lemmas 4.1, 4.2, 4.3, 4.4, and
4.5, we get the following. Theorem 4.6 : For
every natural number n > 3, even natural
numbers &, /, and odd natural numbers 7,

T3, ..., Tn—1, @ Pupa graph PP (k, [r,, 0],
[13,0],...,[Tn-1,0], 1) is hamilton-connected.

5. Conclusion and Open Problems

A In this paper, we already show that a Pupa
graph PP(k,[r 2,0],[r 3.0],..., [[r] (n-1),0],)
is hamilton-connected. Then this can be
improved to general case so we give the
following conjecture. Conjecture 5.1 : For all
natural numbers n>3, even natural numbers k,
I, and odd natural numbers r 2,r 3,..,r (n-
I),s 2,5 3,....,s (n-1), a Pupa graph
PP(k,[r 2,5 2],[r 3,5 3]...., [[r] (n-1);s (n-
1)],1) is hamilton-connected.
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