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Abstract. We define a Pupa graph 𝑃𝑃(𝑘, [𝑟!, 𝑠!], [𝑟", 𝑠"], 
… , [𝑟#$%, 𝑠#$%], 𝑙) which is a cubic 3-connected plane 
graph. In this paper, we show that a Pupa graph is 
hamilton-connected if  𝑛 ≥ 2, both k and l are even,  𝑟& 
is odd, and 𝑠& = 0 for every  𝑖 ∈ {2, 3, . . . , 𝑛 − 1}. 
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1. Introduction 
 
Let  𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple undirected 
graph, and 𝑝, 𝑞	 ∈ 	𝑉(𝐺). A path from p to q is 
denoted by 𝑝𝑞 − 𝑝𝑎𝑡ℎ .  A hamilton path 
(respectively, A hamilton cycle) is a path 
(respectively, a cycle) passing through all 
vertices of 𝐺 .  Note that A hamilton  𝑝𝑞	 −
	𝑝𝑎𝑡ℎ is a hamilton path from p to q.  A graph 
𝐺  is hamiltonian if 𝐺  has a hamilton cycle. 
Moreover, 𝐺 is hamilton-connected if for every 
𝑝, 𝑞	 ∈ 	𝑉(𝐺), there is a hamilton  𝑝𝑞	 − 	𝑝𝑎𝑡ℎ. 
Note that a hamilton-connected graph is a 
hamiltonian graph. A degree of a vertex 𝑢 , 
denoted by deg 𝑢,   is a number of edges that 
have 𝑢 as an endvertex.  A graph is cubic if all 
vertices have degree three. A graph 𝐺  is 3-
connected if for any 𝑢, 𝑣	 ∈ 	𝑉(𝐺),  𝐺 − {𝑢, 𝑣} 
is connected.  

A hamiltonian problem is a well-known 
problem in graph theory that applies to 
computer graphics and logistics. Tait (Tait 
1884) conjectured that a cubic 3-connected 
graph is hamiltonian.  Later, Tutte (Tutte 1946) 
disproved this by showing a nonhamiltonian 
cubic 3-connected plane graph called Tutte 
graph. However, there is open problems about 
cubic   3-connected plane graphs such that 
Barnette’s conjecture (Barnette 1969): a cubic                
3-connected bipartite graph is hamiltonian. In 

this paper, we show a family of 3-connected 
cubic plane graph that is a hamilton-connected. 

A leaf is a vertex of degree 1. Let CP be a 
Caterpillar graph embedded on a plane. A 
spine S of a caterpillar CP is CP - X where X is 
a set of all leaves of CP. Note that S is a path 
with vertices 𝑣!, 𝑣", . . . , 𝑣# . Assume that a 
caterpillar CP has no vertex of degree two and 
its spine S has at least two vertices.  A Pupa 
graph PP is a plane graph obtained from a 
Caterpillar graph CP with its spine S by  

(1)  construct the outer cycle passing through 
all leaves of CP, and  
 
(2)  for each 𝑣$ ∈ 𝑉(𝑆), replacing it by a cycle 
𝐷$ of size deg 𝑣$.  
 
By this construction, all vertices of PP have 
degree three and removing any two vertices 
from PP, the remaining graph is still connected. 
Then PP is a cubic 3-connected plane graph 
and cycles 𝐷!, 𝐷", …, and  𝐷#  corresponding 
to vertices 𝑣! , 𝑣" , …, and, 𝑣# , respectively.  
Define a Head graph 𝐻! (respectively, 𝐻#) as a 
graph induced by all vertices of 𝐷! 
(respectively,  𝐷# ) and all neighbors of 𝐷! 
(respectively, 𝐷#) in the outer cycle.  

Moreover, for 𝑖 ∈ {2, 3, . . . , 𝑛	 − 1},  a Body 
graph 𝐵$  is a graph induced by all vertices of 𝐷$  
and all neighbors of 𝐷$  in the outer cycle. 

For 𝑛 ≥ 2,  we let a Pupa graph 𝑃𝑃 =
𝑃𝑃(𝑘, [𝑟", 𝑠"], [𝑟%, 𝑠%], . . . , [𝑟#&!, 𝑠#&!], 𝑙) 
where 𝑘, 𝑙, 𝑟", 𝑟%, . . .,  𝑟9:;, 	𝑠<, 𝑠=, . . . , 𝑠9:; 
are nonnegative integer. Note that 𝑘 ≥ 2, 𝑙	 ≥
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	2, and  𝑟$ + 𝑠$ 	≥ 1. We label all vertices of PP 
as in Figure 2. 
 

From this labeling, we have 𝑉(𝐷!) =
{𝑦!, 𝑎G!, 𝑎G", . . . , 𝑎G'} and 𝑉(𝐷#) =
{𝑥#, 𝑏G!, 𝑏G", . . . , 𝑏G(}. Then |𝑉(𝐷!)| = 𝑘 + 1 and 
|𝑉(𝐷#)| = 𝑙 + 1 . Note that for  𝑖 ∈
{1, 2, . . . , 𝑛 − 1}, an edge 𝑦$𝑥$)! joins between 
𝐷$  and 𝐷$)!.  For each cycle 𝐷$	, 𝑖 ∈ {2, . . . , 𝑛 −
1},  a path  𝑃!$ from 𝑥$  to 𝑦$  in clockwise 
direction passing through 𝑢G!$ , 𝑢G"$ , . . . , 𝑢G+'

$  and  a 

path  𝑃"$  from 𝑦$  to 𝑥$  in clockwise direction 
passing through 𝑤L!$ , 𝑤L"$ , . . . , 𝑤L,'

$ . Then 𝑟$ =
|𝑉(𝑃!$)| and 𝑠$ = |𝑉(𝑃"$)|.  Note that  𝑟> and 𝑠> 
represent the number of vertices on 𝐷$  which 
has a neighbor in upper side and lower side of 
the outer cycle, respectively.  Note that 
|𝑉(𝐷$)| = 𝑟$ + 𝑠$ + 2  for all 	𝑖 ∈ {2, . . . , 𝑛 −
1} . Moreover, for each  𝑥̅ 	 ∈ 𝑉(𝐷$)  , its 
neighbor in outer cycle is  𝑥 . We show 
examples of Pupa graphs that |𝑉(𝐷$)| is even 
for some  𝑖 ∈ {1, 2, . . . , 𝑛} , and there is no 
hamilton xy-path as in Figure 3 

 

 
Figure 1. An example of a Pupa graph obtained from a caterpillar graph. 

 

 
Figure 2. A Pupa graph 𝑃𝑃(𝑘, [𝑟!, 𝑠!], [𝑟", 𝑠"], . . . , [𝑟#$%, 𝑠#$%], 𝑙). 
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Figure 3. Pupa graphs  𝑃𝑃(2, 5) and   𝑃𝑃(3, [2,2],3) have no hamilton xy-path. 

 
Then we assume that  |𝑉(𝐷$)| is odd for every  
𝑖 ∈ {1, 2, . . . , 𝑛} . Note that both 𝑘  and 𝑙  are 
even, and  𝑟$ + 𝑠$  is odd for every 𝑖 ∈
{2, 3, . . . , 𝑛 − 1}. Furthermore, we also assume 
that 𝑠$ = 0  for every  𝑖 ∈ {2, 3, . . . , 𝑛 − 1} . 
Then the main result of this paper is as follows. 
 
Theorem 1.1: For every natural number 𝑛 ≥ 2,  
even natural numbers k, l, and odd natural 
numbers 𝑟", 𝑟%, . . . , 𝑟#&!,  a Pupa graph 
𝑃𝑃(𝑘, [𝑟", 0], [𝑟%, 0], . . . , [𝑟#&!, 0], 𝑙)is hamilton-
connected. 
 
We prove Theorem 1.1 for the case that 𝑛 = 2 
and 𝑛 ≥ 3  in Theorem 2.4, and Theorem 4.6, 
respectively.  
 
2. Head graph 

We recall a Head graph H as in figure 4. 
 
