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Abstract

This research studied and compared the performance of machine learning models for
Alzheimer’s disease classification. Alzheimer ‘s is the most founded in the disease of the brain.
Moreover, it affects the daily life of people. From much research indicated that there are about 55
million people in the world that have Dementia disease, 60 to 70 percent of them are caused
Alzheimer’s disease. Researcher studied the classification for urgent on the way of treatment.
Darwin dataset is used to compare in this study. There are 451 covariates and 174 observations.
Python is used in this study. Moreover, those covariates are multicollinearity and high dimensional
dataset. The Principal Component Analysis is the technique for dealing first and then the supervise
machine learning for classification on the outcome of Alzheimer. Those methods to compare contain
Random Forest, logistic regression and XGBoost. The results pointed that logistic regression yields
the high performance for classification. The Accuracy is 88.57%, precision is 100%, recall is 80.00%

and F1-score is 88.89%, respectively.
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2. ngufiiigadeslunuide

2.1 g (Random Forest) flo Msadasuuuiszneusevans 9 duliiindula (Decision Tree)
lngunag Decision Tree %Qﬂa%’wﬁaa%yjadm (random sample) wag attribute g4 (random subset)
vinlsilaidl Decision Tree Tafiiiloufustiautueu (5] nsadrsiuuuidy szdudusienisqudeya
(bootstrap sampling) Lﬁ@ﬁ%’]ﬁﬂg@%@?ﬂﬁﬁﬂﬂ%&@ﬁ% Decision Tree #ldimiloufu anduldinaiia Bagsing
(Bootstrap Aggregating) lun15a31¢ Decision Tree wiazAu lagnsduidan attribute Wuwustoyaluusay
node Tun1sldeu Random Forest asnsainluldaulavainvany 1Wu nisduunuazyinuenavestaya
(classification and prediction) 13 aldlun1sAuniauduwusves attribute funadns laad uiay
Decision Tree 11 Random Forest %Lﬁumwsamm%yjaﬁLLmﬂGhaﬁ’u I REIN1908AAIUEANAIA VS
Fauuulduniy uanmnﬁmaﬁﬂﬂwdm §9811150%1 Feature Importance 19 Ao N1AIUIMAIINEADY
Y0susaz attribute Ingld Gini importance 30 Mean Decrease Impurity (MDI) Tnefi Andfnyveusiay
attribute AvUsuanfaadud1Agves attribute Tunisuuadeyaluusiay node ¥849 Decision Tree Usagsy
Tusuuudngy
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2.3 XGBoost (eXtreme Gradient Boosting) As nszuIunsi3suiveaaiesilaiunuiengan
Tutlagiiu Tneiduedesilofildlunisiuieuuy Supervised Leaming sanunsaldiutigmnnsduunvie
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Jumaila Ensemble Learning fiusznouludae Decision Trees nanedufiinisld Gradient Boosting
Algorithm Tunisifisenuusiug1ves Decision Trees usiagsiu 89 XGBoost finuanansalunisyi Feature
Selection wag Regularization fi4aean Overfitting wastiuUszans nmaesdauuuldunndu XGBoost
4 Gradient Boosting Algorithm lun1ssiueuuiugIves Decision Trees wiazdu Ingld33nsihanadd
learning rate 141119 28USUAAIINAR AR suluLA Az TOUNTAS 19U (Train Model) & sazyinli
é’auwﬁmu‘%auiﬁﬁﬁu wazanauRananlunsviunele wenaini XGBoost Saunsald Gradient-
based One-Side Sampling (GOSS) way Weight-based Random Sampling (WBRS) W ovapaniianly
N1INAADUAILUY Wazteeiu Overfitting ImszT']msamﬁ’mw%’agam%’maau wazdgrusald Early
Stopping lenganInageufLUUTTiAAaALARoULTLLANLH
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(classification) TuaAdeililey 4 A1 lage1989910 [8] Al
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Recall = True Positive / (True Positive + False Negative)
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2.4.2 Precision Ao N153AAMUMILENT8IFILUUNEINTE) WAIRIUINAINNSTIRALUUNEINTE]
mmsamauﬁ"]mm;]ﬂiﬁgﬂiudauﬁlﬂlﬁau%mﬂﬁaaLﬁaﬂmmﬂmﬁgﬂéfam%aﬁgwm A1UTOATUIN
19270 Precision = True Positive / (True Positive + False Positive)

2.4.3 Fl-score fia n153nfA7 Precision was Recall wiousuvesianuunensal Inafiiinig
fiansaunusnfiaznadnsfiaulonazliauls 4l dudrvonismnumanzanvosnisiidoyaluldi
fanumnyauiiosls ndeursuendaseansnmvessauuuneinsal [9] aunsafuiaildain Fl-score =
(2 x Precision x Recall) / (Precision + Recall)

2.0.4 Accuracy fia mM3fnaugniosasiauuuneinsal neRarsansmnuadns ety
Wan Lﬁa@mmLLaJ'uETﬂumsﬁ’]mawagﬂé\’aamﬂﬁaaLﬁaﬂﬂ [10] awnsaA1uaadlaann Accuracy = (True

Positive + Negative Positive) / ﬁﬁuauﬁﬂﬁagaﬁmm
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Feature Scaling with standardization

