

ORIGINAL PAPER

Hamilton-Connectedness of Some Cubic 3-connected Plane Graph

Adthasit Sinna*

Department of Mathematics, Faculty of Science, Ramkhamhaeng University

*Corresponding author: adthasit@rumail.ru.ac.th

Received: 18 November 2025 / Revised: 16 December 2025 / Accepted: 21 December 2025

Abstract. We define a Pupa graph $PP(k, [r_2, s_2], [r_3, s_3], \dots, [r_{n-1}, s_{n-1}], l)$ which is a cubic 3-connected plane graph. In this paper, we show that a Pupa graph is hamilton-connected if $n \geq 2$, both k and l are even, r_i is odd, and $s_i = 0$ for every $i \in \{2, 3, \dots, n-1\}$.

Keywords: Hamilton-connected, plane graph

1. Introduction

Let $G = (V(G), E(G))$ be a simple undirected graph, and $p, q \in V(G)$. A path from p to q is denoted by pq – path. A hamilton path (respectively, a hamilton cycle) is a path (respectively, a cycle) passing through all vertices of G . Note that a hamilton pq – path is a hamilton path from p to q . A graph G is hamiltonian if G has a hamilton cycle. Moreover, G is hamilton-connected if for every $p, q \in V(G)$, there is a hamilton pq – path. Note that a hamilton-connected graph is a hamiltonian graph. A degree of a vertex u , denoted by $\deg u$, is a number of edges that have u as an endvertex. A graph is cubic if all vertices have degree three. A graph G is 3-connected if for any $u, v \in V(G)$, $G - \{u, v\}$ is connected.

A hamiltonian problem is a well-known problem in graph theory that applies to computer graphics and logistics. Tait (Tait 1884) conjectured that a cubic 3-connected graph is hamiltonian. Later, Tutte (Tutte 1946) disproved this by showing a nonhamiltonian cubic 3-connected plane graph called *Tutte graph*. However, there is open problems about cubic 3-connected plane graphs such that Barnette's conjecture (Barnette 1969): a cubic 3-connected bipartite graph is hamiltonian. In

this paper, we show a family of 3-connected cubic plane graph that is a hamilton-connected.

A leaf is a vertex of degree 1. Let CP be a Caterpillar graph embedded on a plane. A spine S of a caterpillar CP is $CP - X$ where X is a set of all leaves of CP . Note that S is a path with vertices v_1, v_2, \dots, v_n . Assume that a caterpillar CP has no vertex of degree two and its spine S has at least two vertices. A Pupa graph PP is a plane graph obtained from a Caterpillar graph CP with its spine S by

- (1) construct the outer cycle passing through all leaves of CP , and
- (2) for each $v_i \in V(S)$, replacing it by a cycle D_i of size $\deg v_i$.

By this construction, all vertices of PP have degree three and removing any two vertices from PP , the remaining graph is still connected. Then PP is a cubic 3-connected plane graph and cycles D_1, D_2, \dots, D_n corresponding to vertices v_1, v_2, \dots, v_n , respectively. Define a Head graph H_1 (respectively, H_n) as a graph induced by all vertices of D_1 (respectively, D_n) and all neighbors of D_1 (respectively, D_n) in the outer cycle.

Moreover, for $i \in \{2, 3, \dots, n-1\}$, a Body graph B_i is a graph induced by all vertices of D_i and all neighbors of D_i in the outer cycle.

For $n \geq 2$, we let a Pupa graph $PP = PP(k, [r_2, s_2], [r_3, s_3], \dots, [r_{n-1}, s_{n-1}], l)$ where $k, l, r_2, r_3, \dots, r_{n-1}, s_2, s_3, \dots, s_{n-1}$ are nonnegative integer. Note that $k \geq 2, l \geq$

2, and $r_i + s_i \geq 1$. We label all vertices of PP as in Figure 2.

From this labeling, we have $V(D_1) = \{y_1, \bar{a}_1, \bar{a}_2, \dots, \bar{a}_k\}$ and $V(D_n) = \{x_n, \bar{b}_1, \bar{b}_2, \dots, \bar{b}_l\}$. Then $|V(D_1)| = k + 1$ and $|V(D_n)| = l + 1$. Note that for $i \in \{1, 2, \dots, n-1\}$, an edge $y_i x_{i+1}$ joins between D_i and D_{i+1} . For each cycle $D_i, i \in \{2, \dots, n-1\}$, a path P_1^i from x_i to y_i in clockwise direction passing through $\bar{u}_1^i, \bar{u}_2^i, \dots, \bar{u}_{r_i}^i$ and a

path P_2^i from y_i to x_i in clockwise direction passing through $\bar{w}_1^i, \bar{w}_2^i, \dots, \bar{w}_{s_i}^i$. Then $r_i = |V(P_1^i)|$ and $s_i = |V(P_2^i)|$. Note that r_i and s_i represent the number of vertices on D_i which has a neighbor in upper side and lower side of the outer cycle, respectively. Note that $|V(D_i)| = r_i + s_i + 2$ for all $i \in \{2, \dots, n-1\}$. Moreover, for each $\bar{x} \in V(D_i)$, its neighbor in outer cycle is x . We show examples of Pupa graphs that $|V(D_i)|$ is even for some $i \in \{1, 2, \dots, n\}$, and there is no hamilton xy -path as in Figure 3

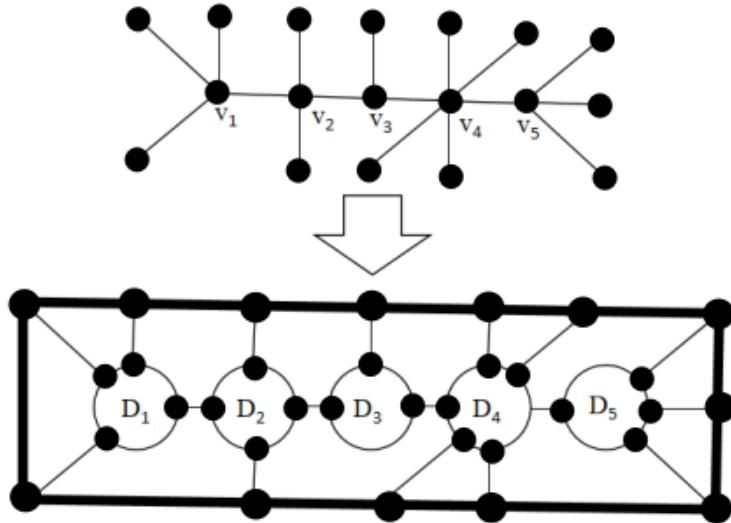


Figure 1. An example of a Pupa graph obtained from a caterpillar graph.

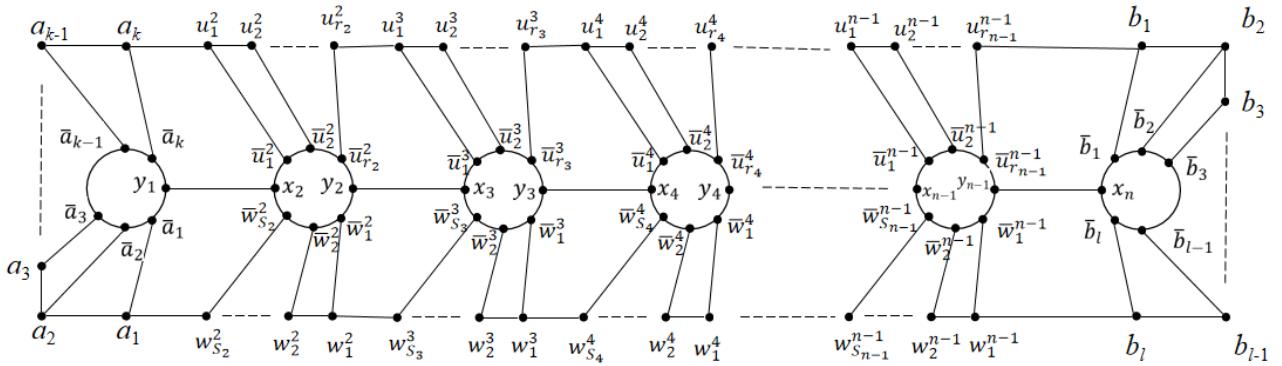


Figure 2. A Pupa graph $PP(k, [r_2, s_2], [r_3, s_3], \dots, [r_{n-1}, s_{n-1}], l)$.