Note that if 𝐻	 = 	𝐻! (respectively 𝐻 = 𝐻#), 
then 𝑚 = 𝑘 and  𝑧 = 𝑦! (respectively, 𝑚 = 𝑙 
and 𝑧 = 𝑥- ). We also let 𝑍.// =
{𝑐!, 𝑐%, 𝑐0, . . . , 𝑐-&!}, 𝑍121# =
{𝑐", 𝑐3, 𝑐4, . . . , 𝑐-},		 
 
𝑍̅.// = {𝑐!̅, 𝑐%̅, 𝑐0̅, . . . , 𝑐-̅&!}  and 𝑍̅121# =
{𝑐"̅, 𝑐3̅, 𝑐4̅, . . . , 𝑐-̅} . We generate all possible 

cases and then get hamilton paths on a Head 
graph as follows. 
 
Lemma 2.1: Let 𝐻 be a Head graph and 𝑝 ∈
𝑉(𝐻). Then   
 
(1) if 𝑝 ≠ 𝑧, then there is a hamilton 𝑝𝑧 −path,   
 
(2) if  𝑝 ∈ 𝑍.// ∪ 𝑍̅121# , then there is a 
hamilton 𝑝c- −path, and 
 
(3) if 𝑝 ∈ 𝑍121# ∪ 𝑍̅.// , then there is a 
hamilton 𝑝c! −path. 
 

 

Figure 4. A Head graph H. 
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Figure 5. Examples of paths in Lemma 2.1 (1), (2), and (3) in the first row, the second row, and the third row, 
respectively. 

 
Next, we construct two disjoint paths, S and T, 
and show that  𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐻),  and 
𝑉(𝑆) ∩ 𝑉(𝑇) = ∅ in the following lemmas.  
 
Lemma 2.2: Let  𝑝, 𝑞 ∈ 𝑉(𝐻), 𝑝 ≠ 𝑞 . Then 
there is a  𝑝𝑝′ −path S and a 𝑞𝑞′ − 𝑝𝑎𝑡ℎ  T, 
such that  𝑝′, 𝑞′ ∈ {𝑧, 𝑐!, 𝑐-}, 𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐻), and 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅.  
 
Lemma 2.3: Let  𝑝 ∈ 𝑉(𝐻) − {𝑧}. Then there 
are paths S and T such that  	𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐻), and 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅ as follows. 
 
(1) if 𝑝 = 𝑐$ ∈ 𝑍.//, then S is a  𝑝𝑐! −path 
and T is a 𝑧𝑐- − 𝑝𝑎𝑡ℎ, 
 
(2) if 𝑝 = 𝑐$ ∈ 𝑍121#	, then S is a  𝑝𝑐# −path 
and T is a 𝑧𝑐! − 𝑝𝑎𝑡ℎ, and 
 
(3) if  𝑝 = 𝑐$̅ ∈ 𝑍̅.// ∪ 𝑍̅121#, then S is a 
𝑝𝑧 −path and T is a  𝑐!𝑐- − 𝑝𝑎𝑡ℎ.  
 
For a case that 𝑛 = 2 , a Pupa graph 𝑃𝑃 =
𝑃𝑃(𝑘, 𝑙) has no a Body graph. Then we show 
the first part of main theorem as follows.  

Theorem 2.4: For every even natural numbers 
𝑘 and 𝑙, a pupa graph 𝑃𝑃(𝑘, 𝑙) is hamilton-
connected. 
Proof Let 𝑝, 𝑞 be distinct vertices of a Pupa 
graph PP. We will show a hamilton 𝑝𝑞 −path 
𝑃5 in the following cases.   
 
Case 1: both 𝑝 and 	𝑞 are in 𝑉(𝐻!). 
(respectively, 𝑉(𝐻") ) 
By symmetry, we will show only the case that  
𝑝, 𝑞 ∈ 𝑉(𝐻!) .  From Lemma 2.2, there is a  
𝑝𝑢 −path S and a 𝑞𝑣 −  path T such that  𝑢, 𝑣 ∈
{𝑦!, 𝑎!, 𝑎'}, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐻!),  and 
𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then we have the following 
subcases. 
 Subcase 1.1:  𝑢 = 𝑦! and 𝑣 = 𝑎!. 

From Lemma 2.1(1), there is a 
hamilton 𝑏(𝑥" − path  𝑀 in 𝐻". Then 
 𝑃5 ∶ 	𝑝𝑆𝑦!, 𝑥"𝑀𝑏( , 𝑎!𝑇𝑞. 
  Subcase 1.2:  𝑢 = 𝑦! and 𝑣 = 𝑎'. 

From Lemma 2.1(1), there is a 
hamilton 𝑏!𝑥" − path  𝑀 in 𝐻". Then  

𝑃5 ∶ 	𝑝𝑆𝑦!, 𝑥"𝑀𝑏!, 𝑎'𝑇𝑞. 
Subcase 1.3:  𝑢 = 𝑎! and 𝑣 = 𝑎'. 
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From Lemma 2.1(2), there is a hamilton 𝑏!𝑏( − 
path  𝑀 in 𝐻". Then  𝑃5 ∶ 	𝑝𝑆𝑎!, 𝑏(𝑀𝑏!, 𝑎'𝑇𝑞. 
 
Case 2:  𝑝 ∈ 𝑉(𝐻!) and   𝑞 ∈ 𝑉(𝐻"). Define 
subsets of 𝑉(𝐻!)  𝑍!.//,  𝑍!121#, 𝑍̅!.// 	, 𝑍̅!121# in 
the same way as   𝑍.//,  𝑍121#, 𝑍̅.// 	, 𝑍̅121#. 
Note that 𝑉(𝐻!) = {𝑦!} ∪ 𝑍!.// ∪ 𝑍!121# ∪  
𝑍̅!.// ∪	𝑍̅!121#. Similary, 𝑍2.// 	, 𝑍2121#, 𝑍̅2.// 

and    𝑍̅2121#  are defined as subsets of 𝑉(𝐻"). 

Note that 𝑉(𝐻") = {𝑥"} ∪ 𝑍".// ∪ 𝑍"121# ∪  
𝑍̅".// ∪	𝑍̅"121#. Then we have the following 
subcases.  
 
Subcase 2.1:   𝑝 ≠ 𝑦! and 𝑞 ≠ 𝑥". From 
Lemma 2.1(1), there is a hamilton 𝑝𝑦! − path  
𝑀 in 𝐻! , and there is a hamilton 𝑞𝑥" − path  
𝑁 in 𝐻" . Then 𝑃5 ∶ 	𝑝𝑀𝑦!, 𝑥"𝑁𝑞. Subcase 

2.2:  𝑝 ∈ 𝑍!.// ∪	𝑍̅!121#  and  𝑞 = 𝑥" 
(respectively,  𝑝 = 𝑦! and 𝑞 ∈ 𝑍".// ∪	𝑍̅"121# ). 
 
By symmetry, we will show only the case that  
𝑝 ∈ 𝑍!.// ∪	𝑍̅!121#  and  𝑞 = 𝑥". From Lemma 
2.1(2), there is a hamilton 𝑝𝑎' − path  𝑀 in 
𝐻!  and from Lemma 2.1(1), there is a hamilton 
𝑥"𝑏! −  path  𝑁 in 𝐻"  . Then 𝑃5 ∶
	𝑝𝑀𝑎' , 𝑏!𝑁𝑥" . Subcase 2.3: 𝑝 ∈ {𝑦!} 	∪
	𝑍!121# ∪	𝑍̅!.//   and  𝑞 = 𝑥"  (respectively,  
𝑝 = 𝑦! and 𝑞 ∈ {𝑥"} 	∪ 𝑍"121# ∪	𝑍̅".//). 
 
By symmetry, we will show only the case that  
𝑝 ∈ 𝑍!.// ∪	𝑍̅!121#  and  𝑞 = 𝑥". 
 
From Lemma 2.1(1, 3), there is a hamilton 
𝑝𝑎! − path  𝑀 in 𝐻! and from Lemma 2.1(1), 
there is a hamilton 𝑥"𝑏( − path  𝑁 in 𝐻" . Then  
𝑃5 ∶ 	𝑝𝑀𝑎!, 𝑏(𝑁𝑥". 

 

 

Figure 6. Examples of paths S and T in Lemma 2.2. 