Feature Extraction with PCA
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1. msdrafiefumuarnisuilasing (Missing Value)
2. M3ATIINTIMUNNGUvalaya (Classification)
3. msdradiedumauesiius
3.2 Maw3eudaya (Data Preparation) Wun1swseudeyalimnzaunaunisadaunuuinassloya
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1. msauasdutiflildlflunsiinsei Ae whaedui ID een
2. msudasdeya (Data Transformation) uUasdeyaluaedut] class T dusaias Tavil Patient
WU 1 uay Healthy 1 0
3. Msuysgadeyalsouiuazyadeyanaaou (Data Splitting) 1 ey yAt ey AT ouT19d
nszuIuMnieuiang q voundadutuneudely drugadoyanaaeuiiliiienaaeutuiuuiaes
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4. myafnAuaNvMzIeslaya (Feature Extraction)

lunsfnyiagyinsadnaudnvaslneiBnsinmeiiussnoundn (PCA) losnmatiadl
sggavlunisanduiuiuysdase widuusimaodiannsaosuiedudsnuligs Jauenaindiean
arududaunoud Ul uiEn15m19 Machine Learning wd189928lun1sannaunainad ouves
msthiuuulUllunsdifsuausuusdaszanniiuly Taefduneudsd
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1. M3UTuYIveulunveseyaviafiiay (Feature Scaling) vit aUsudayadiavlvieg

Y Y
1%

Turaafieatu vibidetnddeyaidignisnseusvennioudr naaudnuvazaziiivdnvniioudy
Tnglanizegeddunuudassdeyailidonldisnssmundie logistic regression Lilosandeyaiinisuan
waanuuldun@ (Non-normal distribution) Fudennsusudisveulunvestoyanienisldisnis Standardize
Faduismsuiurnamuaedsuay mdnideauusasg

2. WININgAULUTUTIUTM (Covariance matrix)

3. mleinuwlg (Eigen Value) wazlownuiinias (Eigen Vector) 31nuvisndmnukususiusiy

4. \onduiudiusenauilvungan fvuasiuiuesdinysenaullivangay fiansmialny
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5. Project Data lagn1si5enld pca library Uosunnina scikit-learn #399g71n19A1UILD
Ineldaunis ProjectData = X _train_scaled.dot(principle _components) Tulusunsunienlnseu
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Jaya lngianani1sinuunaleALadeves Accuracy Precision Recall uag Fl-score ¥84N1SNARBUTNINLA
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4. Nan133e
wuseantdu 2 diu Ae wanisuszidudszdndamluwaazduuuludeyaymsouiuasdoya

YANAEDY
a5l 1 nansUssifiudszavsamluusassuuuludoyayaiFeus
AU Accuracy Precision Recall Fl-score
Random Forest 0.8416* 0.8613* 0.8283* 0.8350*
Logistic Regression 0.8132 0.8452 0.7690 0.7990
XGBoost 0.8203 0.8589 0.7833 0.8126

M13199 2 wan1susziiuUssansamluusdagiuuuluteyayanaaey

AU Accuracy Precision Recall Fl-score
Random Forest 0.7429 1.0000* 0.5500 0.7097
Logistic Regression 0.8857* 1.0000% 0.8000* 0.8889*
XGBoost 0.8571 0.9412 0.8000* 0.8649
A15797 3 uaAa Confusion Matrix Ye4aWUU Random Forest
Predict
Random Forest
Positive (Patient) Healthy
T:‘; Positive (Patient) 15 0
E Negative (Healthy) 9 11

A157197 4 wans Confusion Matrix U8IFILUU Logistic Regression

Logistic Regression Predict
Positive (Patient) Healthy
T:'; Positive (Patient) 14 1
E Negative (Healthy) q 16

A1519% 5 wadna Confusion Matrix U898LkUU XGBoost

XGBoost Predict
Negative (Healthy) | Negative (Healthy)

_§ Negative (Healthy) 14 1

g Negative (Healthy) a 16
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MNAN5T 1 wadnsiildvesudazduuudmsvyateyayasoud drenisnsaaeulaenis
cross-validation WuU31 #2uLUU Random Forest Suiﬁﬂ'ﬁ’j}ﬂﬂizﬁw%mW@ﬁqmiuﬁ’jﬂ 4 19t nanIfe
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FALUU Logistic Regression ﬂguslﬁﬂsxﬁm%‘mwm"”]ﬁ'qmiuﬁq 4 \neust Ae 19A1 Accuracy WNAU 0.8132
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Y93IV Logistic Regression ushuutlinanisiunefimaeludeyaynidous

91NM15999 2 waé’wéﬁlﬁ%qLLm'awTaLLUUIuGﬂ’ayjammaau WUIIALUY Logistic Regression
fulviAnIauszans nwgeiaeluiis 4 inaust @il 11 Accuracy 11U 0.8857 Precision i1y 1.0000
Recall iy 0.8000 wazlien Fl-score winu 0.8889 deuaneindauuy Logistic Regression tulwa
msvhungluyadayanaany (unseen data) Aflanaintis 3 dauuy

NA1597 3 89 91991 5 wane Confusion Matrix vesnan1siudasduuululdluniswennsal
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lagdvea3Ua1n91uTd8d 90150 60U UL Logistic Regression lUUssendlddudeyani 40 g
(High Dimensional data) [12] uenaniinadws e uduluimedAydnsuruidonasiauiAwuy
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