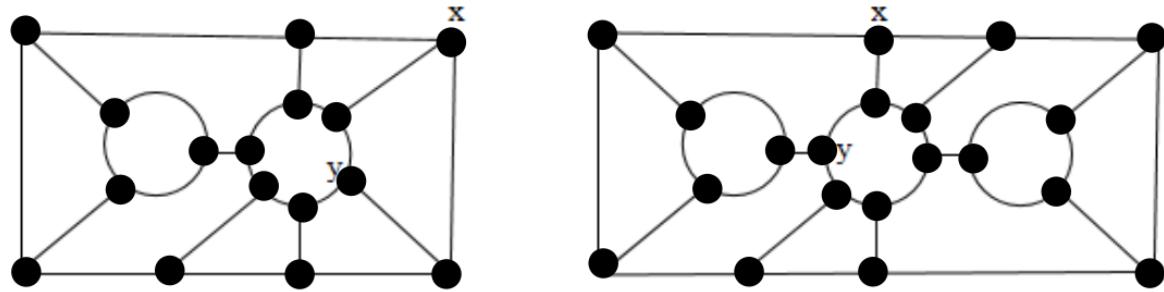


Figure 3. Pupa graphs $PP(2, 5)$ and $PP(3, [2,2], 3)$ have no hamilton xy -path.

Then we assume that $|V(D_i)|$ is odd for every $i \in \{1, 2, \dots, n\}$. Note that both k and l are even, and $r_i + s_i$ is odd for every $i \in \{2, 3, \dots, n-1\}$. Furthermore, we also assume that $s_i = 0$ for every $i \in \{2, 3, \dots, n-1\}$. Then the main result of this paper is as follows.

Theorem 1.1: For every natural number $n \geq 2$, even natural numbers k, l , and odd natural numbers r_2, r_3, \dots, r_{n-1} , a Pupa graph $PP(k, [r_2, 0], [r_3, 0], \dots, [r_{n-1}, 0], l)$ is hamilton-connected.

We prove Theorem 1.1 for the case that $n = 2$ and $n \geq 3$ in Theorem 2.4, and Theorem 4.6, respectively.

2. Head graph

We recall a Head graph H as in figure 4.

Note that if $H = H_1$ (respectively $H = H_n$), then $m = k$ and $z = y_1$ (respectively, $m = l$ and $z = x_m$). We also let $Z^{odd} = \{c_1, c_3, c_5, \dots, c_{m-1}\}$, $Z^{even} = \{c_2, c_4, c_6, \dots, c_m\}$,

$\bar{Z}^{odd} = \{\bar{c}_1, \bar{c}_3, \bar{c}_5, \dots, \bar{c}_{m-1}\}$ and $\bar{Z}^{even} = \{\bar{c}_2, \bar{c}_4, \bar{c}_6, \dots, \bar{c}_m\}$. We generate all possible

cases and then get hamilton paths on a Head graph as follows.

Lemma 2.1: Let H be a Head graph and $p \in V(H)$. Then

- (1) if $p \neq z$, then there is a hamilton pz -path,
- (2) if $p \in Z^{odd} \cup \bar{Z}^{even}$, then there is a hamilton pc_m -path, and
- (3) if $p \in Z^{even} \cup \bar{Z}^{odd}$, then there is a hamilton pc_1 -path.

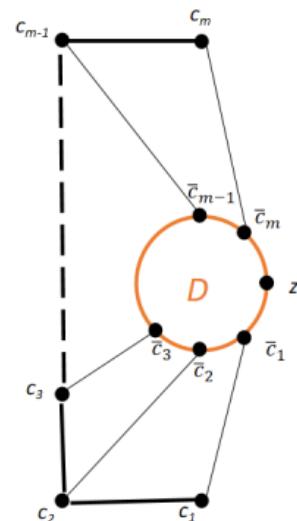


Figure 4. A Head graph H .

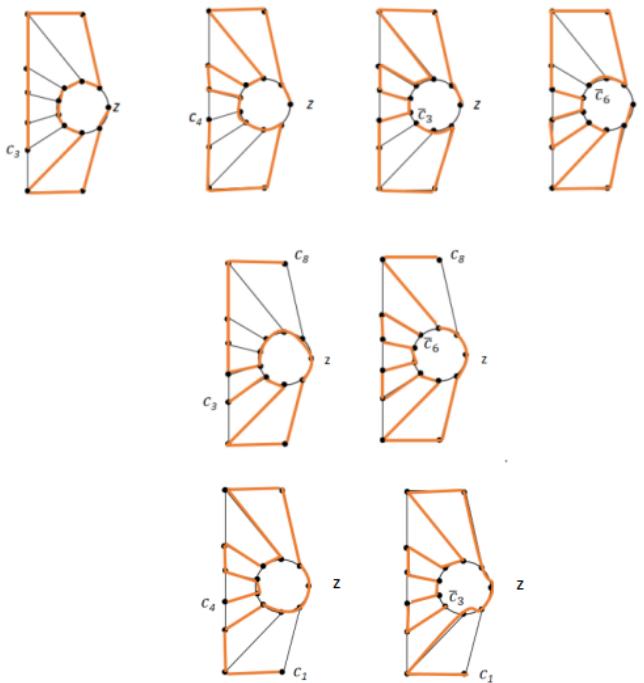


Figure 5. Examples of paths in Lemma 2.1 (1), (2), and (3) in the first row, the second row, and the third row, respectively.

Next, we construct two disjoint paths, S and T , and show that $V(S) \cup V(T) = V(H)$, and $V(S) \cap V(T) = \emptyset$ in the following lemmas.

Lemma 2.2: Let $p, q \in V(H), p \neq q$. Then there is a pp' -path S and a qq' -path T , such that $p', q' \in \{z, c_1, c_m\}, V(S) \cup V(T) = V(H)$, and $V(S) \cap V(T) = \emptyset$.

Lemma 2.3: Let $p \in V(H) - \{z\}$. Then there are paths S and T such that $V(S) \cup V(T) = V(H)$, and $V(S) \cap V(T) = \emptyset$ as follows.

(1) if $p = c_i \in Z^{odd}$, then S is a pc_1 -path and T is a zc_m -path,

(2) if $p = c_i \in Z^{even}$, then S is a pc_n -path and T is a zc_1 -path, and

(3) if $p = \bar{c}_i \in \bar{Z}^{odd} \cup \bar{Z}^{even}$, then S is a pz -path and T is a c_1c_m -path.

For a case that $n = 2$, a Pupa graph $PP = PP(k, l)$ has no a Body graph. Then we show the first part of main theorem as follows.

Theorem 2.4: For every even natural numbers k and l , a pupa graph $PP(k, l)$ is hamilton-connected.

Proof Let p, q be distinct vertices of a Pupa graph PP . We will show a hamilton pq -path P_H in the following cases.

Case 1: both p and q are in $V(H_1)$. (respectively, $V(H_2)$)

By symmetry, we will show only the case that $p, q \in V(H_1)$. From Lemma 2.2, there is a pu -path S and a qv -path T such that $u, v \in \{y_1, a_1, a_k\}, V(S) \cup V(T) = V(H_1)$, and $V(S) \cap V(T) = \emptyset$. Then we have the following subcases.

