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บทคัดย่อ 

บทความนี้นำเสนอการวิเคราะห์ทางสถิตศาสตร์แบบไม่เป็นเชิงเส้นของโครงสร้างเปลือกบางรูปทรงห่วงยาง
หน้าตัดรูปทรงไข่รับแรงดันภายใน ความสัมพันธ์ระหว่างความเครียด-การเสียรูปและความโค้ง-การเสียรูปในเทอมของ
องค์ประกอบเมตริกซ์เทนเซอร์และความโค้งได้ถูกนำมาพิจารณาในฟังก์ชันพลังงานของระบบโครงสร้างเปลือกบาง
รูปทรงห่วงยางหน้าตัดรูปทรงไข่ และเขียนในรูปแบบที่เหมาะสมสำหรับการคำนวณแบบไม่เป็นเชิงเส้น การศึกษา  
ครั้งนี้ ใช้วิธีตัวคูณแบบลากรองจ์ในการป้องกันปัญหาความไม่ต่อเนื่องที่เกิดขึ้นกับจุดเชื่อมต่อของโครงสร้างและวิธี  
ไฟไนต์เอลิเมนต์แบบไม่เป็นเชิงเส้นในการหาผลลัพธ์เชิงตัวเลขสำหรับค่าการเสียรูปตามแนวพิกัดเมอร์ริเดียนและ
แนวตั้งฉากกับเมอร์ริเดียน ผลการศึกษาพบว่า ค่าการเสียรูปที่ได้จากงานวิจัยในครั้งนี้มีความถูกต้องเมื่อเปรียบเทยีบ
กับผลที่ได้จากโปรแกรมไฟไนต์เอลิเมนต์สำเร็จรูป ผลการวิเคราะห์เชิงตัวเลขที่แสดงค่าการเสียรูปของโครงสร้าง
เปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ภายใต้การแปรเปลี่ยนแรงดันภายใน  อัตราส่วนความยาวรัศมีหน้าตัด  
และอัตราส่วนความยาวรัศมีการดัดต่อความยาวรัศมีหน้าตัดของโครงสร้างเปลือกบางได้ถูกนำเสนอในบทความนี้ 
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Abstract 
This paper presents a nonlinear static analysis of egg- shaped toroidal shells under internal 

pressure. Strain- and curvature-displacement relations are considered in the energy functional of the 
egg- shaped toroidal shell system in terms of the metric tensor and curvature components, and are 
written in terms of the appropriate form for nonlinear analysis.  Lagrange multiplier’ s method is 
introduced in the present formulation to enforce the discontinuity effect. The numerical results in 
terms of the meridian and normal to the meridian displacements can be obtained by nonlinear finite 
element method. The toroidal shell displacements from the present formulation are found to be in 
close agreement with the finite element commercial software results.  Finally, the effects of the 
internal pressure, cross-sectional radii ratio, and bend-to-cross-sectional radii ratio on the numerical 
results in terms of toroidal shell displacements are demonstrated in this paper. 

Keywords: Nonlinear Static Analysis, Egg-Shaped Toroidal Shells, Internal Pressure, Energy Functional, 
Lagrange Multiplier’s Method 
 

1. ที่มาและความสำคัญ 
โครงสร้างเปลือกบางรูปทรงห่วงยาง (Toroidal Shells) เป็นโครงสร้างที่มีการใช้งานอย่างหลากหลายใน

ภาคอุตสาหกรรม เช่น ถังสำหรับบรรจุเชื้อเพลิง ถังบรรจุก๊าซธรรมชาติ ถังรับแรงดันสูง หรือข้อต่อสำหรับงานท่อใน
งานอุตสาหกรรมปิโตรเคมี เป็นต้น [1-3] นอกจากการใช้งานในภาคอุตสาหกรรมแล้ว ยังพบว่าในปัจจุบันได้มี
การศึกษาและวิจัยเกี่ยวกับการใช้งานโครงสร้างเปลือกบางรูปทรงห่วงยางในงานทางด้านวิศวกรรมโยธา ดังแสดงใน
งานวิจัยของ Zingoni และ Enoma [4] ที่ได้ทำการวิเคราะห์กำลังและเสถียรภาพของโครงสร้างเปลือกบางรูปทรง
ห่วงยางหน้าตัดรูปทรงอิลิปติก (Elliptic Toroidal Dome) ภายใต้น้ำหนักบรรทุกกระทำในแนวดิ่ง ซึ่งจะแตกต่างจาก
การวิเคราะห์โครงสร้างเปลือกบางทั่วไปที่จะพิจารณาเฉพาะกรณีที่แรงดันกระทำในแนวตั้งฉากกับโครงสร้างเปลือก
บางนั่นเอง แต่ในปัจจุบันการใช้งานโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ เริ่มได้รับความนิยมใน
ภาคอุตสาหกรรมและงานวิศวกรรมนอกชายฝั่ง [5-6] เนื่องจากโครงสร้างดังกล่าวสามารถรับแรงดันได้สูงกว่า
โครงสร้างเปลือกบางรูปหน้าตัดมาตรฐาน [7]  

การวิเคราะห์โครงสร้างเปลือกบางรูปทรงห่วงยางรับแรงดันโดยทั่วไปจะสามารถวิเคราะห์เป็นปัญหาแบบ
สมมาตรตามแนวแกน (Axisymmetric Problems) ได้ ดังแสดงในงานวิจัยของ Sanders และ Liepins [8] ที่ใช้
ทฤษฎีการแปลงเมมเบรนให้อยู่ในรูปแบบเชิงเส้น (Linearized Membrane Theory) ในการหาค่าการเสียรูปของ
โครงสร้างเปลือกบางหน้าตัดวงกลมในกรณีที่ความหนาของโครงสร้างมีค่าน้อยมากเมื่อเทียบกับขนาดหน้าตัดของ
โครงสร้างเพื่อลดปัญหาการคำนวณค่าการเสียรูปที่ตำแหน่งจุดยอด (Apex) ของโครงสร้างเปลือกบางรูปทรงห่วงยาง 
ที่ไม่สามารถวิเคราะห์ได้โดยใช้ทฤษฎีเมมเบรนเพียงอย่างเดียว Jiammeepreecha และ Chucheepsakul [9]  
ได้ทำการศึกษาผลตอบสนองของโครงสร้างเปลือกบางแบบไม่เป็นเชิงเส้นที่ติดตั้งในน้ำทะเลลึกโดยใช้ทฤษฎีเมมเบรน
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ในการวิเคราะห์ หลังจากนั้น Jiammeepreecha และคณะ [10] ได้พัฒนาแบบจำลองโดยเพิ่มผลของของเหลวและ
เงื ่อนไขการจำกัดการเปลี่ยนแปลงปริมาตรที่มีต่อโครงสร้างเปลือกบางแบบไม่เป็นเชิงเส้นที่ติดตั้งในน้ำทะเลลึก  
โดยใช้ทฤษฎีเมมเบรน จนกระทั่งในปี 2021 ได้เพิ่มผลของพลังงานความเครียดเนื่องจากแรงดัดเข้าไปในสมการ
สำหรับการวิเคราะห์ในงานวิจัยของ Jiammeepreecha และคณะ [11] สำหรับสมการแบบแม่นตรงสำหรับการ
วิเคราะห์โครงสร้างเปลือกบางรูปทรงห่วงยางโดยใช้ทฤษฎีการเสียรูปขนาดเล็กได้ถูกนำเสนอในงานวิจัยของ  
Sun [12] สำหรับโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดวงรีได้มีการศึกษาโดย Sutcliffe [13], Galletly [14], 
Zingoni และคณะ [15] และ Tangbanjongkij และคณะ [16-17] เป็นต้น จากงานวิจัยที่ผ่านมาพบว่าโครงสร้าง
ดังกล่าวได้ทำการศึกษาเฉพาะโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดวงกลมและวงรีเท่านั้น ยกเว้นงานวิจัย  
ของ Enoma และ Zingoni [18] ที่ได้ทำการศึกษาค่ากำลังและเสถียรภาพของโครงสร้างเปลือกบางรูปทรงห่วงยาง
หน้าตัดผสม  