 

 

Figure 7. Examples of hamilton 𝑝𝑞 −paths of PP(8, 6) in subcase 1.2 and 1.3 of Theorem 2.4. 
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Figure 8. Examples of  hamilton 𝑝𝑞 −paths of PP(8, 6) in subcase 2.1 and 2.3 in Theorem 2.4. 

 

3. Body graph 

Recall a Body graph B of  𝑃𝑃(𝑘, [𝑟", 0], [𝑟%, 0], 
. . . , [𝑟#&!, 0], 𝑙) as in Figure 9. 
 
Note that if 𝐵	 = 	𝐵$ for 𝑖	 ∈ {2, 3, . . . , 𝑛 − 1}, 
then 𝑚		 = 	 𝑟$  and  𝐷	 = 	𝐷$.  We also let   
𝑈.// = {𝑢!, 𝑢%, 𝑢0, . . . , 𝑢-&!}, 𝑈121# =
{𝑢", 𝑢3, 𝑢4, . . . , 𝑢-}, 𝑈L.// =
{𝑢G!, 𝑢G%, 𝑢G0, . . . , 𝑢G-&!}   and   𝑈L121# =
{𝑢G", 𝑢G3, 𝑢G4, . . . , 𝑢G-} . We generate all possible 
cases and then get hamilton paths on a Body 
graph as follows. 
 
Lemma 3.1: Let B be a Body graph. If 𝑝 ∈
{𝑥, 𝑦} 	∪ 	𝑈.// ∪ 𝑈L121# and 𝑞 ∈
{𝑥, 𝑦, 𝑢!, 𝑢-} − {𝑝}, then there is a hamilton 
𝑝𝑞 −path. 
 
Next, we construct two disjoint paths, S and T, 
and show that  𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵), and 
𝑉(𝑆) ∩ 𝑉(𝑇) = ∅ in the following lemmas.  
 
Lemma 3: There are paths S and T such that  
	𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵), and 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅ 
as follows. 
 
(1) If 𝑝 ∈ 𝑈.// ∪	𝑈L121#	  , then S is a  𝑝𝑝! −
	path and T is a 𝑦𝑝" − 𝑝𝑎𝑡ℎ,  
 
where {𝑝!, 𝑝"} = {𝑢!, 𝑥} (respectively, S is a  
𝑝𝑝! − path and T is a 𝑥𝑝" − 𝑝𝑎𝑡ℎ, where 
{𝑝!, 𝑝"} = {𝑢-, 𝑦} ). 

(2) If 𝑝 ∈ 𝑈121# ∪	𝑈L.// 	   , then S is a  
𝑝𝑝! −path and T is a 𝑢-𝑝" − 𝑝𝑎𝑡ℎ, 
 
where  {𝑝!, 𝑝"} = {𝑢!, 𝑥}  (respectively, S is a  
𝑝𝑝! −path and T is a 𝑢!𝑝" − 𝑝𝑎𝑡ℎ,  where 
{𝑝!, 𝑝"} = {𝑢-, 𝑦} ). 
 
(3) 𝑆 = {𝑥}  and T is a 𝑢!𝑦 − 𝑝𝑎𝑡ℎ 
(respectively, 𝑆 = {𝑦} and T is a 𝑢-𝑥 − 𝑝𝑎𝑡ℎ). 
 
(4) S is a  𝑥𝑦 −path and T is a 𝑢!𝑢- − 𝑝𝑎𝑡ℎ. 

 
Lemma 3.3: Let B be a Body graph and  
𝑝, 𝑝′, 𝑞, 𝑞′	 ∈ 𝑉(𝐵). Then there are paths S and 
T such that  	𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵), and 
𝑉(𝑆) ∩ 𝑉(𝑇) = ∅ as follows. 
 
(1) If 𝑝 = 𝑥 and  𝑞 = 𝑦, then 𝑆 = {𝑥} and T is 
a 𝑦𝑢- − 𝑝𝑎𝑡ℎ.  
 
(2) If 𝑝 ∈ {𝑥, 𝑦}	 and  𝑞 ∈ 𝑈.// ∪	𝑈L121#, then 
𝑆 = {𝑝} and T is a 𝑞𝑞′ − path  
where 𝑞′ ∈ {𝑥, 𝑦} − {𝑝}. 
  
(3) If 𝑝 ∈ {𝑥, 𝑦}	 and  𝑞 ∈ 𝑈121# ∪	𝑈L.//, then 
𝑆: 𝑥, 𝑦 and T is a 𝑞𝑢! − path . 
 
(4) If 𝑝, 𝑞 ∈ 𝑈.// ∪	𝑈L121# , then S is a 
𝑝𝑝′ −path and T is a 𝑞𝑞′ −path  
where {𝑝′, 𝑞′} = {𝑥, 𝑦}.  
 
(5) If 𝑝 ∈ 𝑈.// ∪	𝑈L121#  and 𝑞 ∈ 𝑈121# ∪
	𝑈L.//  , then S is a 𝑝𝑝′ − path and  T is a 
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𝑞𝑞′ − path where 𝑧! ∈ {𝑥, 𝑢!},  𝑧" ∈ {𝑦, 𝑢-}	, 
	and {𝑝′, 𝑞′} = {𝑧!, 𝑧"}. 
 
Finally, we also construct two disjoint paths, S 
and T, but 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐻) − {𝑥, 𝑦} in 
the following. 
  
Lemma 3.3:  Let B be a Body graph and  𝑝, 𝑞	 ∈
𝑈121# ∪	𝑈L.//. Then there are a 𝑝𝑝′ −path and 
a 𝑞𝑞′ − path T such that 	{𝑝′, 𝑞′} = {𝑢!, 𝑢-},  
𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵) − {𝑥, 𝑦},  and 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. 
 
4. Proof of Main result 
 
To prove Theorem 1.1 for the case that 𝑛 ≥ 3, 
we split that theorem into five lemmas 
depending on hamilton 𝑝𝑞 −  path 𝑃5  as 
follows.  

(i) 𝑝, 𝑞	 ∈ 𝑉(𝐻! ∪ 𝐻") in Lemma 4.1. 
 (ii) 𝑝	 ∈ 𝑉(𝑈$) and  𝑞	 ∈ 𝑉(𝑈6) , 𝑖 ≠ 𝑗,  
in Lemma 4.2. 
 (iii) 𝑝, 𝑞	 ∈ 𝑉(𝑈$)  in Lemma 4.3. 

(iv) 𝑛 is odd, 𝑝	 ∈ 𝑉(𝐻! ∪ 𝐻"), and 
𝑞	 ∈ 𝑉(𝑈$) in Lemma 4.4. 

(v) 𝑛 is even, 𝑝	 ∈ 𝑉(𝐻! ∪ 𝐻") and 
𝑞	 ∈ 𝑉(𝑈$) in Lemma 4.5. 

 
Next, let 𝐵$  be a Body graph for i ∈

{2, 3, . . . , n − 1}, by using Lemma 3.1,  𝐵$ have 
a hamilton 𝑥$𝑢+'

$ − path 𝑋$ ,  and  a hamilton 
𝑦$𝑢!$ − path 𝑌$.  Moreover,  from lemma 3.2(1),   
𝐵$ have an 𝑥$𝑦$ − path 𝐷$∗ and  a 𝑢!$𝑢+'

$ − 	path 
𝑃$∗  such that 	𝑉(𝐷$∗) ∪ 𝑉(𝑃$∗) = 𝑉(𝐵$),  and 
𝑉(𝐷$∗) ∩ 𝑉(𝑃$∗) = ∅.  Then we will use these 
paths in the following lemmas.  
 
Lemma 4.1: Let 𝑛 ≥ 3 and a Pupa graph 𝑃𝑃 =
𝑃𝑃(𝑘, [𝑟", 0], . . . , [𝑟#&!, 0], 𝑙) . If 𝑝, 𝑞	 ∈
𝑉(𝐻!) ∪ 𝑉(𝐻8), then there is a hamilton 𝑝𝑞 − 
path in 𝑃𝑃. 
Proof We will show a hamilton 𝑝𝑞 −path 𝑃5 
in the following cases.  
 
Case 1:  𝑝, 𝑞 ∈ 𝑉(𝐻!) (respectively, 𝑝, 𝑞 ∈
𝑉(𝐻#) ).   