Subcase 1.1: $u = y_1$ and $v = a_1$.

From Lemma 2.1(1), there is a hamilton b_1x_2 -path M in H_2 . Then

$P_H : pSy_1, x_2Mb_1, a_1Tq$.

Subcase 1.2: $u = y_1$ and $v = a_k$.

From Lemma 2.1(1), there is a hamilton b_1x_2 -path M in H_2 . Then

$P_H : pSy_1, x_2Mb_1, a_kTq$.

Subcase 1.3: $u = a_1$ and $v = a_k$.

From Lemma 2.1(2), there is a hamilton b_1b_l – path M in H_2 . Then $P_H : pSa_1, b_lMb_1, a_kTq$.

Case 2: $p \in V(H_1)$ and $q \in V(H_2)$. Define subsets of $V(H_1)$ Z_1^{odd} , Z_1^{even} , \bar{Z}_1^{odd} , \bar{Z}_1^{even} in the same way as Z^{odd} , Z^{even} , \bar{Z}^{odd} , \bar{Z}^{even} . Note that $V(H_1) = \{y_1\} \cup Z_1^{odd} \cup Z_1^{even} \cup \bar{Z}_1^{odd} \cup \bar{Z}_1^{even}$. Similary, Z_2^{odd} , Z_2^{even} , \bar{Z}_2^{odd} and \bar{Z}_2^{even} are defined as subsets of $V(H_2)$.

Note that $V(H_2) = \{x_2\} \cup Z_2^{odd} \cup Z_2^{even} \cup \bar{Z}_2^{odd} \cup \bar{Z}_2^{even}$. Then we have the following subcases.

Subcase 2.1: $p \neq y_1$ and $q \neq x_2$. From Lemma 2.1(1), there is a hamilton py_1 – path M in H_1 , and there is a hamilton qx_2 – path N in H_2 . Then $P_H : pMy_1, x_2Nq$. *Subcase*

2.2: $p \in Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q = x_2$ (respectively, $p = y_1$ and $q \in Z_2^{odd} \cup \bar{Z}_2^{even}$).

By symmetry, we will show only the case that $p \in Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q = x_2$. From Lemma 2.1(2), there is a hamilton pa_k – path M in H_1 and from Lemma 2.1(1), there is a hamilton x_2b_1 – path N in H_2 . Then $P_H : pMa_k, b_1Nx_2$. *Subcase 2.3:* $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q = x_2$ (respectively, $p = y_1$ and $q \in \{x_2\} \cup Z_2^{even} \cup \bar{Z}_2^{odd}$).

By symmetry, we will show only the case that $p \in Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q = x_2$.

From Lemma 2.1(1, 3), there is a hamilton pa_1 – path M in H_1 and from Lemma 2.1(1), there is a hamilton x_2b_l – path N in H_2 . Then $P_H : pMa_1, b_lNx_2$.

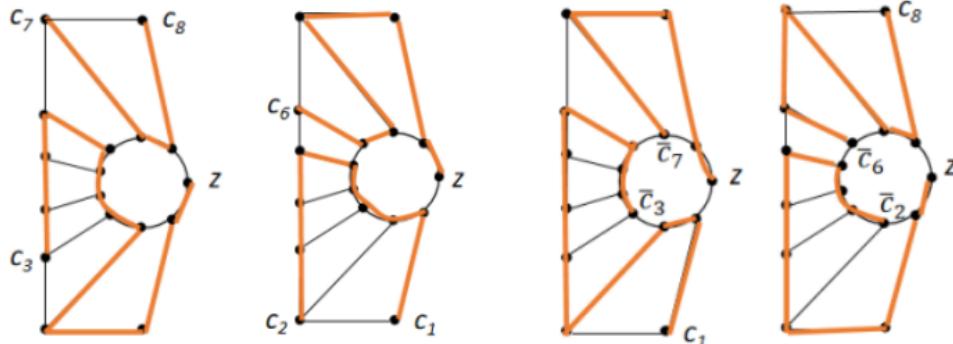


Figure 6. Examples of paths S and T in Lemma 2.2.

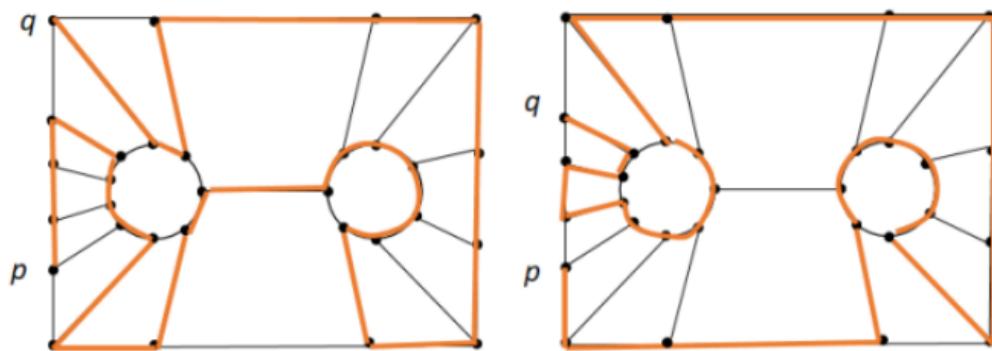


Figure 7. Examples of hamilton pq – paths of $PP(8, 6)$ in subcase 1.2 and 1.3 of Theorem 2.4.

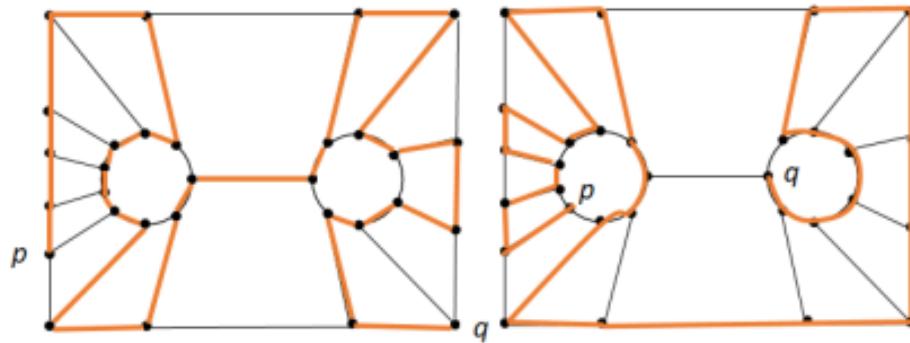


Figure 8. Examples of hamilton pq -paths of $PP(8, 6)$ in subcase 2.1 and 2.3 in Theorem 2.4.

3. Body graph

Recall a Body graph B of $PP(k, [r_2, 0], [r_3, 0], \dots, [r_{n-1}, 0], l)$ as in Figure 9.

Note that if $B = B_i$ for $i \in \{2, 3, \dots, n-1\}$, then $m = r_i$ and $D = D_i$. We also let $U^{odd} = \{u_1, u_3, u_5, \dots, u_{m-1}\}$, $U^{even} = \{u_2, u_4, u_6, \dots, u_m\}$, $\bar{U}^{odd} = \{\bar{u}_1, \bar{u}_3, \bar{u}_5, \dots, \bar{u}_{m-1}\}$ and $\bar{U}^{even} = \{\bar{u}_2, \bar{u}_4, \bar{u}_6, \dots, \bar{u}_m\}$. We generate all possible cases and then get hamilton paths on a Body graph as follows.

Lemma 3.1: Let B be a Body graph. If $p \in \{x, y\} \cup U^{odd} \cup \bar{U}^{even}$ and $q \in \{x, y, u_1, u_m\} - \{p\}$, then there is a hamilton pq -path.