แต่เป็นการศึกษาเฉพาะผลของค่าการเสียรูปขนาดเล็ก (Small Displacement) เนื่องจากเป็นข้อจำกัดของ
สมการสำหรับการวิเคราะห์ (Analytical Formulation) ในขณะที่น้ำหนักบรรทุกหรือแรงดันที่กระทำต่อโครงสร้าง
เปลือกบางมีค่ามาก ดังนั้นการศึกษาเฉพาะผลของการเสียรูปขนาดเล็กจึงอาจจะให้คำตอบที่ไม่ครอบคลุมปัญหา  
ที่เกิดขึ ้น การวิเคราะห์เพื ่อหาคำตอบแบบไม่เป็นเชิงเส้นโดยพิจารณาผลของค่าการเสียรูปขนาดใหญ่ ( Large 
Displacement) จึงมีความสำคัญอย่างมากสำหรับโครงสร้างเปลือกบางท่ีใช้ในงานวิศวกรรมดังกล่าว 

 
2. วัตถุประสงค์ 

วัตถุประสงค์ของงานวิจัยในโครงการนี้จะเป็นการพัฒนาแบบจำลองทางคณิตศาสตร์สำหรับวิเคราะห์ทางสถิต
ศาสตร์แบบไม่เป็นเชิงเส้นของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายใน โดยใช้หลักการ
ของเรขาคณิตเชิงอนุพันธ์ (Differential Geometry) [19-20] ในการจำลองรูปทรงเรขาคณิตของโครงสร้างเปลือก
บางและเขียนฟังก์ชันพลังงาน (Energy Functional) ของระบบโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่
รับแรงดันภายในโดยอาศัยหลักการงานเสมือน (Principle of Virtual Work) [21-22] โดยที่ความสัมพันธ์ระหว่าง
ความเครียด-การเสียรูป และความโค้ง-การเสียรูป สามารถนิยามได้จากหลักการของความเครียดลากรองจ์ 
(Lagrangian Strains) [23] จากนั ้นใช้ว ิธีไฟไนต์เอลิเมนต์แบบไม่เป็นเชิงเส้นร่วมกับเทคนิคตัวคูณลากรองจ์ 
(Lagrange Multiplier’s Technique) [24] ในการจำกัดการเสียรูปและความลาดชันของแต่ละชิ้นส่วนย่อยให้เกิด
ความต่อเนื่อง การหาคำตอบเชิงตัวเลขสำหรับผลลัพธ์แบบไม่เป็นเชิงเส้น (Nonlinear Results) จะใช้กระบวนการ
กระทำซ้ำ (Iterative Procedure) สำหรับค่าการเสียรูปที่เกิดขึ้นในโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด
รูปทรงไข่รับแรงดันภายใน 
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3. ทฤษฎีที่ใช้ในการวิเคราะห์ 
3.1 สมมติฐานที่ใช้ในการวิเคราะห์ 
วัสดุของโครงสร้างเปลือกบางมีคุณสมบัติยืดหยุ่นแบบเชิงเส้นโดยที่พลังงานความเครียดจะถูกเขียนในรูปของ

ฟังก์ชันกำลังสองของค่าความเครียดลากรองจ์ โดยที่ความหนาของโครงสร้างเปลือกบางมีค่าคงที่ไม่มีการเปลี่ยนแปลง
ทั้งก่อนและหลังการเสียรูป และค่าการเสียรูปที่เกิดขึ้นเนื่องจากน้ำหนักของโครงสร้างจะมีค่าน้อยมากเม่ือเปรียบเทียบ
กับค่าที่เกิดจากแรงดันภายในที่กระทำต่อโครงสร้าง จึงไม่นำมาพิจารณา 

3.2 แบบจำลองโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ 
รูปที่ 1 แสดงค่าพารามิเตอร์ที่เกี่ยวข้องกับรูปทรงเรขาคณิตของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด

รูปทรงไข่รับแรงดันภายใน กำหนดให้โครงสร้างเปลือกบางรูปทรงห่วงยางชิ้นส่วนบริเวณด้านนอก (Extrados)  
และด้านใน (Intrados) ที่มีความยาวรัศมี b (จุดศูนย์กลาง 1C  และ 2C  ตามลำดับ) จะถูกเชื่อมต่อด้วยโครงสร้าง
เปลือกบางรูปทรงห่วงยางชิ้นส่วนที่มีความยาวรัศมี a  (จุดศูนย์กลาง 3C  และ 4C ) ดังนั้นกำหนดให้ aS  คือ พ้ืนผิว
ของโครงสร้างเปลือกบางรูปทรงห่วงยางชิ้นส่วนที ่มีความยาวรัศมี  a  ในขณะที่ b

oS  และ b

iS  คือ พื้นผิวของ
โครงสร้างเปลือกบางรูปทรงห่วงยางชิ้นส่วนที่มีความยาวรัศมี b สำหรับบริเวณด้านนอกและด้านใน ตามลำดับ 
นอกจากนี้ยังกำหนดให้จุดเชื่อมต่อของโครงสร้างเปลือกบางส่วนบนของระนาบอิเควเตอร์ (Equatorial Plane) คือ 

u

iJ  and u

oJ  สำหรับเชื่อมต่อระหว่างพื้นผิว aS  กับพื้นผิว b

iS  และพื้นผิว b

oS  ตามลำดับ เช่นเดียวกันกับจุด
เชื่อมต่อของโครงสร้างเปลือกบางส่วนล่างของระนาบอิเควเตอร์คือ l

iJ  and l

oJ  สำหรับเชื่อมต่อระหว่างพื้นผิว aS  
กับพื้นผิว b

iS  และพื้นผิว b

oS  ตามลำดับ ที่ตำแหน่งระนาบอิเควเตอร์ จุดเชื่อมต่อระหว่างโครงสร้างส่วนบนและ
ส่วนล่างจะแทนสัญลักษณ์ด้วย e

oJ  และ e

iJ  ที่ตำแหน่งโครงสร้างเปลือกบางรูปทรงห่วงยางชิ้นส่วนบริเวณด้านนอก
และด้านในตามลำดับ 

ถ้ากำหนดให้พิกัดของโครงสร้างเปลือกบางรูปทรงห่วงยางตามแนวทิศทางเมอร์ริเดียนและลองจิจูดมีค่าเป็น  
มุม   และ   ตามลำดับ ดังนั้นที่จุดเชื่อมต่อ u

oJ  และ l

oJ  จะมีค่ามุม   เท่ากับ   ในขณะทีจุ่ดเชื่อมต่อ u

iJ  และ 
l

iJ  จะมีค่ามุม   เท่ากับ 180o −  และระยะทาง c  จะมีค่าเท่ากับ ( ) cosc b a = −  ซึ ่งเป็นระยะทางใน
แนวราบวัดตามแกนรัศมี R  จากตำแหน่งของจุดศูนย์กลาง 1C  ไปยังจุดศูนย์กลาง 3C  (หรือ 4C ) ส่วนระยะทาง d  
จะมีค่าเท่ากับระยะทางในแนวดิ่งวัดตามแกนหมุน Z  จากตำแหน่งของจุดศูนย์กลาง 1C  (หรือ 2C ) ไปยังจุด
เชื่อมต่อ u

iJ  (หรือ u

oJ , l

iJ  และ l

oJ ) นั่นคือมีค่าเท่ากับ sind b =  สุดท้าย e  คือ ระยะทางในแนวราบวัดจาก
จากแกนหมุนถึงจุดศูนย์กลางหรือความยาวรัศมีการดัด 3C  (หรือ 4C ) 