By symmetry, we will show only the case that  
𝑝, 𝑞 ∈ 𝑉(𝐻!) .  From Lemma 2.2, there is a  
𝑝𝑢 −path S and a 𝑞𝑣 −  path T, such that  𝑢, 𝑣 ∈
{𝑦!, 𝑎!, 𝑎'}, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐻!), and 𝑉(𝑆) 
∩ 𝑉(𝑇) = ∅ . Then we have the following 
subcases. 
 
Subcase 1.1:  𝑢 = 𝑦! and 𝑣 = 𝑎!. 

- For 𝑛 is odd, from Lemma 2.1(2), 
there is a hamilton 𝑏!𝑏( − path  𝑀 in 𝐻#. Then 
	𝑃5 ∶ 	𝑝𝑆𝑦!, 𝑋"	, 𝑌%, 𝑋3, . . . , 𝑋#&!, 𝑏!𝑀𝑏( , 𝑎!𝑇𝑞. 

- For 𝑛 is even, from Lemma 2.1 (1), 
there is a hamilton 𝑥#𝑏( − path  𝑀 in 𝐻#.  

Then 	𝑃5 ∶
	𝑝𝑆𝑦!, 𝑋"	, 𝑌%, 𝑋3, . . . , 𝑌#&!, 𝑥#𝑀𝑏( , 𝑎!𝑇𝑞. 
  
Subcase 1.2:  𝑢 = 𝑦! and 𝑣 = 𝑎'. 
From Lemma 2.1(1), there is a hamilton 
𝑏!𝑥# − path  𝑀 in 𝐻#. Then   𝑃5 ∶ 	𝑝𝑆𝑦!, 
𝐷"∗, 𝐷%∗, … , 𝐷#&!∗ , 𝑥#𝑀𝑏!, 𝑃#&!∗ , 𝑃#&"∗ , 
	. . . , 𝑃"∗, 𝑎'𝑇𝑞.  Subcase 1.3:  𝑢 = 𝑎! and 𝑣 =
𝑎'. 

- For 𝑛 is odd, from Lemma  2.1(1), 
there is a hamilton 𝑥#𝑏( − path  𝑀 in 𝐻#.        
 Then  𝑃5 ∶
	𝑝𝑆𝑎!, 𝑏(𝑀𝑥#, 𝑌#&!	, 𝑋#&", 𝑌#&%, . . . , 𝑌", 𝑎'𝑇𝑞. 

- For 𝑛 is even, from Lemma 2.1(2), 
there is a hamilton 𝑏!𝑏( − path  𝑀 in 𝐻#.      
 Then  𝑃5 ∶
	𝑝𝑆𝑎!, 𝑏(𝑀𝑏!, 𝑋#&!	, 𝑌#&", 𝑋#&%, . . . , 𝑋", 𝑎'𝑇𝑞. 

 
Case 2:   𝑝 ∈ 𝑉(𝐻!) and  𝑞 ∈ 𝑉(𝐻#) 
(respectively,  𝑝 ∈ 𝑉(𝐻#) and  𝑞 ∈ 𝑉(𝐻!) ).   
By symmetry, we will show only the case that 
𝑝 ∈ 𝑉(𝐻!) and  𝑞 ∈ 𝑉(𝐻#). Recall 
𝑍$.// 	, 𝑍$121#, 𝑍̅$.// และ    𝑍̅$121#   when 𝑖	 ∈
{1, 𝑛}. Then we have the following cases. 
 
Subcase 2.1:  n is odd, 𝑝 ≠ 𝑦! and 𝑞 ∈ {𝑥#} ∪
	𝑍#121# ∪	𝑍̅#.// 

- For 𝑛 is odd, from Lemma 2.1(1), 
there is a hamilton 𝑝𝑦! − path  𝑀 in 𝐻!, and 
from Lemma 2.1(1, 3), there is a hamilton 
𝑞𝑏! − path  𝑁 in 𝐻#. 

Then 	𝑃5 ∶
	𝑝𝑀𝑦!, 𝑋"	, 𝑌%, 𝑋3, . . . , 𝑋#&!, 𝑏!𝑁𝑞. 
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Figure 9. A Body graph B. 

 

Figure 10. Example of a hamilton 𝑝𝑞 − path in subcase 2.1 in Lemma 4.1. 

 
Subcase 2.2: n is odd, 𝑝 ∈ {𝑦!} 	∪ 	𝑍!.// ∪
	𝑍̅!121# and 𝑞 ≠ 𝑥#. 
 
From Lemma 2.1(1, 2), there is a hamilton 
𝑝𝑎' − path  𝑀 in 𝐻!, and from  
Lemma 2.1(1), there is a hamilton 𝑞𝑥# − path  
𝑁 in 𝐻#.  Then 
𝑃5 ∶ 	𝑝𝑀𝑎' , 𝑌"	, 𝑋%, 𝑌3, . . . , 𝑌#&!𝑥#𝑁𝑞.	 
 
Subcase 2.3: n is odd, 𝑝 ∈ {𝑦!} 	∪ 	𝑍!121# ∪
	𝑍̅!.// and  𝑞 ∈ {𝑥#} ∪	𝑍#.// ∪	𝑍̅#121#. 
 
From Lemma  2.2 and 2.3(2, 3), there is a  
𝑝𝑝! − path S and a 𝑝"𝑎! − path T, such that  
{𝑝!, 𝑝"} = {𝑦!, 𝑎'}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐻!), 
and 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. 
From  Lemma 2.1(1, 2), there is a hamilton 
𝑞𝑏( − path  𝑁 in 𝐻#. By Lemma 3.1, there is a 

hamilton 𝑥#&!𝑢G!#&! − path 𝐾 in 𝐵#&!. If  𝑝! = 
𝑦! , then  𝑃5 ∶ 	𝑝𝑆𝑦!, 𝑥", 𝐷"∗	, 𝐷%∗, . . ., 
	𝐷#&"∗ , 𝐾, 𝑃#&"∗ , 𝑃#&"∗ , . . . , 𝑃"∗, 𝑢!", 𝑎'𝑇𝑎!, 𝑏(𝑁𝑞 

 
Otherwise,  𝑃5 ∶
	𝑞𝑆𝑏( , 𝑎!𝑇𝑦!, 𝑥", 𝐷"∗	, 𝐷%∗, . . . , 𝐷#&"∗ , 𝐾, 𝑃#&"∗ ,
𝑃#&"∗ , . . . , 𝑃"∗, 𝑢!", 𝑎'𝑆𝑝. 
 
Subcase 2.4: n is even,  𝑝 ≠ 𝑦! and 𝑞 ≠ 𝑥#. 
From Lemma 2.1(1), there is a hamilton 𝑝𝑦! − 
path  𝑀 in 𝐻!, and there is a hamilton 𝑞𝑥# − 
path  𝑁 in 𝐻#. Then 	𝑃5 ∶
	𝑝𝑀𝑦!, 𝑋"	, 𝑌%, 𝑋3, . . . , 𝑌#&!, 𝑥#𝑁𝑞.  
 
Subcase 2.5: n is even,  𝑝 ∈ 𝑍!.// ∪	𝑍̅!121#  
and  𝑞 = 𝑥# (respectively, 𝑝 = 𝑦! and         
𝑞 ∈ 𝑍#.// ∪	𝑍̅#121#). By symmetry, we will 
show only the case that 𝑝 ∈ 𝑍!.// ∪	𝑍̅!121#  
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and  𝑞 = 𝑥# . From  Lemma 2.1(2), there is a 
hamilton 𝑝𝑎' − path  𝑀 in 𝐻!, and from 
Lemma 2.1(1), there is a hamilton 𝑏!𝑥# − path 
𝑁 in 𝐻#. Then 
𝑃5:	𝑝𝑀𝑎' , 𝑌"	, 𝑋%, 𝑌3, . . . , 𝑋#&!, 𝑏!𝑁𝑥#. 
 