Next, we construct two disjoint paths, S and T , and show that $V(S) \cup V(T) = V(B)$, and $V(S) \cap V(T) = \emptyset$ in the following lemmas.

Lemma 3: There are paths S and T such that $V(S) \cup V(T) = V(B)$, and $V(S) \cap V(T) = \emptyset$ as follows.

(1) If $p \in U^{odd} \cup \bar{U}^{even}$, then S is a pp_1 -path and T is a yp_2 -path,

where $\{p_1, p_2\} = \{u_1, x\}$ (respectively, S is a pp_1 -path and T is a xp_2 -path, where $\{p_1, p_2\} = \{u_m, y\}$).

(2) If $p \in U^{even} \cup \bar{U}^{odd}$, then S is a pp_1 -path and T is a u_mp_2 -path,

where $\{p_1, p_2\} = \{u_1, x\}$ (respectively, S is a pp_1 -path and T is a u_1p_2 -path, where $\{p_1, p_2\} = \{u_m, y\}$).

(3) $S = \{x\}$ and T is a u_1y -path (respectively, $S = \{y\}$ and T is a u_mx -path).

(4) S is a xy -path and T is a u_1u_m -path.

Lemma 3.3: Let B be a Body graph and $p, p', q, q' \in V(B)$. Then there are paths S and T such that $V(S) \cup V(T) = V(B)$, and $V(S) \cap V(T) = \emptyset$ as follows.

(1) If $p = x$ and $q = y$, then $S = \{x\}$ and T is a yu_m -path.

(2) If $p \in \{x, y\}$ and $q \in U^{odd} \cup \bar{U}^{even}$, then $S = \{p\}$ and T is a qq' -path where $q' \in \{x, y\} - \{p\}$.

(3) If $p \in \{x, y\}$ and $q \in U^{even} \cup \bar{U}^{odd}$, then $S: x, y$ and T is a qu_1 -path .

(4) If $p, q \in U^{odd} \cup \bar{U}^{even}$, then S is a pp' -path and T is a qq' -path where $\{p', q'\} = \{x, y\}$.

(5) If $p \in U^{odd} \cup \bar{U}^{even}$ and $q \in U^{even} \cup \bar{U}^{odd}$, then S is a pp' -path and T is a

qq' – path where $z_1 \in \{x, u_1\}$, $z_2 \in \{y, u_m\}$, and $\{p', q'\} = \{z_1, z_2\}$.

Finally, we also construct two disjoint paths, S and T , but $V(S) \cup V(T) = V(H) - \{x, y\}$ in the following.

Lemma 3.3: Let B be a Body graph and $p, q \in U^{even} \cup \bar{U}^{odd}$. Then there are a pp' – path and a qq' – path T such that $\{p', q'\} = \{u_1, u_m\}$, $V(S) \cup V(T) = V(B) - \{x, y\}$, and $V(S) \cap V(T) = \emptyset$.

4. Proof of Main result

To prove Theorem 1.1 for the case that $n \geq 3$, we split that theorem into five lemmas depending on hamilton pq – path P_H as follows.

- (i) $p, q \in V(H_1 \cup H_2)$ in Lemma 4.1.
- (ii) $p \in V(U_i)$ and $q \in V(U_j)$, $i \neq j$, in Lemma 4.2.
- (iii) $p, q \in V(U_i)$ in Lemma 4.3.
- (iv) n is odd, $p \in V(H_1 \cup H_2)$, and $q \in V(U_i)$ in Lemma 4.4.
- (v) n is even, $p \in V(H_1 \cup H_2)$ and $q \in V(U_i)$ in Lemma 4.5.

Next, let B_i be a Body graph for $i \in \{2, 3, \dots, n-1\}$, by using Lemma 3.1, B_i have a hamilton $x_i u_{r_i}^i$ – path X_i , and a hamilton $y_i u_1^i$ – path Y_i . Moreover, from lemma 3.2(1), B_i have an $x_i y_i$ – path D_i^* and a $u_1^i u_{r_i}^i$ – path P_i^* such that $V(D_i^*) \cup V(P_i^*) = V(B_i)$, and $V(D_i^*) \cap V(P_i^*) = \emptyset$. Then we will use these paths in the following lemmas.

Lemma 4.1: Let $n \geq 3$ and a Pupa graph $PP = PP(k, [r_2, 0], \dots, [r_{n-1}, 0], l)$. If $p, q \in V(H_1) \cup V(H_n)$, then there is a hamilton pq – path in PP .

Proof We will show a hamilton pq – path P_H in the following cases.

Case 1: $p, q \in V(H_1)$ (respectively, $p, q \in V(H_n)$).

By symmetry, we will show only the case that $p, q \in V(H_1)$. From Lemma 2.2, there is a pu – path S and a qv – path T , such that $u, v \in \{y_1, a_1, a_k\}$, $V(S) \cup V(T) = V(H_1)$, and $V(S) \cap V(T) = \emptyset$. Then we have the following subcases.

Subcase 1.1: $u = y_1$ and $v = a_1$.

- For n is odd, from Lemma 2.1(2), there is a hamilton $b_1 b_l$ – path M in H_n . Then $P_H : pSy_1, X_2, Y_3, X_4, \dots, X_{n-1}, b_1 Mb_l, a_1 Tq$.
- For n is even, from Lemma 2.1 (1), there is a hamilton $x_n b_l$ – path M in H_n .

Then $P_H :$

$pSy_1, X_2, Y_3, X_4, \dots, Y_{n-1}, x_n Mb_l, a_1 Tq$.

Subcase 1.2: $u = y_1$ and $v = a_k$.

From Lemma 2.1(1), there is a hamilton $b_1 x_n$ – path M in H_n . Then $P_H : pSy_1, D_2^*, D_3^*, \dots, D_{n-1}^*, x_n Mb_1, P_{n-1}^*, P_{n-2}^*, \dots, P_2^*, a_k Tq$. *Subcase 1.3:* $u = a_1$ and $v = a_k$.

- For n is odd, from Lemma 2.1(1), there is a hamilton $x_n b_l$ – path M in H_n .

Then $P_H :$

$pSa_1, b_1 Mb_n, Y_{n-1}, X_{n-2}, Y_{n-3}, \dots, Y_2, a_k Tq$.

- For n is even, from Lemma 2.1(2), there is a hamilton $b_1 b_l$ – path M in H_n .

Then $P_H :$

$pSa_1, b_1 Mb_1, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, X_2, a_k Tq$.

Case 2: $p \in V(H_1)$ and $q \in V(H_n)$ (respectively, $p \in V(H_n)$ and $q \in V(H_1)$). By symmetry, we will show only the case that $p \in V(H_1)$ and $q \in V(H_n)$. Recall $Z_i^{odd}, Z_i^{even}, \bar{Z}_i^{odd} \Leftrightarrow \bar{Z}_i^{even}$ when $i \in \{1, n\}$. Then we have the following cases.

Subcase 2.1: n is odd, $p \neq y_1$ and $q \in \{x_n\} \cup Z_n^{even} \cup \bar{Z}_n^{odd}$

- For n is odd, from Lemma 2.1(1), there is a hamilton py_1 – path M in H_1 , and from Lemma 2.1(1, 3), there is a hamilton qb_1 – path N in H_n .

Then $P_H :$

$pMy_1, X_2, Y_3, X_4, \dots, X_{n-1}, b_1 Nq$.