3.3 หลักการของเรขาคณิตเชิงอนุพันธ์ 
สำหรับโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ที่ตำแหน่งพื้นผิว b

oS  จะสามารถเขียนเวคเตอร์
ระบุตำแหน่งได้ดังสมการที่ (1) 

( cos ) ( cos ) sinˆ ˆ ˆcos sinb

o e c b e c b b    = − + + − + +R i j k                                   (1) 
จากหลักการของเรขาคณิตเชิงอนุพันธ์ [18] จะสามารถคำนวณหาค่าองค์ประกอบเมตริกซ์เทนเซอร์ (Metric 

Tensor Component) ได้ดังสมการที่ (2) 
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2
b b

b o o
o

d d
E b

d d 
=  =

R R    (2ก) 

2( cos )
b b

b o o
o

d d
G e c b

d d


 
=  = − +

R R    (2ข) 

เวคเตอร์ตั้งฉากหนึ่งหน่วย (Unit Normal Vector) กับพื้นผิวของโครงสร้างเปลือกบางที่ศูนย์กลางความหนา 
(Middle Surface) จะสามารถคำนวณได้ดังสมการที่ (3) 

1
cos cos cos sin sˆ i ˆˆ nˆ

b b
b o o
o b b

o o

d d

A B d d
    

 

 
=  = − − − 

 

R R
n i j k    (3) 

เม ื ่อ b b

o oA E=  และ b b

o oB G=  ด ังน ั ้นค ่าองค ์ประกอบเทนเซอร ์ความโค ้ง (Curvature Tensor 
Component) ของพ้ืนผิว b

oS จะคำนวณได้จากสมการที่ (4) 
 

 
รูปที่ 1 รูปทรงเรขาคณิตและพิกัดของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ 

 
2

2
ˆ

b
b b bo
o o o

d
L

d
A



 
=  = 
 

R
n   (4ก) 

2

2
ˆ cos

b
b b bo
o o o

d
N

d
B 



 
=  = 
 

R
n   (4ข) 

จากสมการที ่ (2) และ (4) จะสามารถหาค่าความโค้งหลัก (Principal Curvature) ของพื ้นผิว b

oS  ได้ดัง 
สมการที่ (5) 

1

1
( )

b
b o
o b

o

L

E b
 = =   (5ก) 

2

cos
( )

b
b o
o b b

o o

N

G B


 = =   (5ข) 

 R
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
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
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
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e
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b

oS
b

iS

1C

u

oJ

l
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เนื่องจากเป็นปัญหาสมมาตรของโครงสร้างเปลือกบาง (Axisymmetric Shells) ดังนั้นเส้นของความโค้งหลัก
จะซ้อนทับกับเส้นพิกัด (Coordinate Lines) ดังสมการที่ (6) 

2

0ˆ
b b b

bo o o
o

d d d

d d d d   

 
 =  = 

 

R R R
n   (6) 

สำหรับโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ที่ตำแหน่งพื้นผิว aS จะสามารถเขียนเวคเตอร์
ระบุตำแหน่งได้ดังสมการที่ (7) 

( cos ) ( cos ) (ˆ ˆ ˆcos sin )sina e a e a d a    = + + + + +R i j k    (7) 
จากสมการที่ (7) ค่าองค์ประกอบเมตริกซ์เทนเซอร์ ได้ดังสมการที่ (8) 

2
a a

a d d
E a

d d 
=  =

R R    (8ก) 

2( cos )
a a

a d d
G e a

d d


 
=  = +

R R    (8ข) 

เวคเตอร์ตั ้งฉากหนึ่งหน่วยกับพื ้นผิวของโครงสร้างเปลือกบางที ่ศูนย์กลางความหนาจะสามารถคำนวณ  
ได้ดังสมการที่ (9) 

c ˆ ˆ ˆˆ
1

os cos cos sin sin
a a

a

a a

d d

A B d d
    

 

 
=  = − − − 

 

R R
n i j k   (9) 

เมื่อ a aA E=  และ a aB G=  ดังนั้นค่าองค์ประกอบเทนเซอร์ความโค้งของพ้ืนผิว aS จะคำนวณได้จาก
สมการที่ (10) 

2

2
ˆ

a
a a ad

L
d

A


 
=  = 
 

R
n     (10ก) 

2

2
ˆ cos

a
a a ad

N B
d




 
=  = 
 

R
n    (10ข) 

จากสมการที่ (2) และ (4) จะสามารถหาค่าความโค้งหลักของพ้ืนผิว aS  ได้ดังสมการที่ (11) 

1

1
( )

a
a

a

L

E a
 = =   (11ก) 

2

cos
( )

a
a

a a

N

G B


 = =   (11ข) 

เนื่องจากเป็นปัญหาสมมาตรของโครงสร้างเปลือกบาง (Axisymmetric Shells) ดังนั้นเส้นของความโค้งหลัก
จะซ้อนทับกับเส้นพิกัดดังสมการที่ (12) 

2

0ˆ
a a a

ad d d

d d d d   

 
 =  = 

 

R R R
n   (12) 

สำหรับพื้นผิว b

iS  จะสามารถนิยามเวคเตอร์ระบุตำแหน่งของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด
รูปทรงไข่ได้ดังสมการที่ (13) 
 ( cos ) ( cos ) sinˆ ˆ ˆcos sinb

i e c b e c b b    = + + + + + +R i j k   (13) 
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ดังนั ้นค่าองค์ประกอบของเมตริกซ์เทนเซอร์และองค์ประกอบของเทนเซอร์ความโค้งสามารถหาได้โดย  
การแทนที่ c c= −  ลงในสมการที่ (1) และ (2) ตามลำดับ ในขณะที่ค่าเวคเตอร์ตั้งฉากหนึ่งหน่วย ( ˆ b

in ) และค่าความ
โค้งหลัก ( )b

i  ของพ้ืนผิว b

iS จะมีค่าดังสมการที่ (3) และ (5) ตามลำดับ 
3.4 ความสัมพันธ์ระหว่างความเครียดและความโค้งกับระยะการเสียรูป 
การหาความสัมพันธ์ระหว่างความเครียด-การเสียรูป (Strain-Displacement Relation) และความสัมพันธ์

ระหว่างความโค้ง-การเสียรูป (Curvature-Displacement Relation) สำหรับโครงสร้างเปลือกบางรูปทรงห่วงยาง
หน้าตัดรูปทรงไข่รับแรงดันสม่ำเสมอจากภายนอก จะสามารถนิยามได้จาก Mase และ Mase [23] และ Langhaar 
[25] ตามลำดับ ดังนั้นถ้ากำหนดให้ ( , , )u v w  คือ องค์ประกอบของค่าการเสียรูปตามแนวพิกัดเมอร์เดียน แนวพิกัด
ลองจิจูด และแนวตั้งฉากกับแนวเมอร์เดียนตามลำดับ เนื่องจากแรงดันภายในจะกระทำสม่ำเสมอตลอดหน้าตัด
โครงสร้างส่งผลทำให้การเสียรูปของโครงสร้างเป็นปัญหาสมมาตรรอบแกนหมุน (Shell of Revolution) ดังนั้นค่า
การเสียรูปตามแนวพิกัดลองจิจูดจะไม่นำมาพิจารณา ( 0)v =  ดังนั้นความสัมพันธ์ระหว่างความเครียด-การเสียรูป 
และความสัมพันธ์ระหว่างความโค้ง-การเสียรูปจะสามารถคำนวณได้โดยเริ่มต้นจากการพิจารณาเวคเตอร์ระบุตำแหน่ง
ของโครงสร้างเปลือกบางท่ีสภาวะหลังการเสียรูปสำหรับพ้ืนผิว b

oS ดังสมการที่ (14) 