Subcase 2.6: n is even, 𝑝 ∈ {𝑦!} 	∪ 	𝑍!121# ∪
	𝑍̅!.// and  𝑞 = 𝑥# (respectively, 𝑝 = 𝑦! and 
𝑞 ∈ {𝑥#} 	∪ 𝑍"121# ∪	𝑍̅".// ). By symmetry, we 
will show only the case that 𝑝 ∈ {𝑦!} 	∪
	𝑍!121# ∪	𝑍̅!.// and  𝑞 = 𝑥#.From Lemma  2.2 
and 2.3(2, 3), there is a  𝑝𝑝! − path S and a 
𝑝"𝑎! − path T, such  that  {𝑝!, 𝑝"} =
{𝑦!, 𝑎'}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐻!), and 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. From Lemma 2.1(1, 2), there is a 
hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. By Lemma 
3.1, there is a  hamilton  𝑥#&!𝑢G!#&! − path 𝐾 
in 𝐵#&!. If  𝑝! = 𝑦! , then  𝑃5 ∶
	𝑝𝑆𝑦!, 𝑥", 𝐷"∗	, 𝐷%∗, . . . , 𝐷#&"∗ , 𝐾, 𝑃#&"∗ ,
𝑃#&"∗ , . . . , 𝑃"∗, 𝑢!", 𝑎'𝑇𝑎!, 𝑏(𝑁𝑞𝑥#. Otherwise, 
𝑃5 ∶ 	 𝑥#𝑆𝑏( , 𝑎!𝑇𝑦!, 𝑥", 𝐷"∗	, 𝐷%∗, . . . , 𝐷#&"∗ ,
𝐾, 𝑃#&"∗ , 𝑃#&"∗ , . . . , 𝑃"∗, 𝑢!", 𝑎'𝑆𝑝. 
 
Lemma 4.2: Let 𝑛 ≥ 4  and a Pupa graph  
𝑃𝑃 = 𝑃𝑃(𝑘, [𝑟", 0], . . . , [𝑟#&!, 0], 𝑙) . If  𝑝 ∈
𝑉(𝑈$) and 𝑞 ∈ 𝑉(𝐵6), 2 ≤ 𝑖 < j ≤ 𝑛 − 1  then 
there is a hamilton 𝑝𝑞 − path in 𝑃𝑃. 
 
Proof We will use Lemma 3.2 to construct 
paths 𝑆9, 𝑆6 , 𝑇$ , 𝑇$ and then use them to construct 
a hamilton path 𝑃5 as follows. 
 
(1) There is an  𝑝𝑝! −path 𝑆$ and a 𝑝"𝑝′ −  
path 𝑇$, such that  {𝑝!, 𝑝"} = {𝑢+'

$ 	, 𝑦$}, 𝑉(𝑆$) ∪
𝑉(𝑇$) = 𝑉(𝐵$), 𝑉(𝑆$) ∩ 𝑉(𝑇$) = ∅, and   

𝑝′ = o
𝑥$ 	, 𝑝 ∈ 	 {𝑦$} ∪ 𝑈$.// ∪	𝑈L$121#

𝑢!$ 	, 𝑝 ∈ 	 {𝑥$} ∪ 𝑈$121# ∪	𝑈L$.//
 

 
(2) There is an  q𝑞! −path 𝑆6 and a 𝑞"𝑞′ −  
path 𝑇6, such that  {𝑞!, 𝑞"} = {𝑢!

6 	, 𝑥6}, 𝑉(𝑆$) ∪
𝑉(𝑇$) = 𝑉(𝐵$), 𝑉(𝑆$) ∩ 𝑉(𝑇$) = ∅, and     

𝑞′ = q
𝑦6 	, 𝑞 ∈ 	 {𝑥6} ∪ 𝑈6.// ∪	𝑈L6121#

𝑢+(
6 	, 𝑞 ∈ 	 {𝑦6} ∪ 𝑈6121# ∪	𝑈L6.//

 

Next, we construct paths 𝑃′ ∶
	𝑢+'
$ , 𝑢!$)!, 𝑢G!$)!, 𝑥$)!, 𝑦$ and 𝑄′ ∶

	𝑢!
6 , 𝑃6&!∗ , 𝑃6&"∗ , . . . , 𝑃$)"∗ , 𝑢+')*

$)! 𝑃$)!∗ 𝑢"$)!, 𝑢G"$)! 
𝐷$)!∗ 𝑢G+')*

$)! , 𝑦$)!, 𝐷$)!∗ , 𝐷$)"∗ , . . . , 𝐷6&!∗ , 𝑥6 		. 
 
 
Then we have a path 𝑃′′ ∶ 	𝑝𝑆$𝑝!, 𝑃′, 𝑝"𝑇$𝑝′ 
and 𝑄′′ ∶ 	𝑞𝑆6𝑞!, 𝑄′, 𝑞"𝑇6𝑞′ . 
 
Let 	𝑝′′ ∈ {𝑎' , 𝑦!} ⊆ 𝑉(𝐻!) . Define a path  
𝑃(𝑝′, 𝑝′′) as one of the following paths 
depending on vertices 𝑝′, 𝑝′′ and integer i : 
	𝑝′, 𝑌$&!, 𝑋$&", 𝑌$&!, . . . , 𝑌", 𝑝′′ ,  
	𝑝′, 𝑌$&!, 𝑋$&", 𝑌$&!, . . . , 𝑋", 𝑝′′ ,  
𝑝′, 𝑋$&!, 𝑌$&", 𝑋$&!, . . . , 𝑌", 𝑝′′  , or 
	𝑝′, 𝑋$&!, 𝑌$&", 𝑋$&!, . . . , 𝑋", 𝑝′′. Moreover, we 
give the following.      
- if i is odd, then 𝑃(𝑥$ , 𝑝′′) = 𝑃(𝑥$ , 𝑎')  and  
𝑃(𝑢!$ , 𝑝′′) = 𝑃(𝑢!$ , 𝑦!). 
- if i is even, then  𝑃(𝑥$ , 𝑝′′) = 𝑃(𝑥$ , 𝑦!)  and 
𝑃(𝑥$ , 𝑝′′) = 𝑃(𝑢!$ , 𝑎'). 
 
Similarly, let 	𝑞′′ ∈ {𝑏!, 𝑥#} ⊆ 𝑉(𝐻#)  . Define 
a path  𝑄(𝑞′, 𝑞′′) as one of the following paths 
depending on vertices 𝑝′, 𝑝′′ and integer j,n : 
	𝑞′, 𝑌6)!, 𝑋6)", 𝑌6)%, . . . , 𝑌#&!, 𝑞′′ ,  
	𝑞′, 𝑌6)!, 𝑋6)", 𝑌6)%, . . . , 𝑋#&!, 𝑞′′ ,  
𝑞′, 𝑋6)!, 𝑌6)", 𝑋6)%, . . . , 𝑌#&!, 𝑞′′  , or 
	𝑞′, 𝑋6)!, 𝑌6)", 𝑋6)%, . . . , 𝑋#&!, 𝑞′′. Moreover, 
we give the following.      
- if j, n is odd (or even), then Q(y:, q′′) =
Q(y:, b!)  and  Q(u;+

: , q′′) = P(u;+
: , x8). 

- if j is odd and n is even (or j is even and n is 
odd), then  Q(y:, q′′) = Q(y:, x8)  and 
Q(u;+

: , q′′) = Q(u;+
: , b!). 

 
By Lemma 2.1, there is a hamilton p′′a! − 
path  M in H!, and, a hamilton q′′b< − path  N 
in H8. Combining all paths, we have P= ∶
	pP′′p′	, P(p′, p′′), p′′Ma!, b<Nq′′, Q(q′, q′′),
q′Q′′q 
 
Define subsets of V(B9)  U9>?? , U9@A@8 , 
UL9>??	, UL9@A@8 in the same way as   U>??,  U@A@8, 
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UL>??	, UL@A@8 . Note that V(B9) = {x9, y9} ∪
U9>?? ∪ U9@A@8 ∪  UL9>?? ∪	UL9@A@8. Then we show 
the following. 
 
Lemma 4.3 : Let n ≥ 3 and a Pupa graph 
PP = PP(k, [r", 0], . . . , [r8&!, 0], l). If  p, q ∈
V(B9), 2 ≤ i ≤ n − 1,  then there is a hamilton 
pq − path in PP. Proof We will show a 
hamilton pq −path P= in the following cases.  
 