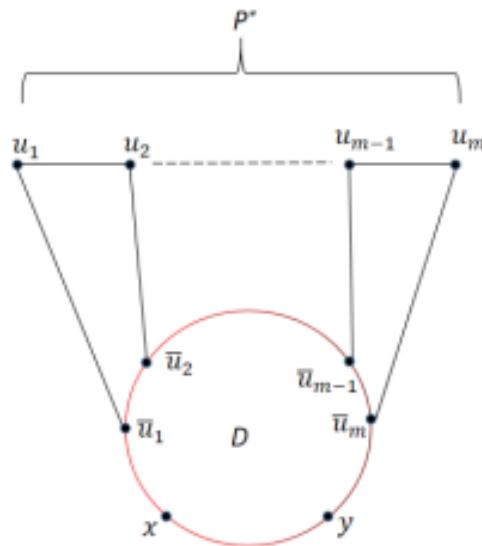


Figure 9. A Body graph B.

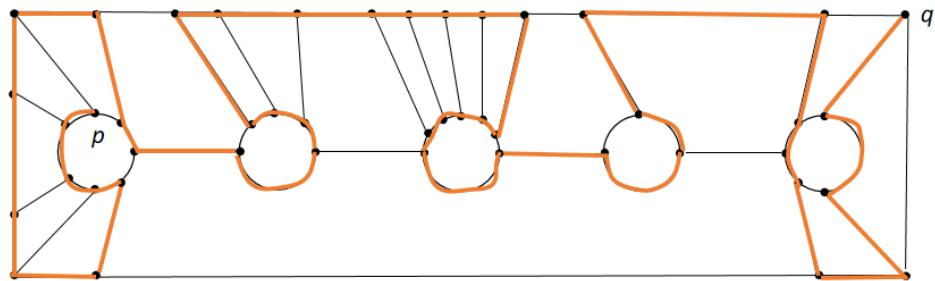


Figure 10. Example of a hamilton pq – path in subcase 2.1 in Lemma 4.1.

Subcase 2.2: n is odd, $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q \neq x_n$.

From Lemma 2.1(1, 2), there is a hamilton pa_k – path M in H_1 , and from

Lemma 2.1(1), there is a hamilton qx_n – path N in H_n . Then

$P_H : pMa_k, Y_2, X_3, Y_4, \dots, Y_{n-1}x_nNq$.

Subcase 2.3: n is odd, $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{x_n\} \cup Z_n^{odd} \cup \bar{Z}_n^{even}$.

From Lemma 2.2 and 2.3(2, 3), there is a pp_1 – path S and a p_2a_1 – path T , such that $\{p_1, p_2\} = \{y_1, a_k\}$, $V(S) \cup V(T) = V(H_1)$, and $V(S) \cap V(T) = \emptyset$.

From Lemma 2.1(1, 2), there is a hamilton qb_l – path N in H_n . By Lemma 3.1, there is a

hamilton $x_{n-1}\bar{u}_1^{n-1}$ – path K in B_{n-1} . If $p_1 = y_1$, then $P_H : pSy_1, x_2, D_2^*, D_3^*, \dots, D_{n-2}^*, K, P_{n-2}^*, P_{n-2}^*, P_{n-2}^*, \dots, P_2^*, u_1^2, a_kTa_1, b_lNq$

Otherwise, $P_H :$

$qSb_l, a_1Ty_1, x_2, D_2^*, D_3^*, \dots, D_{n-2}^*, K, P_{n-2}^*, P_{n-2}^*, \dots, P_2^*, u_1^2, a_kSp$.

Subcase 2.4: n is even, $p \neq y_1$ and $q \neq x_n$.

From Lemma 2.1(1), there is a hamilton py_1 – path M in H_1 , and there is a hamilton qx_n – path N in H_n . Then $P_H :$

$pMy_1, X_2, Y_3, X_4, \dots, Y_{n-1}, x_nNq$.

Subcase 2.5: n is even, $p \in Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q = x_n$ (respectively, $p = y_1$ and $q \in Z_n^{odd} \cup \bar{Z}_n^{even}$). By symmetry, we will show only the case that $p \in Z_1^{odd} \cup \bar{Z}_1^{even}$

and $q = x_n$. From Lemma 2.1(2), there is a hamilton pa_k – path M in H_1 , and from Lemma 2.1(1), there is a hamilton b_1x_n – path N in H_n . Then
 $P_H: pMa_k, Y_2, X_3, Y_4, \dots, X_{n-1}, b_1Nx_n$.

Subcase 2.6: n is even, $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q = x_n$ (respectively, $p = y_1$ and $q \in \{x_n\} \cup Z_2^{even} \cup \bar{Z}_2^{odd}$). By symmetry, we will show only the case that $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q = x_n$. From Lemma 2.2 and 2.3(2, 3), there is a pp_1 – path S and a p_2a_1 – path T , such that $\{p_1, p_2\} = \{y_1, a_k\}$, $V(S) \cup V(T) = V(H_1)$, and $V(S) \cap V(T) = \emptyset$. From Lemma 2.1(1, 2), there is a hamilton $x_n b_l$ – path N in H_n . By Lemma 3.1, there is a hamilton $x_{n-1} \bar{u}_1^{n-1}$ – path K in B_{n-1} . If $p_1 = y_1$, then P_H :
 $pSy_1, x_2, D_2^*, D_3^*, \dots, D_{n-2}^*, K, P_{n-2}^*, P_{n-2}^*, \dots, P_2^*, u_1^2, a_kTa_1, b_lNq x_n$. Otherwise,
 $P_H: x_n Sb_l, a_1Ty_1, x_2, D_2^*, D_3^*, \dots, D_{n-2}^*, K, P_{n-2}^*, P_{n-2}^*, \dots, P_2^*, u_1^2, a_kSp$.

Lemma 4.2: Let $n \geq 4$ and a Pupa graph $PP = PP(k, [r_2, 0], \dots, [r_{n-1}, 0], l)$. If $p \in V(U_i)$ and $q \in V(B_j)$, $2 \leq i < j \leq n-1$ then there is a hamilton pq – path in PP .

Proof We will use Lemma 3.2 to construct paths S_i, S_j, T_i, T_j and then use them to construct a hamilton path P_H as follows.

(1) There is an pp_1 – path S_i and a p_2p' – path T_i , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S_i) \cup V(T_i) = V(B_i)$, $V(S_i) \cap V(T_i) = \emptyset$, and

$$p' = \begin{cases} x_i, p \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even} \\ u_1^i, p \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd} \end{cases}$$

(2) There is an qq_1 – path S_j and a q_2q' – path T_j , such that $\{q_1, q_2\} = \{u_1^j, x_j\}$, $V(S_i) \cup V(T_i) = V(B_i)$, $V(S_i) \cap V(T_i) = \emptyset$, and

$$q' = \begin{cases} y_j, q \in \{x_j\} \cup U_j^{odd} \cup \bar{U}_j^{even} \\ u_{r_j}^j, q \in \{y_j\} \cup U_j^{even} \cup \bar{U}_j^{odd} \end{cases}$$

Next, we construct paths P' :
 $u_{r_i}^i, u_1^{i+1}, \bar{u}_1^{i+1}, x_{i+1}, y_i$ and Q' :
 $u_1^j, P_{j-1}^*, P_{j-2}^*, \dots, P_{i+2}^*, u_{r_{i+1}}^{i+1} P_{i+1}^* u_2^{i+1}, \bar{u}_2^{i+1}$
 $D_{i+1}^* \bar{u}_{r_{i+1}}^{i+1}, y_{i+1}, D_{i+1}^*, D_{i+2}^*, \dots, D_{j-1}^*, x_j$.

Then we have a path P'' : $pS_i p_1, P', p_2 T_i p'$ and Q'' : $qS_j q_1, Q', q_2 T_j q'$.