  ˆ
b b

b b bo
o ob

b

o

o

d u
w

d A

 
= + + 

 

R
R R n  (14) 

ดังนั้นองค์ประกอบเมตริกซ์เทนเซอร์ที่สภาวะหลังการเสียรูปจะมีค่าดังสมการที่ (15) 

  
2 2

b b b b
b bo o o o
o o

b

o

d d du dw
E b w u

d d d d   

   
=  = + − + +   

   

R R  (15ก) 

  
2

sin cos
b b

b b bo o
o

b

o o

d d
G B u w

d d
 

 
 =  = − − 

R R  (15ข) 

จากสมการที ่ (2) และ (15) จะสามารถนิยามความสัมพันธ์ระหว่างความเครียด-การเสียรูปในเทอมของ
องค์ประกอบเมตริกซ์เทนเซอร์ ดังสมการที่ (16) 

  
2 2

, 2

1 1 1

2 2
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o o o o

b

o

b

o
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 (16ก) 

  
2

,

sin cos sin cos1 1
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b o oo o
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
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  
 (16ข) 

จากทฤษฎีโครงสร้างเปลือกบางของ Langhaar [25] จะสามารถนิยามความสัมพันธ์ระหว่างความโค้ง-การเสีย
รูปในเทอมขององค์ประกอบเมตริกซ์เทนเซอร์และองค์ประกอบเทนเซอร์ความโค้ง ได้ดังสมการที่ (17) 

 ,
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Rattanakosin Journal of Science and Technology: RJST Vol. 5 No.3 2023 21 
 

กำหนดให้ 
2 2

2 2

b b b b
b b b o o o o
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du dw d u d w
u w

d d d d   

 
  =   

 
g  จะสามารถเขียนสมการที่ (16) และ (17)  

ในรูปแบบของเมตริกซ์ดังสมการที่ (18) 
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{ } [ ]{ }

2

b b b b b b
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 =  κ S g   (18ข) 

เมื่อ ,{ }b

o iL  และ ,{ }b

o iS  คือ เวคเตอร์ของความสัมพันธ์ระหว่างความเครียดและความโค้งกับระยะการเสียรูป
ของพ้ืนผิว b

oS ตามลำดับ ขณะที่ ,[ ]b

o iH  คือ เมตริกซ์สมมาตรของความสัมพันธ์ระหว่างความเครียดกับระยะการเสีย
รูปของพ้ืนผิว b

oS   
สำหรับพื้นผิว aS จะสามารถนิยามเวคเตอร์ระบุตำแหน่งของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด

รูปทรงไข่ที่สภาวะหลังการเสียรูป ได้ดังสมการที่ (19) 
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ดังนั้นองค์ประกอบเมตริกซ์เทนเซอร์ที่สภาวะหลังการเสียรูปจะมีค่าดังสมการที่ (20) 
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จากสมการที่ (8) และ (20) จะสามารถนิยามความสัมพันธ์ระหว่างความเครียด-การเสียรูปในเทอมของ
องค์ประกอบเมตริกซ์เทนเซอร์ ดังสมการที่ (21) 

  
2 2

2

1 1 1

2 2

a a a
a a a

a

a

a
aE E du du dw

w w u
E a d a d d


  

        −
= = − + − + +       

         

 (21ก) 

  
2

sin cos sin cos1 1

2 2

a a aa a

a a a

a
a G G u w u w

G B B


   


   − + +
= = − +   

  
 (21ข) 

ดังนั้นจะสามารถนิยามความสัมพันธ์ระหว่างความโค้ง-การเสียรูปในเทอมขององค์ประกอบเมตริกซ์เทนเซอร์
และองค์ประกอบเทนเซอร์ความโค้ง ได้ดังสมการที่ (22)  

 1 1 1a a a
a

a a a a

w A w

A A A B


   

      
= − +    

      
 (22ก) 

 
2

1

)

1 1

(

a a a
a

a a a a

B w w

B A B B


   

      
= − +   

       
 (22ข) 

กำหนดให้ 
2 2

2 2

a a a a
a a a du dw d u d w

u w
d d d d   

 
  =   

 
g  จะสามารถเขียนสมการที่ (21) และ (22)  

ในรูปแบบของเมตริกซ์ดังสมการที่ (23) 

  1
{ } [ ]{ }

2

a a a a a a

i i i
  + =  ε L g g H g   (23ก) 
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  { }a a a

i i
 =  κ S g   (23ข) 

เมื่อ { }a

iL  และ { }a

iS  คือ เวคเตอร์ของความสัมพันธ์ระหว่างความเครียดและความโค้งกับระยะการเสียรูป
ของพื้นผิว aS ตามลำดับ ขณะที่ [ ]a

iH  คือ เมตริกซ์สมมาตรของความสัมพันธ์ระหว่างความเครียดกับระยะการเสีย
รูปของพ้ืนผิว aS  

สำหรับพื้นผิว b

iS จะสามารถนิยามเวคเตอร์ระบุตำแหน่งของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด
รูปทรงไข่ที่สภาวะหลังการเสียรูป ได้ดังสมการที่ (24) 

  ˆ
b b

b b b bi i
i i i ib

i

d u
w

d A

 
= + + 

 

R
R R n   (24) 

ความสัมพันธ์ระหว่างความเครียด-การเสียรูป และความสัมพันธ์ระหว่างความโค้ง-การเสียรูป สำหรับพื้นผิวที่
สภาวะหลังการเสียรูป b

iS  จะสามารถหาได้โดยแทนที่ตัวห้อย o  ด้วย i  ในสมการที่ (16) ถึง (18) ตามลำดับ ดังนั้น

กำหนดให ้  
2 2

2 2

b b b b
b b b i i i i
i i i

du dw d u d w
u w

d d d d   

 
  =   

 
g  เราจะสามารถเข ียนความส ัมพ ันธ ์ ระหว ่ าง

ความเครียด-การเสียรูปและความสัมพันธ์ระหว่างความโค้ง-การเสียรูปในรูปแบบของเมตริกซ์ดังสมการที่ (25) และ (26) 

  
, , ,

1
{ } [ ]{ }

2

b b b b b b

i i i i i i i i i
 +  =   ε L g g H g   (25) 

  , , { }b b b

i i i i i
 =  κ S g   (26) 

เมื่อ ,{ }b

i iL  และ ,{ }b

i iS  คือ เวคเตอร์ของความสัมพันธ์ระหว่างความเครียดและความโค้งกับระยะการเสียรูป
ของพ้ืนผิว b

iS  ตามลำดับ ขณะที่ ,[ ]b

i iH  คือ เมตริกซ์สมมาตรของความสัมพันธ์ระหว่างความเครียดกับระยะการเสีย
รูปของพ้ืนผิว b

iS  
3.5 สมการแปรผันของระบบโครงสร้างเปลือกบาง 
การสร้างสมการแปรผัน (Variational Formulation) ของระบบโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด

รูปทรงไข่รับแรงดันภายในจะประกอบไปด้วยพลังงานความเครียดเนื่องจากผลของเมมเบรนและการดัด และงาน
เสมือนเนื่องจากแรงดันภายใน ซึ่งจะถูกสร้างได้โดยอาศัยหลักการของงานเสมือน [21-22] สำหรับวัสดุของโครงสร้าง
เปลือกบางที่มีคุณสมบัติยืดหยุ่นแบบเชิงเส้นจะสามารถคำนวณค่าพลังงานความเครียดเนื่องจากผลของเมมเบรน 
(Strain Energy due to Membrane) ได้ดังสมการที่ (27) 