Case 1: p, q ∉ U9@A@8 ∪	UL9>?? 
By Lemma 3.3, there is a  pp′ −path S and a 
qq′ −  path T, such that  V(S) ∪ V(T) = V(B9), 
V(S) ∩ V(T) = ∅,	 z! ∈ {x9, u!9 }, z" ∈ {y9, uB9 } 
and {p′, q′} = {z!, z"} .  Assume without the 
loss of generality that p′ = z! and q′ = z".  
Let 	p′′ ∈ {aC, y!} ⊆ V(H!) and q′′ ∈
{b!, x8} ⊆ V(H"). We define paths  P(p′, p′′) 
and  Q(q′, q′′) as in Lemma 4.2. 
 

By Lemma 2.1, there is a hamilton p′′a! − path  
M in H!, and, a hamilton q′′b< − path  N in H8. 
Combining all paths, we have   P= ∶
	pSp′	, P(p′, p′′), p′′Ma!, b<Nq′′, Q(q′, q′′),
q′Tq.	 
 
Case 2: 𝑝, 𝑞 ∈ 𝑈$121# ∪	𝑈L$.//  

By Lemma 3.3, there is a  𝑝𝑝′ −path S and a 
𝑞𝑞′ −  path T, such that  𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$) − {𝑥$ 	, 𝑦$}, 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅,	and 
	{𝑝′, 𝑞′} = {𝑢!$ , 𝑢-$ } .  Assume without the loss 
of generality that 𝑝′ = 𝑢!$  and 𝑞′ = 𝑢-$ .  

By Lemma 2.1, there is a hamilton 𝑦!𝑎' − 
path  𝑀 in 𝐻!, and, a hamilton 𝑥-𝑏! − path  𝑁 
in 𝐻#. Combining all paths, we have   𝑃5 ∶
	𝑝𝑆𝑢!$ , 𝑃$&!∗ , 𝑃$&"∗ , . . . , 𝑃"∗,
𝑎'𝑀𝑦!, 𝐷"∗, 𝐷%∗, . . . , 𝐷$&!∗ , 𝑥$ , 𝑦$ 	, 𝐷$)!∗ , 𝐷$)"∗ , . . . , 𝐷#&!∗  

𝑥#𝑁𝑏!	, 𝑃#&!∗ , 𝑃#&"∗ , . . . , 𝑃$)!∗ , 𝑢-$ 𝑇𝑞	. 

 

 

Figure  11.  Example of a hamilton 𝑝𝑞 − path in case 1 in Lemma 4.3. 

 

 

Figure 12. Example of a hamilton 𝑝𝑞 − path in case 2 in Lemma 4.3. 
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Lemma 4.4: Let 𝑛 ≥ 3  be odd and  𝑃𝑃 =
𝑃𝑃(𝑘, [𝑟", 0], . . . , [𝑟#&!, 0], 𝑙) . If 𝑝 ∈ 𝑉(𝐻!) ∪
𝑉(𝐻8)  and 𝑞 ∈ 𝑉(𝐵$), 2 ≤ 𝑖 ≤ 𝑛 − 1,   then 
there is a hamilton 𝑝𝑞 − path in 𝑃𝑃. 
 
Proof By symmetry, we will show only the case 
that 𝑝 ∈ 𝑉(𝐻!) . We will show a hamilton 
𝑝𝑞 −path 𝑃5 in the following cases. 
 
Case 1: i is odd. 
According to vertices of  𝐻! and B$ , we have 
the following subcases. 
 
Subcase 1.1: 𝑝 ∈ {𝑦!} ∪ 𝑍!.// ∪	𝑍̅!121#  and 
𝑞 ∈ {𝑦$} ∪ 𝑈$.// ∪	𝑈L$121#. By Lemma 2.1, 
there is a hamilton 𝑝𝑎' − path  𝑀 in 𝐻!, and, 
a hamilton 𝑥#𝑏! − path 𝑁 in 𝐻#. By Lemma 
3.2(1, 3), there is an  𝑞𝑝! −path 𝑆 and a 
𝑝"𝑥$ −  path 𝑇, such  that {𝑝!, 𝑝"} =
{𝑢+'

$ 	, 𝑦$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Moreover, we define a path 𝑄5 ∶
	𝑦$ , 𝐷$)!∗ , 𝐷$)"∗ , … , 𝐷#&!∗ , 𝑥#𝑁𝑏!, 𝑃#&!∗ , 𝑃#&"∗ , 
. . . , 𝐷$)!∗ , 𝑢+'

$ 		. Then  𝑃5 ∶
𝑝𝑀𝑎' , 𝑌", 𝑋%, 𝑌3, . . . , 𝑌$&!, 𝑥$𝑇𝑝", 𝑄5 , 𝑝!𝑆𝑞.	  
 
Subcase 1.2: 𝑝 ≠ 𝑦!  and 𝑞 ∈ {𝑥$} 	∪ 𝑈$121# ∪
	𝑈L$.//. By Lemma 2.1(1), there is a hamilton 
𝑝𝑦! − path  𝑀 in 𝐻!, and, a hamilton 𝑥#𝑏! − 
path  𝑁 in 𝐻#. By Lemma 3.2(2, 4),  there is 
an  𝑞𝑝! −path 𝑆 and a 𝑝"𝑢!$ −  path 𝑇, such 
that  {𝑝!, 𝑝"} = {𝑢+'

$ 	, 𝑦$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅.  We use a  path  𝑄5 
in subcase 1.1 and then  𝑃5 ∶
	𝑝𝑀𝑦!, 𝑋", 𝑌%, 𝑋3, . . . , 𝑋$&!, 𝑢!$𝑇𝑝", 𝑄5 , 𝑝!𝑆𝑞. 
 
Subcase 1.3: 𝑝 ∈ {𝑦!} ∪ 𝑍!121# ∪	𝑍̅!.//  and 
𝑞 ∈ {𝑦$} ∪ 𝑈$121# ∪	𝑈L$.//. By Lemma 2.1(1, 
3), there is a hamilton 𝑝𝑎! − path  𝑀 in 𝐻!, 
and, a hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢+'

$ −  path 𝑇, such that  {𝑝!, 𝑝"} =
{𝑢!$ 	, 𝑥$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Moreover, we define a path 
𝑄D5:	𝑥$ , 𝐷$&!

∗ , 𝐷$&"∗ , … , 𝐷%∗, 𝑦", 𝑥", 𝑢G!"𝐴̅"𝑢+,
" , 

𝑃%∗, 𝑃3∗, … , 𝐷$&!∗ , 𝑢!$ 	. Then 𝑃5 ∶
	𝑝𝑀𝑎!, 𝑏(𝑁𝑥#, 𝑌#&!, 𝑋#&", 𝑌#&%, … , 𝑌$)!, 
𝑢+'
$ 𝑇𝑝", 𝑄′5 , 𝑝!𝑆𝑞. 

 
Subcase 1.4: 𝑝 = 𝑦!  and  𝑞 = 𝑥$. By Lemma 
2.1(1, 2), there is a hamilton 𝑦!𝑎! − path  𝑀 
in 𝐻!, and, a hamilton 𝑏!𝑏( − path  𝑁 in 𝐻#. 
By Lemma 3.2(3), there is 𝑆 = {𝑥$} and a 
𝑦!𝑢!$ −  path 𝑇, such that 	𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅.  We use a path  𝑄D5 
in subcase 1.3 and then  𝑃5 ∶
	𝑦!𝑀𝑎!, 𝑏(𝑁𝑏!, 𝑋#&!, 𝑌#&", 𝑋#&%, … , 𝑋$)!, 𝑦$ 

𝑇𝑢!$ , 𝑄′5 , 𝑥$ 	. 
 
Case 2: i is even.  
We use 𝑄5 , 𝑄′5  defined in case 1 and have 
the following subcases. 
 