Let $p'' \in \{a_k, y_1\} \subseteq V(H_1)$. Define a path $P(p', p'')$ as one of the following paths depending on vertices p', p'' and integer i :
 $p', Y_{i-1}, X_{i-2}, Y_{i-1}, \dots, Y_2, p''$,
 $p', Y_{i-1}, X_{i-2}, Y_{i-1}, \dots, X_2, p''$,
 $p', X_{i-1}, Y_{i-2}, X_{i-1}, \dots, Y_2, p''$, or
 $p', X_{i-1}, Y_{i-2}, X_{i-1}, \dots, X_2, p''$. Moreover, we give the following.

- if i is odd, then $P(x_i, p'') = P(x_i, a_k)$ and $P(u_1^i, p'') = P(u_1^i, y_1)$.
- if i is even, then $P(x_i, p'') = P(x_i, y_1)$ and $P(x_i, p'') = P(u_1^i, a_k)$.

Similarly, let $q'' \in \{b_1, x_n\} \subseteq V(H_n)$. Define a path $Q(q', q'')$ as one of the following paths depending on vertices p', p'' and integer j, n :
 $q', Y_{j+1}, X_{j+2}, Y_{j+3}, \dots, Y_{n-1}, q''$,
 $q', Y_{j+1}, X_{j+2}, Y_{j+3}, \dots, X_{n-1}, q''$,
 $q', X_{j+1}, Y_{j+2}, X_{j+3}, \dots, Y_{n-1}, q''$, or
 $q', X_{j+1}, Y_{j+2}, X_{j+3}, \dots, X_{n-1}, q''$. Moreover, we give the following.

- if j, n is odd (or even), then $Q(y_j, q'') = Q(y_j, b_1)$ and $Q(u_{r_j}^j, q'') = P(u_{r_j}^j, x_n)$.
- if j is odd and n is even (or j is even and n is odd), then $Q(y_j, q'') = Q(y_j, x_n)$ and $Q(u_{r_j}^j, q'') = Q(u_{r_j}^j, b_1)$.

By Lemma 2.1, there is a hamilton $p''a_1$ – path M in H_1 , and, a hamilton $q''b_1$ – path N in H_n . Combining all paths, we have P_H :
 $pP''p', P(p', p''), p''Ma_1, b_1Nq'', Q(q', q'')$,
 $q'Q''q$

Define subsets of $V(B_i)$ U_i^{odd} , U_i^{even} , \bar{U}_i^{odd} , \bar{U}_i^{even} in the same way as U^{odd} , U^{even} ,

$\bar{U}_i^{\text{odd}}, \bar{U}_i^{\text{even}}$. Note that $V(B_i) = \{x_i, y_i\} \cup U_i^{\text{odd}} \cup U_i^{\text{even}} \cup \bar{U}_i^{\text{odd}} \cup \bar{U}_i^{\text{even}}$. Then we show the following.

Lemma 4.3 : Let $n \geq 3$ and a Pupa graph $PP = PP(k, [r_2, 0], \dots, [r_{n-1}, 0], l)$. If $p, q \in V(B_i)$, $2 \leq i \leq n-1$, then there is a hamilton pq – path in PP . Proof We will show a hamilton pq – path P_H in the following cases.

Case 1: $p, q \notin U_i^{\text{even}} \cup \bar{U}_i^{\text{odd}}$

By Lemma 3.3, there is a pp' – path S and a qq' – path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$, $z_1 \in \{x_i, u_1^i\}$, $z_2 \in \{y_i, u_m^i\}$ and $\{p', q'\} = \{z_1, z_2\}$. Assume without the loss of generality that $p' = z_1$ and $q' = z_2$.

Let $p'' \in \{a_k, y_1\} \subseteq V(H_1)$ and $q'' \in \{b_1, x_n\} \subseteq V(H_2)$. We define paths $P(p', p'')$ and $Q(q', q'')$ as in Lemma 4.2.

By Lemma 2.1, there is a hamilton $p''a_1$ – path M in H_1 , and, a hamilton $q''b_1$ – path N in H_n . Combining all paths, we have $P_H : pSp', P(p', p''), p''Ma_1, b_1Nq'', Q(q', q''), q'Tq$.

Case 2: $p, q \in U_i^{\text{even}} \cup \bar{U}_i^{\text{odd}}$

By Lemma 3.3, there is a pp' – path S and a qq' – path T , such that $V(S) \cup V(T) = V(B_i) - \{x_i, y_i\}$, $V(S) \cap V(T) = \emptyset$, and $\{p', q'\} = \{u_1^i, u_m^i\}$. Assume without the loss of generality that $p' = u_1^i$ and $q' = u_m^i$.

By Lemma 2.1, there is a hamilton y_1a_k – path M in H_1 , and, a hamilton x_mb_1 – path N in H_n . Combining all paths, we have $P_H :$
 $pSu_1^i, P_{i-1}^*, P_{i-2}^*, \dots, P_2^*,$
 $a_kMy_1, D_2^*, D_3^*, \dots, D_{i-1}^*, x_i, y_i, D_{i+1}^*, D_{i+2}^*, \dots, D_{n-1}^*$
 $x_nNb_1, P_{n-1}^*, P_{n-2}^*, \dots, P_{i+1}^*, u_m^iTq$.

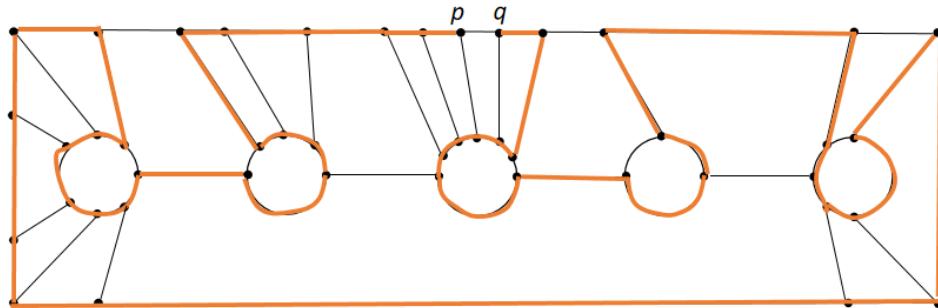


Figure 11. Example of a hamilton pq – path in case 1 in Lemma 4.3.

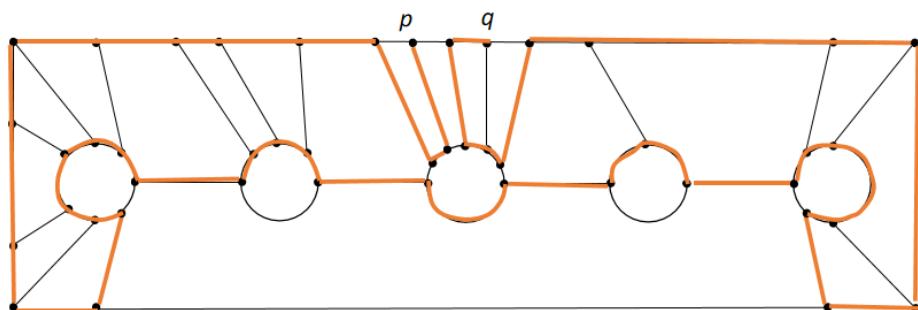


Figure 12. Example of a hamilton pq – path in case 2 in Lemma 4.3.

Lemma 4.4: Let $n \geq 3$ be odd and $PP = PP(k, [r_2, 0], \dots, [r_{n-1}, 0], l)$. If $p \in V(H_1) \cup V(H_n)$ and $q \in V(B_i), 2 \leq i \leq n-1$, then there is a hamilton pq -path in PP .

Proof By symmetry, we will show only the case that $p \in V(H_1)$. We will show a hamilton pq -path P_H in the following cases.

Case 1: i is odd.

According to vertices of H_1 and B_i , we have the following subcases.