   
0

0

U

m

m L

m

U
U

U

 
=  
 

 (27) 

เมื่อ U

mU  และ L

mU  คือ พลังงานความเครียดเนื่องจากผลของเมมเบรนสำหรับโครงสร้างเปลือกบางส่วนบนและ
ส่วนล่างตามลำดับ ซึ่งจะมีค่าดังสมการที่ (28) 
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o m
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 
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  (28ก) 
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,
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b

o m

L a

m m

b

i m

U

U U

U

 
 

  =   
 
 

  (28ข) 

เมื่อ ,

b

o mU , a

mU  และ ,

b

i mU  คือ พลังงานความเครียดเนื่องจากผลของเมมเบรนสำหรับพื้นผิว b

oS , aS และ b

iS

ตามลำดับ ซึ่งจะมีค่าดังสมการที่ (29) 

    2

1
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2

b b b

o m o oU C d



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mU C d



   =     (29ข) 

    2

1
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1
 
2

b b b

i m i iU C d



   =     (29ค) 

เมื่อ  C  คือ เมตริกซ์ความแข็งแกร่งเนื่องจากการยืดหดตัว (Extensional Rigidity) ซึ่งจะมีค่าดังสมการที่ (30) 

    2

1

11

E h
C





  
 =  

−  
  (30) 

เมื ่อ h  คือ ความหนาของโครงสร้างเปลือกบาง, E  คือ มอดุลัสยืดหยุ ่น (Elastic Modulus) และ  คือ  
อัตราส่วนปัวส์ซอง (Poisson’s Ratio) ดังนั้นจากงานวิจัยของ Jiammeepreecha และคณะ [11] จะสามารถเขียนสมการ
แปรผันของพลังงานความเครียดเนื่องจากผลของเมมเบรนในสมการที่ (29) ดังสมการที่ (31) 
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เมื่อ ,

b

o m
  k , a

m
  k  และ ,

b

i m
  k  คือ เมตริกซ์ความแข็งแกร่งจากผลของเมมเบรนแบบเชิงเส้น สำหรับพื้นผิว 

b

oS , aS และ b

iS ตามลำดับ ดังสมการที่ (32) 
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ในขณะที ่  ,1

b

o m
  n  และ ,2

b

o m
  n  ค ือ เมตร ิกซ ์ความแข็งแกร ่งจากผลของเมมเบรนแบบไม ่เป ็นเช ิงเส้น  

สำหรับพ้ืนผิว b

oS ดังสมการที่ (33) 
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สุดท้าย 1

a

m
  n  และ 2

a

m
  n  คือ เมตริกซ์ความแข็งแกร่งจากผลของเมมเบรนแบบไม่เป็นเชิงเส้น สำหรับพื้นผิว 

aS ดังสมการที่ (34) 

  
 ( )

 ( )  ( )

2 2

1

1 1

a a a

i j
a

m ij
a a a a a a

i j
i j i j

= =

     +      =          +       


L g H

n C
g L H H g L

 (34ก) 

  
 ( )

 ( )

2

2

2

1 1
1

2

a b a a

i o j
a

m
a

ij

i j
a a a

j i
= =

       +     
    

          

=




H g g H

n
g H g

C
H

 (34ข) 

สำหรับพื้นผิว b

iS  ค่าเมตริกซ์ความแข็งแกร่งจากผลของเมมเบรนแบบไม่เป็นเชิงเส้น ,1

b

i m
  n  และ ,2

b

i m
  n  

จะสามารถนิยามได้โดยการแทนที่ตัวห้อย o  ด้วย i  ในสมการที่ (33ก) และ (33ข) ตามลำดับ 
สำหรับพลังงานความเครียดเนื่องจากผลของแรงดัด (Strain Energy due to Bending) ในโครงสร้างเปลือก

บางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ จะมีค่าดังสมการที่ (35) 
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  (35) 

เมื่อ U

bU  และ L

bU  คือ พลังงานความเครียดเนื่องจากผลของแรงดัดสำหรับโครงสร้างเปลือกบางรูปทรงห่วง
ยางหน้าตัดรูปทรงไข่ส่วนบนและส่วนล่างตามลำดับ ซึ่งจะมีค่าดังสมการที่ (36) 
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เมื่อ ,

b

o bU , a

bU  และ ,

b

i bU  คือ พลังงานความเครียดเนื่องจากผลของแรงดัดสำหรับพื้นผิว b

oS , aS  และ b

iS  
ตามลำดับ ซึ่งจะมีค่าดังสมการที่ (37) 
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เมื่อ  D  คือ เมตริกซ์ความแข็งแกร่งเนื่องจากการดัด (Bending Rigidity) ซึ่งจะมีค่าดังสมการที่ (38) 
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ดังนั ้นจากหลักการของ Jiammeepreecha และคณะ [11] จะสามารถเขียนสมการแปรผันของพลังงาน
ความเครียดเนื่องจากผลของแรงดัดในสมการที่ (37) ดังสมการที่ (39) 
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   2

1

  a a a

b

a

bU d



   =     g k g   (39ข) 

   2

1
, , b b

i b i i b

b

i

bU d



   =      g k g   (39ค) 

เมื่อ ,

b

o b
  k , a

b
  k  และ ,

b

i b
  k  คือ เมตริกซ์ความแข็งแกร่งจากผลของแรงดัด สำหรับพ้ืนผิว b

oS , aS  และ b

iS

ตามลำดับ มีค่าดังสมการที่ (40) 

  ( )
2 2

, , ,

1 1

b b b

o b ij o i o j

i j= =

   =    k D S S   (40ก) 

   ( )
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a a a

b ij i j

i j= =

   =    k D S S   (40ข) 

   ( )
2 2

, , ,

1 1

b b b

i b ij i i i j

i j= =

   =    k D S S   (40ค) 

สุดท้ายจะเป็นการหางานเสมือนเนื่องจากแรงดันภายในที่กระทำต่อโครงสร้างเปลือกบางรูปทรงห่วงยางหน้า
ตัดรูปทรงไข่ โดยแบ่งเป็น 3 ส่วน ดังสมการที่ (41) 

  2

1

{ }b b b b

o o o o op A B d



   = −  w   (41ก) 

  2

1

{ }a a a a

op A B d



   = −  w   (41ข) 

  2

1

{ }b b b b

i o i i ip A B d



   = −  w   (41ค) 

เมื่อ op  คือ แรงดันสม่ำเสมอภายใน จากหลักการของงานเสมือน [21-22] จะสามารถเขียนผลรวมงานเสมือน 
(Total Virtual Work) ของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายในได้ดังสมการที่ (42) 
 m bU U   = + +    (42) 

แทนค่าสมการที่ (31), (39) และ (41) ลงในสมการที่ (42) จะได้ดังสมการที่ (43) 
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 (43) 

3.6 เงื่อนไขของความต่อเนื่อง 
พิจารณาโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันแบบสม่ำเสมอ ดังแสดงในรูปที่ 2  

จะพบว่าที่จุดเชื่อมต่อ u

oJ  และ l

oJ  ทำหน้าที่เชื่อมต่อระหว่างพื้นผิว b

oS  และ aS  ในขณะที่จุดเชื่อมต่อ u

iJ  และ 
l

iJ  จะทำหน้าที่เชื่อมต่อระหว่างพื้นผิว b

iS  และ aS  ซึ่งจุดเชื่อมต่อทุกจุดจำเป็นจะต้องกำหนดให้มีความต่อเนื่อง  
และราบเรียบเพื่อให้ค่าการเสียรูปและความลาดชันมีความสอดคล้องและต่อเนื่องกันระหว่างพื้นผิวทั้งสองส่วน  
ดังนั้นงานวิจัยในโครงการนี้จึงกำหนดให้ชิ้นส่วนย่อยมีความต่อเนื่องโดยใช้หลักการของตัวคูณลากรองจ์ (Lagrange 
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Multiplier Technique) [24] ดังนั้นจะสามารถเขียนเงื่อนไขของความต่อเนื่องที่จุดเชื่อมต่อ u

oJ  และ l

oJ  ได้ดัง
สมการที่ (44) 
  