Subcase 2.1: 𝑝 ≠ 𝑦!  and 𝑞 ∈ {𝑦$} 	∪ 𝑈$.// ∪
	𝑈L$121#. By Lemma 2.1(1), there is a  hamilton 
𝑝𝑦! − path  𝑀 in 𝐻!, and a hamilton 𝑥#𝑏! − 
path  𝑁 in 𝐻#. By Lemma 3.2(1, 3),  there is 
an  𝑞𝑝! −path 𝑆 and a 𝑝"𝑥$ −  path 𝑇, such 
that {𝑝!, 𝑝"} = {𝑢+'

$ 	, 𝑦$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then 𝑃5 ∶
	𝑝𝑀𝑦!, 𝑋", 𝑌%, 𝑋3, . . . , 𝑌$&!, 𝑥$𝑇𝑝", 𝑄5 , 𝑝!𝑆𝑞.	 
 
Subcase 2.2: 𝑝 ∈ {𝑦!} ∪ 𝑍!.// ∪	𝑍̅!121#  and 
𝑞 ∈ {𝑥$} 	∪ 𝑈$121# ∪	𝑈L$.//. By Lemma  2.1(1, 
2), there is a hamilton 𝑝𝑎' − path  𝑀 in 𝐻!, 
and , a hamilton 𝑥#𝑏! − path  𝑁 in 𝐻#. By 
lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢!$ − path 𝑇, such that  {𝑝!, 𝑝"} =
{𝑢+'

$ 	, 𝑦$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Then  𝑃5 ∶
	𝑝𝑀𝑎' , 𝑌", 𝑋%, 𝑌3, . . . , 𝑋$&!, 𝑢!$𝑇𝑝", 𝑄5 , 𝑝!𝑆𝑞.	 
 
Subcase 2.3: 𝑝 ∈ {𝑦!} ∪ 𝑍!121# ∪	𝑍̅!.//  and 
𝑞 ∈ {𝑦$} ∪ 𝑈$121# ∪	𝑈L$.//.By Lemma 2.1(1, 
3), there is a hamilton 𝑝𝑎! − path  𝑀 in 𝐻!, 
and , a hamilton 𝑏!𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢+'

$ − path 𝑇, such that  {𝑝!, 𝑝"} =
{𝑢!$ 	, 𝑥$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Then 𝑃5 ∶ 	𝑝𝑀𝑎!, 𝑏(𝑁𝑏!, 𝑋#&!, 
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	𝑌#&", 𝑋#&%, . . . , 𝑌$)!, 𝑢+'
$ 𝑇𝑝", 𝑄′5 , 𝑝!𝑆𝑞. 

 
Subcase 2.4: 𝑝 = 𝑦!  and  𝑞 = 𝑥$. By Lemma 
2.1(1), there is a hamilton 𝑦!𝑎! − path  𝑀 in 
𝐻!, and , a hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(3),  there is 𝑆 = {𝑥$} and a 𝑦!𝑢!$ −  
path 𝑇, such that 	𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 
𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then 𝑃5 ∶ 	 𝑦!𝑀𝑎!, 𝑏(𝑁𝑥#, 
𝑌#&!, 𝑋#&", 𝑌#&%, . . . , 𝑋$)!, 𝑦$𝑇𝑢!$ , 𝑄′5 , 𝑥$ 	 
 
Lemma 4.5: Let 𝑛 ≥ 4  be even and  𝑃𝑃 =
𝑃𝑃(𝑘, [𝑟", 0], . . . , [𝑟#&!, 0], 𝑙) . If 𝑝 ∈ 𝑉(𝐻!) ∪
𝑉(𝐻8)  and 𝑞 ∈ 𝑉(𝐵$), 2 ≤ 𝑖 ≤ 𝑛 − 1,   then 
there is a hamilton 𝑝𝑞 − path in 𝑃𝑃. Proof By 
symmetry, we will show only the case that 𝑝 ∈
𝑉(𝐻!). We will use paths 𝑄5 , 𝑄′5 defined in 
Lemma 4.4 and show a hamilton 𝑝𝑞 −path 𝑃5 
in the following cases. 
 
Case 1: i is odd. 
we have the following subcases. 
 
Subcase 1.1: 𝑝 ∈ {𝑦!} ∪ 𝑍!.// ∪	𝑍̅!121#  and  
 

𝑞 ∈ {𝑦$} 	∪ 𝑈$.// ∪	𝑈L$121#. Use the same 
proof as subcase 1.1 in Lemma 4.4. 
 
Subcase 1.2: 𝑝 ≠ 𝑦!  and 𝑞 ∈ {𝑥$} 	∪ 𝑈$121# ∪
	𝑈L$.//. Use the same proof as subcase 1.2 in 
Lemma 4.4. 
 
Subcase 1.3: 𝑝 ∈ {𝑦!} ∪ 𝑍!121# ∪	𝑍̅!.//  and 
𝑞 ∈ {𝑦$} ∪ 𝑈$121# ∪	𝑈L$.//. By Lemma 2.1(1, 
3), there is a hamilton 𝑝𝑎! − path  𝑀 in 𝐻!, 
and , a hamilton  𝑏!𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a𝑝"𝑢+'

$ −path 𝑇, such that {𝑝!, 𝑝"} =
{𝑢!$ , 𝑥$}, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$),  𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Then 𝑃5 ∶ 	𝑝𝑀𝑎!, 𝑏(𝑁𝑏!, 𝑋#&!, 
	𝑌#&", 𝑋#&%, . . . , 𝑌$)!, 𝑢+'

$ 𝑇𝑝", 𝑄′5 , 𝑝!𝑆𝑞. 
 
Subcase 1.4: 𝑝 = 𝑦!  and  𝑞 = 𝑥$.By Lemma 
2.1(1, 2), there is a hamilton 𝑦!𝑎! − path  𝑀 
in 𝐻!, and, a hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. 
By Lemma 3.2(3), there is 𝑆 = {𝑥$} and a 
𝑦$𝑢!$ −  path 𝑇, such that 	𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then 𝑃5 ∶ 	 𝑦!𝑀𝑎!, 
𝑏(𝑁𝑥#, 𝑌#&!, 𝑋#&", 𝑌#&%, . . . , 𝑋$)!, 𝑦$𝑇𝑢!$ , 𝑄′5 , 𝑥$ .	 

 
Figure 13. Example of a hamilton 𝑝𝑞 − path in subcase 1.1 in Lemma 4.4. 

 
Figure 14. Example of a hamilton 𝑝𝑞 − path in subcase 1.3 in Lemma 4.4. 
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Case 2: i is even. We use 𝑄5 , 𝑄′5  defined in 
case 1 and have the following subcases. 
 
Subcase 2.1: 𝑝 ≠ 𝑦!  and 𝑞 ∈ {𝑦$} 	∪ 𝑈$.// ∪
	𝑈L$121#. By Lemma 2.1(1), there is a hamilton 
𝑝𝑦! − path  𝑀 in 𝐻!, and a hamilton 𝑥#𝑏! − 
path  𝑁 in 𝐻#. By Lemma 3.2(1, 3),  there is 
an  𝑞𝑝! −path 𝑆 and a 𝑝"𝑥$ −  path 𝑇, such 
that {𝑝!, 𝑝"} = {𝑢+'

$ 	, 𝑦$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then 𝑃5 ∶
	𝑝𝑀𝑦!, 𝑋", 𝑌%, 𝑋3, . . . , 𝑌$&!, 𝑥$𝑇𝑝", 𝑄5 , 𝑝!𝑆𝑞.	  
 
Subcase 2.2: 𝑝 ∈ {𝑦!} ∪ 𝑍!.// ∪	𝑍̅!121#  and 
𝑞 ∈ {𝑥$} 	∪ 𝑈$121# ∪	𝑈L$.//. By Lemma 2.1(1, 
2), there is a hamilton 𝑝𝑎' − path  𝑀 in 𝐻!, 
and, a hamilton 𝑥#𝑏! − path  𝑁 in 𝐻#. By 
lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢!$ −  path 𝑇, such that  {𝑝!, 𝑝"} =
{𝑢+'

$ 	, 𝑦$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Then  𝑃5 ∶
	𝑝𝑀𝑎' , 𝑌", 𝑋%, 𝑌3, . . . , 𝑋$&!, 𝑢!$𝑇𝑝", 𝑄5 , 𝑝!𝑆𝑞.	 
 