Subcase 1.1: $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even}$. By Lemma 2.1, there is a hamilton pa_k -path M in H_1 , and, a hamilton $x_n b_1$ -path N in H_n . By Lemma 3.2(1, 3), there is an qp_1 -path S and a $p_2 x_i$ -path T , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Moreover, we define a path Q_H : $y_i, D_{i+1}^*, D_{i+2}^*, \dots, D_{n-1}^*, x_n N b_1, P_{n-1}^*, P_{n-2}^*, \dots, D_{i+1}^*, u_{r_i}^i$. Then P_H : $pMa_k, Y_2, X_3, Y_4, \dots, Y_{i-1}, x_i T p_2, Q_H, p_1 Sq$.

Subcase 1.2: $p \neq y_1$ and $q \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1), there is a hamilton py_1 -path M in H_1 , and, a hamilton $x_n b_1$ -path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 -path S and a $p_2 u_1^i$ -path T , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. We use a path Q_H in subcase 1.1 and then P_H : $pMy_1, X_2, Y_3, X_4, \dots, X_{i-1}, u_1^i T p_2, Q_H, p_1 Sq$.

Subcase 1.3: $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{y_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 3), there is a hamilton pa_1 -path M in H_1 , and, a hamilton $x_n b_l$ -path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 -path S and a $p_2 u_{r_i}^i$ -path T , such that $\{p_1, p_2\} = \{u_1^i, x_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Moreover, we define a path Q'_H : $x_i, D_{i-1}^*, D_{i-2}^*, \dots, D_3^*, y_2, x_2, \bar{u}_1^2 \bar{A}_2 u_{r_2}^2$,

$P_3^*, P_4^*, \dots, D_{i-1}^*, u_1^i$. Then P_H : $pMa_1, b_l N x_n, Y_{n-1}, X_{n-2}, Y_{n-3}, \dots, Y_{i+1}, u_{r_i}^i T p_2, Q'_H, p_1 Sq$.

Subcase 1.4: $p = y_1$ and $q = x_i$. By Lemma 2.1(1, 2), there is a hamilton $y_1 a_1$ -path M in H_1 , and, a hamilton $b_1 b_l$ -path N in H_n . By Lemma 3.2(3), there is $S = \{x_i\}$ and a $y_1 u_1^i$ -path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. We use a path Q'_H in subcase 1.3 and then P_H :

$y_1 Ma_1, b_l N b_1, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, X_{i+1}, y_i Tu_1^i, Q'_H, x_i$.

Case 2: i is even.

We use Q_H, Q'_H defined in case 1 and have the following subcases.

Subcase 2.1: $p \neq y_1$ and $q \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even}$. By Lemma 2.1(1), there is a hamilton py_1 -path M in H_1 , and a hamilton $x_n b_1$ -path N in H_n . By Lemma 3.2(1, 3), there is an qp_1 -path S and a $p_2 x_i$ -path T , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$pMy_1, X_2, Y_3, X_4, \dots, Y_{i-1}, x_i T p_2, Q_H, p_1 Sq$.

Subcase 2.2: $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 2), there is a hamilton pa_k -path M in H_1 , and, a hamilton $x_n b_1$ -path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 -path S and a $p_2 u_1^i$ -path T , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$pMa_k, Y_2, X_3, Y_4, \dots, X_{i-1}, u_1^i T p_2, Q_H, p_1 Sq$.

Subcase 2.3: $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{y_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 3), there is a hamilton pa_1 -path M in H_1 , and, a hamilton $b_1 b_l$ -path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 -path S and a $p_2 u_{r_i}^i$ -path T , such that $\{p_1, p_2\} = \{u_1^i, x_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H : $pMa_1, b_l N b_1, X_{n-1}$,

$$Y_{n-2}, X_{n-3}, \dots, Y_{i+1}, u_{r_i}^i T p_2, Q'_H, p_1 S q.$$

Subcase 2.4: $p = y_1$ and $q = x_i$. By Lemma 2.1(1), there is a hamilton $y_1 a_1$ – path M in H_1 , and , a hamilton $x_n b_l$ – path N in H_n . By Lemma 3.2(3), there is $S = \{x_i\}$ and a $y_1 u_1^i$ – path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then $P_H : y_1 M a_1, b_l N x_n, Y_{n-1}, X_{n-2}, Y_{n-3}, \dots, X_{i+1}, y_i T u_1^i, Q'_H, x_i$

Lemma 4.5: Let $n \geq 4$ be even and $PP = PP(k, [r_2, 0], \dots, [r_{n-1}, 0], l)$. If $p \in V(H_1) \cup V(H_n)$ and $q \in V(B_i), 2 \leq i \leq n-1$, then there is a hamilton pq – path in PP . *Proof* By symmetry, we will show only the case that $p \in V(H_1)$. We will use paths Q_H, Q'_H defined in Lemma 4.4 and show a hamilton pq – path P_H in the following cases.

Case 1: i is odd.

we have the following subcases.

Subcase 1.1: $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and

$q \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even}$. Use the same proof as subcase 1.1 in Lemma 4.4.

Subcase 1.2: $p \neq y_1$ and $q \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. Use the same proof as subcase 1.2 in Lemma 4.4.

Subcase 1.3: $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{y_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 3), there is a hamilton $p a_1$ – path M in H_1 , and , a hamilton $b_1 b_l$ – path N in H_n . By Lemma 3.2(2, 4), there is an $q p_1$ – path S and $a p_2 u_{r_i}^i$ – path T , such that $\{p_1, p_2\} = \{u_1^i, x_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then $P_H : p M a_1, b_l N b_1, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, Y_{i+1}, u_{r_i}^i T p_2, Q'_H, p_1 S q$.

Subcase 1.4: $p = y_1$ and $q = x_i$. By Lemma 2.1(1, 2), there is a hamilton $y_1 a_1$ – path M in H_1 , and , a hamilton $x_n b_l$ – path N in H_n . By Lemma 3.2(3), there is $S = \{x_i\}$ and a $y_1 u_1^i$ – path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then $P_H : y_1 M a_1, b_l N b_1, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, X_{i+1}, y_i T u_1^i, Q'_H, x_i$.

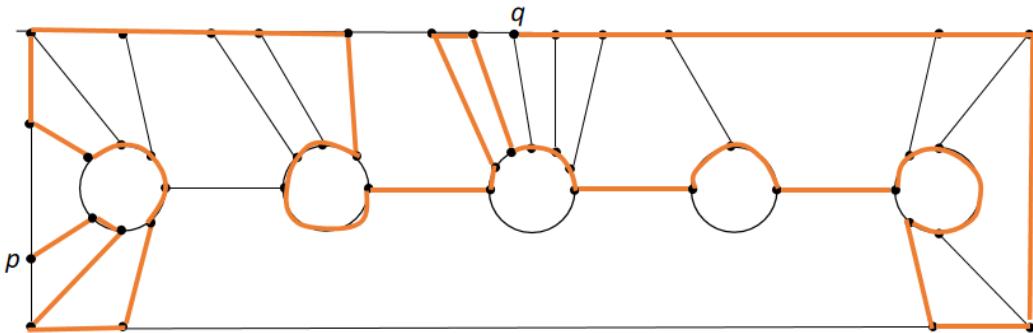


Figure 13. Example of a hamilton pq – path in subcase 1.1 in Lemma 4.4.