1 0b a

ouG u−= =  (44ก) 
  

2 0b a

owG w−= =  (44ข) 
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d
G

d

d d

 
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d
G
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d d

 
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และเงื่อนไขของความต่อเนื่องที่จุดเชื่อมต่อ u

iJ  และ l

iJ  จะมีค่าดังสมการที่ (45) 
  5 0a b

iuG u−= =  (45ก) 
  6 0a b

iwG w−= =  (45ข) 

  7 0
ba

iuu

d

d
G

d

d

 
− ==  (45ค) 

  8 0
ba

iww

d

d
G

d

d

 
− ==  (45ง) 

 
รูปที่ 2 เงื่อนไขความต่อเนื่องของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ 

3.7 ผลรวมงานเสมือนประยุกต์ 
จากผลรวมงานเสมือนในสมการที่ (43) และเงื่อนไขความสอดคล้องในสมการที่ (44) และ (45) จะสามารถ

เขียนผลรวมงานเสมือนประยุกต์ (Modified Total Virtual Work) ของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัด
รูปทรงไข่รับแรงดันแบบสม่ำเสมอได้ดังสมการที่ (46) 
  *

c  = +   (46) 
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เมื่อ   คือ ผลรวมงานเสมือนของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันแบบ
สม่ำเสมอ ในสมการที่ (43) ในขณะที่ c  เป็นเงื่อนไขของความต่อเนื่องที่จุดเชื่อมต่อ ซึ่งจะสามารถเขียนได้ดัง
สมการที่ (47) 

  
1 2 3 4

5 6 7 8

( ) ( )

( ) ( )

b ba a
b a b a o o
o o

b ba a
a b a b i i

i i

c

d dd d
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d d d d

u wu w
u u w w

d d d d

    

 

   

   
 

   
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 

−

 
+ + + +   
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− −

−


−
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 (47) 

เมื่อ 1 2 8, ,...,    คือ ค่าตัวคูณลากรองจ์ โดยสามารถหาได้จากสมการที่ (44) และ (45) ดังนั้นสมการที่ (47) 
จะสามารถเขียนในรูปแบบของเมตริกซ์ดังสมการที่ (48) 

  ( ){ } [ ] { }T T

c = λ G D   (48) 

เมื่อ  D  และ  G  สามารถนิยามได้ดังสมการที่ (49) และ (50) 

ในที่นี้   
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...
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b b a ao o
o o
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a a b b i i

i i

du dw du dw
u w u w

d d d d
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 
 
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 
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=D  (49) 
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 
−
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 
 
− 

G   (50) 

เมื่อ [ ]I  คือ เมทริกซ์เอกลักษณ์ขนาด 4x4 ซึ่งสามารถนิยามได้ดังสมการที่ (51) 

    

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

I

 
 
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 
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  (51) 

จากสมการที่ (48) ค่า i  จะสามารถหาได้โดยอัตโนมัติจากระเบียบวิธีไฟไนต์เอลิเมนต์ร่วมกับกระบวนการ
ทำซ้ำ (Iterative Procedure) สำหรับผลลัพธ์เชิงตัวเลขแบบไม่เป็นเชิงเส้น 
 
4. วิธีดำเนินการวิจัย 

งานวิจัยนี้จะใช้วิธีไฟไนต์เอลิเมนต์ในการหาคำตอบเชิงตัวเลข [24] โดยมีรายละเอียดดังนี้ 
4.1 วิธีไฟไนต์เอลิเมนต์ 
จากรูปที่ 1 จะทำการแบ่งโครงสร้างเปลือกบางออกเป็นชิ้นส่วนย่อยตามแนวพิกัด   งานวิจัยนี้จะใช้ฟังก์ชัน 

โพลิโนเมียลอันดับที่ห้าในการประมาณค่าการเสียรูปในเนวเส้นสัมผัสและแนวเส้นตั้งฉาก ดังสมการที่ (52) 
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      g = ψ d   (52) 
เมื่อ   g  คือ เวคเตอร์การเคลื่อนที่ที่จุดต่อ,   d  คือ เวคเตอร์ของดีกรีอิสระที่จุดต่อ และ [ψ]  คือ เมตริกซ์

ฟังก์ชันรูปร่างฟังก์ชันโพลิโนเมียลอันดับที่ห้า สามารถนิยามได้ดังสมการที่ (53) 
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สำหรับฟังก์ชันรูปร่างฟังก์ชันโพลิโนเมียลอันดับที่ห้าจะสามารถดูรายละเอียดเพิ่มเติมได้ในงานวิจัยของ 
Jiammeepreecha และคณะ [11] จากนั้นแทนค่าสมการที่ (52) ลงในสมการที่ (43) จะสามารถเขียนผลรวมงาน
เสมือนของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ ดังสมการที่ (54) 
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 (54) 

และ  b

of ,  a
f  และ  b

if  คือ ค่าเวคเตอร์ของแรงในชิ้นส่วนย่อย ซึ่งคำนวณได้จากสมการ 

    
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
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 b b b b
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


  = −   f w ψ   (55ค) 

เนื่องจากดีกรีอิสระเฉพาะที่ (Local Degree of Freedom) { }d  เหมือนกับดีกรีอิสระรวม (Global Degree 
of Freedom) { }D  ดังนั้นผลรวมงานเสมือนประยุกต์ในสมการที่ (54) จะอยู่ในสภาวะสมดุลได้โดยการกำหนดให้มี
ค่าดังสมการที่ (56) 
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เนื่องจาก iD  และ i  มีค่าไม่เท่ากับศูนย์ ดังนั้นเทอมที่หนึ่งและสองในสมการที่ (54) จะต้องมีเงื่อนไข  
ดังสมการที่ (57) 
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ดังนั้น สมการที่ (56) จะสามารถเขียนได้ในรูปแบบของเมตริกซ์ดังสมการที่ (58) 
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  (58) 

เมื่อ   b

oK ,   a
K  และ   b

iK  จะมีค่าดังสมการที่ (59) 
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เนื่องจากเป็นปัญหาของโครงสร้างเปลือกบางแบบสมมาตร ดังนั้นเงื่อนไขขอบเขตที่ตำแหน่งจุด e

oJ และ e

iJ  
ของโครงสร้างเปลือกบางจะมีค่าดังสมการที่ (60) 

 0
b b

b b o i
o i

dw dw
u u

d d 
= = = =   (60) 

โดยที่ระบบสมการไม่เป็นเชิงเส้นดังแสดงในสมการท่ี (58) จะต้องทำการกำหนดเงื่อนไขขอบเขตเนื่องจากความ
สมมาตรตามแนวแกนจากสมการที่ (60) จึงจะสามารถคำนวณหาผลลัพธ์เชิงตัวเลขได้ด้วยวิธีกระบวนการทำซ้ำ 
(Iterative Procedure) 

4.2 พ้ืนผิวและความจุของโครงสร้างเปลือกบาง 
 เนื่องจากข้อดีของโครงสร้างประเภทนี้จะมีประสิทธิภาพในการบรรจุได้สูงกว่าโครงสร้างเปลือกบางรูปทรงกลม
มาตรฐานเมื่อพิจารณาอัตราส่วนของพื้นผิวต่อความจุของโครงสร้างเปลือกบาง ดังนั้นหัวข้อแรกจะเป็นการศึกษาพื้นผิว
และความจุของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ โดยคำนวณได้จากหลักการเรขาคณิตเชิงอนุพันธ์ [25] 
ดังสมการที่ (61) และ (62) 
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5. ผลการวิเคราะห์ 