Subcase 2.3: 𝑝 ∈ {𝑦!} ∪ 𝑍!121# ∪	𝑍̅!.//  and 
𝑞 ∈ {𝑦$} 	∪ 𝑈$121# ∪	𝑈L$.//. By Lemma 2.1(1, 
3), there is a hamilton 𝑝𝑎! − path  𝑀 in 𝐻!, 
and, a hamilton 𝑏!𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢+'

$ − path 𝑇, such that  {𝑝!, 𝑝"} =
{𝑢!$ 	, 𝑥$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 

𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then 𝑃5 ∶
	𝑝𝑀𝑎!, 𝑏(𝑁𝑏!, 𝑋#&!, 𝑌#&", 𝑋#&%, … , 𝑌$)!, 

𝑢+'
$ 𝑇𝑝", 𝑄′5 , 𝑝!𝑆𝑞. 

 
Subcase 2.4: 𝑝 = 𝑦!  and  𝑞 = 𝑥$.By Lemma  
2.1(1), there is a hamilton 𝑦!𝑎! − path  𝑀 in 
𝐻!, and, a hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(3), there is 𝑆 = {𝑥$} and a 𝑦!𝑢!$ −  
path 𝑇, such that 	𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 
𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then 𝑃5 ∶ 	 𝑦!𝑀𝑎!, 𝑏(𝑁𝑥#, 
𝑌#&!, 𝑋#&", 𝑌#&%, . . . , 𝑋$)!, 𝑦$𝑇𝑢!$ , 𝑄′5 , 𝑥$ 	 
   
Lemma 4.5:   Let 𝑛 ≥ 4 be even and  𝑃𝑃 =
𝑃𝑃(𝑘, [𝑟", 0], . . . , [𝑟#&!, 0], 𝑙). If 𝑝 ∈ 𝑉(𝐻!) ∪
𝑉(𝐻8) and 𝑞 ∈ 𝑉(𝐵$), 2 ≤ 𝑖 ≤ 𝑛 − 1,  then 
there is a hamilton 𝑝𝑞 − path in 𝑃𝑃. 

Proof By symmetry, we will show only the 
case that 𝑝 ∈ 𝑉(𝐻!). We will use paths 
𝑄5 , 𝑄′5 defined in Lemma 4.4 and show a 
hamilton 𝑝𝑞 −path 𝑃5 in the following cases. 
 
Case 1: i is odd.we have the following 
subcases. 
 
Subcase 1.1: 𝑝 ∈ {𝑦!} ∪ 𝑍!.// ∪	𝑍̅!121#  and 
𝑞 ∈ {𝑦$} 	∪ 𝑈$.// ∪	𝑈L$121#. Use the same 
proof as subcase 1.1 in Lemma 4.4. 
 
Subcase 1.2: 𝑝 ≠ 𝑦!  and 𝑞 ∈ {𝑥$} 	∪ 𝑈$121# ∪
	𝑈L$.//. Use the same proof as subcase 1.2 in 
Lemma 4.4. 
 
Subcase 1.3: 𝑝 ∈ {𝑦!} ∪ 𝑍!121# ∪	𝑍̅!.//  and 
𝑞 ∈ {𝑦$} ∪ 𝑈$121# ∪	𝑈L$.//. By Lemma 2.1(1, 
3), there is a hamilton 𝑝𝑎! − path  𝑀 in 𝐻!, 
and, a hamilton 𝑏!𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢+'

$ −path 𝑇, such that {𝑝!, 𝑝"} =
{𝑢!$ , 𝑥$}, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$),  𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Then  𝑃5 ∶ 	𝑝𝑀𝑎!, 𝑏(𝑁𝑏!, 𝑋#&!, 
	𝑌#&", 𝑋#&%, . . . , 𝑌$)!, 𝑢+'

$ 𝑇𝑝", 𝑄′5 , 𝑝!𝑆𝑞. 
 
Subcase 1.4: 𝑝 = 𝑦!  and  𝑞 = 𝑥$. By Lemma 
2.1(1, 2), there is a hamilton 𝑦!𝑎! − path  𝑀 
in 𝐻!, and, a hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. 
By Lemma 3.2(3), there is 𝑆 = {𝑥$} and a 
𝑦$𝑢!$ −  path 𝑇, such that 	𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then  𝑃5 ∶ 	 𝑦!𝑀𝑎!, 
𝑏(𝑁𝑥#, 𝑌#&!, 𝑋#&", 𝑌#&%, . . . , 𝑋$)!, 𝑦$𝑇𝑢!$ , 𝑄′5 , 𝑥$ .	 
 
 
Case 2: i is even.we have the following 
subcases. 
 
Subcase 2.1: 𝑝 ≠ 𝑦!  and 𝑞 ∈ {𝑦$} 	∪ 𝑈$.// ∪
	𝑈L$121#. Use the same proof as subcase 2.1 in 
Lemma 4.4. 
 
Subcase 2.2: 𝑝 ∈ {𝑦!} ∪ 𝑍!.// ∪	𝑍̅!121#  and 
𝑞 ∈ {𝑥$} 	∪ 𝑈$121# ∪	𝑈L$.//. Use the same 
proof as subcase 2.2 in Lemma 4.4. 
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Subcase 2.3: 𝑝 ∈ {𝑦!} ∪ 𝑍!121# ∪	𝑍̅!.//  and 
𝑞 ∈ {𝑦$} ∪ 𝑈$121# ∪	𝑈L$.//. By Lemma 2.1(1, 
3), there is a hamilton 𝑝𝑎! − path  𝑀 in 𝐻!, 
and , a hamilton 𝑥#𝑏( − path  𝑁 in 𝐻#. By 
Lemma 3.2(2, 4),  there is an  𝑞𝑝! −path 𝑆 and 
a 𝑝"𝑢+'

$ −  path 𝑇, such that  {𝑝!, 𝑝"} =
{𝑢!$ 	, 𝑥$}	, 𝑉(𝑆) ∪ 𝑉(𝑇) = 𝑉(𝐵$), 𝑉(𝑆) ∩
𝑉(𝑇) = ∅. Then  𝑃5 ∶ 	𝑝𝑀𝑎!, 𝑏(𝑁𝑥#, 
𝑋#&!, 𝑌#&", 𝑋#&%, . . . , 𝑌$)!, 𝑢+'

$ 𝑇𝑝", 𝑄′5 , 𝑝!𝑆𝑞. 
 
Subcase 2.4: 𝑝 = 𝑦!  and  𝑞 = 𝑥$. By Lemma 
2.1(1), there is a hamilton 𝑦!𝑎! − path  𝑀 in 
𝐻!, and , a hamilton  𝑏!𝑏( −  path  𝑁 in 𝐻#. 
By Lemma 3.2(3), there is 𝑆 = {𝑥$} and a 
𝑦$𝑢!$ −  path 𝑇, such that 	𝑉(𝑆) ∪ 𝑉(𝑇) =
𝑉(𝐵$), 𝑉(𝑆) ∩ 𝑉(𝑇) = ∅. Then  𝑃5 ∶ 	 𝑦!𝑀𝑎!, 
𝑏(𝑁𝑏!, 𝑌#&!, 𝑋#&", 𝑌#&%, . . . , 𝑋$)!, 𝑦$𝑇𝑢!$ , 𝑄′5 , 𝑥$ 	
. 
Combining all Lemmas 4.1, 4.2, 4.3, 4.4, and 
4.5, we get the following. Theorem 4.6 : For 
every natural number 𝑛 ≥ 3,  even natural 
numbers k, l, and odd natural numbers  𝑟",
𝑟%, … , 𝑟#&!, a Pupa graph 𝑃𝑃(𝑘, [𝑟", 0], 
[𝑟%, 0], . . . , [𝑟#&!, 0], 𝑙) is hamilton-connected.      
 
5. Conclusion and Open Problems 
 
A In this paper, we already show that a Pupa 
graph PP(k,[r_2,0],[r_3,0],...,〖[r〗_(n-1),0],l) 
is hamilton-connected. Then this can be 
improved to general case so we give the 
following conjecture. Conjecture 5.1 : For all 
natural numbers n≥3,  even natural numbers k, 
l, and odd natural numbers r_2,r_3,...,r_(n-
1),s_2,s_3,...,s_(n-1), a Pupa graph  
PP(k,[r_2,s_2],[r_3,s_3],...,〖[r〗_(n-1),s_(n-
1)],l) is hamilton-connected. 
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