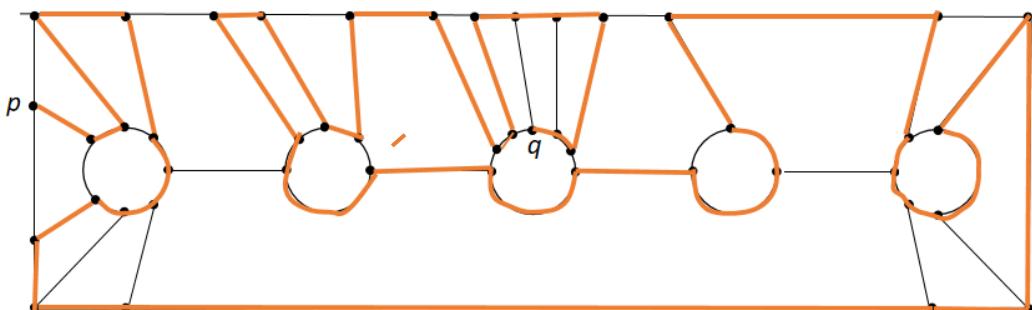


Figure 14. Example of a hamilton pq – path in subcase 1.3 in Lemma 4.4.

Case 2: i is even. We use Q_H, Q'_H defined in case 1 and have the following subcases.

Subcase 2.1: $p \neq y_1$ and $q \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even}$. By Lemma 2.1(1), there is a hamilton py_1 – path M in H_1 , and a hamilton $x_n b_1$ – path N in H_n . By Lemma 3.2(1, 3), there is an qp_1 – path S and a $p_2 x_i$ – path T , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$$pM y_1, X_2, Y_3, X_4, \dots, Y_{i-1}, x_i T p_2, Q_H, p_1 S q.$$

Subcase 2.2: $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 2), there is a hamilton pa_k – path M in H_1 , and, a hamilton $x_n b_1$ – path N in H_n . By lemma 3.2(2, 4), there is an qp_1 – path S and a $p_2 u_1^i$ – path T , such that $\{p_1, p_2\} = \{u_{r_i}^i, y_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$$pM a_k, Y_2, X_3, Y_4, \dots, X_{i-1}, u_1^i T p_2, Q_H, p_1 S q.$$

Subcase 2.3: $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{y_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 3), there is a hamilton pa_1 – path M in H_1 , and, a hamilton $b_1 b_l$ – path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 – path S and a $p_2 u_{r_i}^i$ – path T , such that $\{p_1, p_2\} = \{u_1^i, x_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$$pM a_1, b_l N b_1, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, Y_{i+1}, u_{r_i}^i T p_2, Q'_H, p_1 S q.$$

Subcase 2.4: $p = y_1$ and $q = x_i$. By Lemma 2.1(1), there is a hamilton $y_1 a_1$ – path M in H_1 , and, a hamilton $x_n b_l$ – path N in H_n . By Lemma 3.2(3), there is $S = \{x_i\}$ and a $y_1 u_1^i$ – path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$$y_1 M a_1, b_l N x_n, Y_{n-1}, X_{n-2}, Y_{n-3}, \dots, X_{i+1}, y_i T u_1^i, Q'_H, x_i$$

Lemma 4.5: Let $n \geq 4$ be even and $PP = PP(k, [r_2, 0], \dots, [r_{n-1}, 0], l)$. If $p \in V(H_1) \cup V(H_n)$ and $q \in V(B_i)$, $2 \leq i \leq n-1$, then there is a hamilton pq – path in PP .

Proof By symmetry, we will show only the case that $p \in V(H_1)$. We will use paths Q_H, Q'_H defined in Lemma 4.4 and show a hamilton pq – path P_H in the following cases.

Case 1: i is odd.we have the following subcases.

Subcase 1.1: $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even}$. Use the same proof as subcase 1.1 in Lemma 4.4.

Subcase 1.2: $p \neq y_1$ and $q \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. Use the same proof as subcase 1.2 in Lemma 4.4.

Subcase 1.3: $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{y_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 3), there is a hamilton pa_1 – path M in H_1 , and, a hamilton $b_1 b_l$ – path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 – path S and a $p_2 u_{r_i}^i$ – path T , such that $\{p_1, p_2\} = \{u_1^i, x_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$$pM a_1, b_l N b_1, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, Y_{i+1}, u_{r_i}^i T p_2, Q'_H, p_1 S q.$$

Subcase 1.4: $p = y_1$ and $q = x_i$. By Lemma 2.1(1, 2), there is a hamilton $y_1 a_1$ – path M in H_1 , and, a hamilton $x_n b_l$ – path N in H_n . By Lemma 3.2(3), there is $S = \{x_i\}$ and a $y_1 u_1^i$ – path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then P_H :

$$y_1 M a_1, b_l N x_n, Y_{n-1}, X_{n-2}, Y_{n-3}, \dots, X_{i+1}, y_i T u_1^i, Q'_H, x_i$$

Case 2: i is even.we have the following subcases.

Subcase 2.1: $p \neq y_1$ and $q \in \{y_i\} \cup U_i^{odd} \cup \bar{U}_i^{even}$. Use the same proof as subcase 2.1 in Lemma 4.4.

Subcase 2.2: $p \in \{y_1\} \cup Z_1^{odd} \cup \bar{Z}_1^{even}$ and $q \in \{x_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. Use the same proof as subcase 2.2 in Lemma 4.4.

Subcase 2.3: $p \in \{y_1\} \cup Z_1^{even} \cup \bar{Z}_1^{odd}$ and $q \in \{y_i\} \cup U_i^{even} \cup \bar{U}_i^{odd}$. By Lemma 2.1(1, 3), there is a hamilton pa_1 – path M in H_1 , and , a hamilton $x_n b_l$ – path N in H_n . By Lemma 3.2(2, 4), there is an qp_1 – path S and a $p_2 u_{r_i}^i$ – path T , such that $\{p_1, p_2\} = \{u_1^i, x_i\}$, $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then $P_H : pMa_1, b_lNx_n, X_{n-1}, Y_{n-2}, X_{n-3}, \dots, Y_{i+1}, u_{r_i}^i T p_2, Q'_H, p_1 Sq$.

Subcase 2.4: $p = y_1$ and $q = x_i$. By Lemma 2.1(1), there is a hamilton $y_1 a_1$ – path M in H_1 , and , a hamilton $b_1 b_l$ – path N in H_n . By Lemma 3.2(3), there is $S = \{x_i\}$ and a $y_i u_1^i$ – path T , such that $V(S) \cup V(T) = V(B_i)$, $V(S) \cap V(T) = \emptyset$. Then $P_H : y_1 Ma_1, b_lNb_1, Y_{n-1}, X_{n-2}, Y_{n-3}, \dots, X_{i+1}, y_i Tu_1^i, Q'_H, x_i$.

Combining all Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5, we get the following. **Theorem 4.6 :** For every natural number $n \geq 3$, even natural numbers k, l , and odd natural numbers r_2, r_3, \dots, r_{n-1} , a Pupa graph $PP(k, [r_2, 0], [r_3, 0], \dots, [r_{n-1}, 0], l)$ is hamilton-connected.

5. Conclusion and Open Problems

A In this paper, we already show that a Pupa graph $PP(k, [r_2, 0], [r_3, 0], \dots, [r_{n-1}, 0], l)$ is hamilton-connected. Then this can be improved to general case so we give the following conjecture. Conjecture 5.1 : For all natural numbers $n \geq 3$, even natural numbers k, l , and odd natural numbers $r_2, r_3, \dots, r_{(n-1)}, s_2, s_3, \dots, s_{(n-1)}$, a Pupa graph $PP(k, [r_2, s_2], [r_3, s_3], \dots, [r_{(n-1)}, s_{(n-1)}], l)$ is hamilton-connected.

References

Barnette D (1969) Conjecture 5. In Tutte WT (ed.) Recent Progress in Combinatorics. Academic Press, New York, pp 343

Tait PG (1884) Listing's topologie. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17: 30–46

Tutte WT (1946) On Hamiltonian circuits. Journal of the London Mathematical Society 21 : 98–101