ผลการวิเคราะห์เชิงตัวเลขสำหรับการวิเคราะห์ทางสถิตศาสตร์แบบไม่เป็นเชิงเส้นของโครงสร้างเปลือกบาง
รูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายใน โดยใช้วิธีไฟไนต์เอลิเมนต์ร่วมกับเทคนิคตัวคูณลากรองจ์ในการ
กำหนดเงื่อนไขของความต่อเนื่อง และใช้กระบวนการทำซ้ำในการหาผลลัพธ์แบบไม่เป็นเชิงเส้น ในการศึกษาครั้งนี้จะ
ใช้ค่าพารามิเตอร์สมบัติของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ดังแสดงในตารางที่ 1 สำหรับการ
แบ่งชิ้นส่วนย่อยตามแนวพิกัด โดยกำหนดให้แต่ละชิ้นส่วนย่อยมีความยาวส่วนโค้งไม่เกิน 0.05 เมตร 

5.1 พ้ืนผิวและความจุของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ 
ตารางที ่ 2 แสดงค่าพื ้นผิวและความจุของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ พบว่า   

ค่าอัตราส่วนพื้นที่ผิวต่อความจุของโครงสร้างจะมีค่าลดลงเมื่อค่ามุมที่รองรับส่วนโค้ง ( )  และค่าอัตราส่วนความ
ยาวรัศมีหน้าตัด ( / )b a  มีค่าเพ่ิมสูงขึ้น 

5.2 พฤติกรรมของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายใน 
การตรวจสอบความถูกต้องของผลการศึกษาพฤติกรรมทางสถิตศาสตร์แบบไม่เป็นเชิงเส้นของโครงสร้างเปลือก

บางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายใน โดยใช้ค่าพารามิเตอร์ในตารางที่ 1 ซึ่งจะพบว่าค่าการเสียรูป 
ที่เกิดขึ้นจะมีค่าใกล้เคียงกับผลที่ได้จากแบบจำลองไฟไนต์เอลิเมนต์ในโปรแกรม ABAQUS [26] ดังแสดงในรูปที่ 3 
โดยที่ค่าระยะการเสียรูปตามแนวราบจะแตกต่างกันในบริเวณระนาบอิเควเตอร์ ทั้งด้านนอกและด้านในของโครงสร้าง 
ในขณะที่ค่าระยะการเสียรูปตามแนวดิ่งจะเกิดความแตกต่างที่บริเวณจุดยอดของโครงสร้าง ดังแสดงในรูปที่ 4  
ทั้งนี้เกิดจากข้อแตกต่างของฟังก์ชันรูปร่าง สำหรับชิ้นส่วนย่อยที่ใช้ในการศึกษา โดยในงานวิจัยนี้จะใช้ชิ้นส่วนย่อยที่
น ิยามแบบฟังก์ช ันร ูปร่างโพลีโนเมียลอันดับที ่ห ้า แต่ช ิ ้นส ่วนย่อยโครงสร้างเปลือกบางแบบสมมาตร ( SAX2)  
ในโปรแกรม ABAQUS จะนิยามฟังก์ชันรูปร่างอันดับที่สอง ดังนั้นเมื่อเราได้ตรวจสอบความถูกต้องของแบบจำลองที่ได้
จากงานวิจัยในบทความนี้ก็จะสามารถทำการศึกษาผลของค่าพารามิเตอร์ต่าง ๆ ดังแสดงในตารางที่ 1 ที่ส่งผลกระทบ
ต่อค่าการเสียรูปทางสถิตศาสตร์แบบไม่เป็นเชิงเส้นของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับ
แรงดันภายใน ซึ่งจะมีรายละเอียดดังต่อไปนี้ 
 
ตารางท่ี 1  ข้อมูลและสมบัติที่ใช้ในการวิเคราะห์ 

รายการ ปริมาณ 

ความยาวรัศมีส่วนบนและล่าง ( )a    0.5 เมตร 

ความยาวรัศมีส่วนกลาง ( )b    1.0 เมตร 
ความยาวรัศมีการดัด ( )e    5.0 เมตร 

ความหนาของโครงสร้าง ( )h    0.05 เมตร 
แรงดันสม่ำเสมอภายใน ( )op    1 เมกะปาสคาล 

มุมที่รองรับส่วนโค้ง ( )    20 องศา 

มอดุลัสยืดหยุ่น ( )E    200×103 เมกะปาสคาล 
อัตราส่วนปัวส์ซอง ( )    0.3 
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5.3 ผลของการแปรเปลี่ยนแรงดันภายในที่มีต่อโครงสร้างเปลือกบางรูปทรงห่วงยาง 
สำหรับการศึกษาค่าพารามิเตอร์แรกที่จะเริ่มทำการศึกษาจะเป็นผลของการแปรเปลี่ยนแรงดันภายในที่มีต่อ

โครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่ โดยทำการแปรเปลี่ยนแรงดันภายในตั้งแต่ 0.5 ถึง 2.5 เมกะ
ปาสคาล โดยที่ค่าพารามิเตอร์อื่น ๆ ในตารางที่ 1 ไม่มีการเปลี่ยนแปลง ซึ่งจะพบว่าการเสียรูปตามแนวพิกัดเมอร์
ริเดียนและแนวตั้งฉากกับแนวเมอร์ริเดียนจะมีค่าเพิ่มสูงขึ้นเมื่อค่าแรงดันภายในมีค่าเพิ่มสูงขึ้นดังแสดงในรูปที่ 5  
โดยที่ค่าการเสียรูปที่มีค่าเพ่ิมสูงขึ้นจะเป็นสัดส่วนโดยตรงกับค่าแรงดันภายในที่เพ่ิมสูงขึ้น  
 
ตารางท่ี 2 พ้ืนผิวและความจุของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่  

b/a β (องศา) S (ตารางเมตร) V (ลูกบาศก์เมตร) S/V 

2 20 120.628 36.075 3.344 

25 126.112 39.219 3.216 

30 131.595 42.546 3.093 
35 137.078 46.080 2.975 

40 142.561 49.838 2.860 
3 20 142.561 48.345 2.949 

25 153.527 55.439 2.769 

30 164.493 63.264 2.600 
35 175.460 71.916 2.440 

40 186.426 81.465 2.288 

4 20 164.493 61.485 2.675 
25 180.943 73.334 2.467 

30 197.392 86.828 2.273 
35 213.841 102.183 2.093 

40 230.291 119.555 1.926 

5 20 186.426 75.494 2.469 
25 208.358 92.903 2.243 

30 230.291 113.238 2.034 

35 252.223 136.880 1.843 
40 274.156 164.109 1.671 
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รูปที่ 3 การเสียรูปของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายใน 

 

 
  (ก) ค่าการเสียรูปตามแนวราบ   (ข) ค่าการเสียรูปตามแนวดิ่ง 

รูปที่ 4 ความสัมพันธ์ระหว่างค่าการเสียรูปของโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดัน 
 

 
 (ก) ค่าการเสียรูปตามแนวพิกัดเมอร์ริเดียน     (ข) ค่าการเสียรูปตามแนวตั้งฉากกับแนวเมอร์ริเดียน 

รูปที่ 5 ผลของการแปรเปลี่ยนแรงดันภายในที่มีต่อโครงสร้างเปลือกบางรูปทรงห่วงยาง 
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5.4 ผลของการแปรเปลี่ยนอัตราส่วนความยาวรัศมีหน้าตัดที่มีต่อโครงสร้างเปลือกบางรูปทรงห่วงยาง 
การศึกษาผลของการแปรเปลี่ยนอัตราส่วนความยาวรัศมีต่อโครงสร้างเปลือกบางรูปทรงห่วงยางหน้าตัดรูปทรง

ไข่จะสามารถทำได้โดยการแปรเปลี่ยนอัตราส่วนความยาวรัศมีของโครงสร้างเปลือกบาง ตั้งแต่ 2.0 ถึง 6.0 โดยที่
ค่าพารามิเตอร์อื ่น ๆ ในตารางที่ 1 และความยาวรัศมีของโครงสร้างส่วนบนและล่างมีค่าคงที่เท่ากับ 0.5 เมตร  
ไม่มีการเปลี่ยนแปลง พบว่า การเสียรูปตามแนวพิกัดเมอร์ริเดียนและแนวตั้งฉากกับแนวเมอร์ริเดียนจะมีค่าสูงขึ้น  
เมื่อค่าอัตราส่วนความยาวรัศมี ( / )b a  มีค่าเพ่ิมสูงขึ้น ดังแสดงในรูปที่ 6 ทั้งนี้เนื่องจากการเพิ่มค่าอัตราส่วนความยาว
รัศมีของโครงสร้างเปลือกบาง ( / )b a  จะส่งผลทำให้พื้นผิวของโครงสร้างเปลือกบางมีค่าเพิ่มสูงขึ้น ดังแสดงในตาราง
ที่ 2 และการเพิ่มค่าอัตราส่วนความยาวรัศมีหน้าตัดจะส่งผลทำให้ค่าความแข็งแกร่งเนื่องจากการดัดมีค่าลดลง  
ดังแสดงในสมการที่ (5) ซึ่งจะส่งผลทำให้พื้นที่ผิวทีร่องรับแรงดันภายในมีค่าเพ่ิมสูงขึ้นตามไปด้วย  

 
 (ก) ค่าการเสียรูปตามแนวพิกัดเมอร์ริเดียน     (ข) ค่าการเสียรูปตามแนวตั้งฉากกับแนวเมอร์ริเดียน 

รูปที่ 6 ผลของการแปรเปลี่ยนอัตราส่วนความยาวรัศมีหน้าตัดที่มีต่อโครงสร้างเปลือกบางรูปทรงห่วงยาง 

5.5 ผลของการแปรเปลี่ยนอัตราส่วนความยาวรัศมีการดัดต่อความยาวรัศมีหน้าตัดที่มีต่อโครงสร้างเปลือกบาง
รูปทรงห่วงยาง 

ในหัวข้อนี้จะเป็นการศึกษาผลของการแปรเปลี่ยนอัตราส่วนความยาวรัศมีการดัดต่อความยาวรัศมีหน้าตัด 
( / )e a  ที่มีต่อค่าการเสียรูปตามแนวพิกัดเมอร์ริเดียนและแนวตั้งฉากกับแนวเมอร์ริเดียนโครงสร้างเปลือกบางรูปทรง
ห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายใน ซึ่งเป็นค่าพารามิเตอร์ที่มีเฉพาะในโครงสร้างเปลือกบางรูปทรงห่วงยาง
เท่านั้นแตกต่างจากโครงสร้างเปลือกบางรูปทรงอื่น ๆ โดยทำการแปรเปลี่ยนอัตราส่วนความยาวรัศมี ( / )e a  ตั้งแต่ 
2.0 ถึง 10.0 ในขณะที่ความยาวรัศมีของโครงสร้างส่วนบนและล่างมีค่าคงที่เท่ากับ 0.5 เมตร และค่าพารามิเตอร์อื่น ๆ 
ในตารางที่ 1 ไม่มีการเปลี่ยนแปลง จะพบว่าการเสียรูปตามแนวพิกัดเมอร์ริเดียนและแนวตั้งฉากกับแนวเมอร์ริเดียน
จะมีค่าสูงขึ้นเมื่อค่าอัตราส่วนความยาวรัศมี ( / )e a  มีค่าเพ่ิมสูงขึ้น ดังแสดงในรูปที่ 7 เนื่องจากการเพ่ิมค่าความยาว
รัศมีการดัด ( )e  จะส่งผลทำให้พื้นที่ผิวที่รองรับแรงดันภายในมีค่าเพิ่มสูงขึ้น ในขณะที่ค่าความโค้ง (Curvature)  
ตามแนวทิศทางลองจิจูดจะมีค่าลดลง ดังแสดงในสมการที่ (5ข) และ (11ข) ซึ่งทำให้ค่าความแข็งแกร่งเนื่องจากการ
ดัดของโครงสร้างเปลือกบางรูปทรงห่วงยางมีค่าลดลงตามไปด้วย 

 

Co-latitude (deg)

0 60 120 180 240 300 360

u
 (

m
)

-0.0008

-0.0004

0.0000

0.0004

0.0008

0.0012

b/a = 2.0
b/a = 3.0
b/a = 4.0
b/a = 5.0
b/a = 6.0

e

iJ

to
p

 a
p

ex

b
o
tt

o
m

 a
p

ex

Co-latitude (deg)

0 60 120 180 240 300 360

w
 (

m
)

-0.002

-0.001

0.000

0.001

0.002

0.003
b/a = 2.0
b/a = 3.0
b/a = 4.0
b/a = 5.0
b/a = 6.0

e

iJ

to
p

 a
p

ex

b
o
tt

o
m

 a
p

ex



 

34 วีรพันธ์ุ เจียมมีปรีชา  และคณะ 
 

 
 (ก) ค่าการเสียรูปตามแนวพิกัดเมอร์ริเดียน     (ข) ค่าการเสียรูปตามแนวตั้งฉากกับแนวเมอร์ริเดียน 

รูปที่ 7 ผลของการแปรเปลี่ยนอัตราส่วนความยาวรัศมีการดัดต่อความยาวรัศมีหน้าตัดที่มีต่อ 
โครงสร้างเปลือกบางรูปทรงห่วงยาง 

 
6. สรุปผลการศึกษา 

งานวิจัยนี้นำเสนอผลการวิเคราะห์ทางสถิตศาสตร์แบบไม่เป็นเชิงเส้นของโครงสร้างเปลือกบางรูปทรงห่วงยาง
หน้าตัดรูปทรงไข่รับแรงดันภายใน โดยที่ความสัมพันธ์ระหว่างความเครียด-การเสียรูปและความโค้ง-การเสียรูปจะ
เขียนในเทอมขององค์ประกอบเมตริกซ์เทนเซอร์และความโค้ง และสร้างฟังก์ชันพลังงานของระบบโครงสร้างเปลือก
บางรูปทรงห่วงยางหน้าตัดรูปทรงไข่รับแรงดันภายในโดยใช้สมการแปรผัน ใช้วิธีไฟไนต์เอลิเมนต์ร่วมกับวิธี
กระบวนการทำซ้ำในการหาผลลัพธ์เชิงตัวเลขสำหรับค่าการเสียรูปแบบไม่เป็นเชิงเส้น ผลการศึกษาพบว่าค่าการเสีย
รูปจะเป็นสัดส่วนกับการเปลี่ยนแปลงค่าแรงดันภายใน สำหรับค่าพารามิเตอร์ที่เกี่ยวข้องกับรูปทรงเรขาคณิตของ
โครงสร้างเปลือกบาง จะพบว่าการเพิ่มค่าอัตราส่วนความยาวรัศมีและอัตราส่วนความยาวรัศมีการดัดต่อความยาว
รัศมีหน้าตัดของโครงสร้างเปลือกบางจะส่งผลทำให้ค่าการเสียรูปมีค่าเพิ่มสูงขึ้นเนื่ องจากพื้นผิวของโครงสร้างเปลือก
บางมีค่าเพ่ิมสูงขึ้น  
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