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บทคัดย่อ 

งานวิจัยนี้มีวัตถุประสงค์เพื่อ 1) พัฒนาเฟรมเวิร์คส าหรับตรวจจับพฤติกรรมการโจมตีในเครือข่าย IoT โดยใช้
โมเดล Temporal Convolutional Networks (TCN) และ 2) ประเมินประสิทธิภาพของโมเดล TCN โดยเปรียบเทียบ
กับโมเดล RNN LSTM GRU และ DNN การทดลองใช้ระยะเวลา 12 สัปดาห์ โดยใช้ ภาษา Python การทดลองใช้ 
ชุดข้อมูลสังเคราะห์ที่จ าลองการโจมตีแบบการโจมตีแบบปฏิเสธการให้บริการ (Denial-of-Service :DoS) และการโจมตี 
ทางไซเบอร์ที่ผู้ไม่หวังดีแอบดักฟัง และแก้ไขข้อมูล (Man-in-the-Middle: MITM) โดยเริ่มจากกระบวนการแปลงและ
ปรับแต่งข้อมูล (Data Preprocessing) และฝึกโมเดลด้วยTensorFlow/Keras บน Google Colab ผลการทดลอง 
พบว่า TCN Model มีค่า Recall สูง (0.9986) ซึ ่งแสดงให้เห็นว่าสามารถตรวจจับเหตุการณ์โจมตีได้เก ือบทั ้งหมด  
อย่างไรก็ตาม Accuracy (≈0.50) และ Precision ต ่า (0.4978) ท าให้เกิดอัตราการแจ้งเตือนผิดพลาด (False Positive) สูง  
และค่า Loss ผันผวนสูง สะท้อนว่าโมเดลยังไม่สามารถเรียนรู้ข้อมูลได้อย่างมีเสถียร ส าหรับผลของการเปรียบเทียบกับ
โมเดลอื่น RNN ให้ผลลัพธ์ที่สมดุล LSTM และ GRU มีประสิทธิภาพสูงในข้อมูลที่ซับซ้อน และ DNN มีความแม่นย า 
สูงสุด แสดงให้เห็นว่าโมเดล TCN แม้จะสามารถตรวจจับพฤติกรรมการโจมตีได้ดีในแง่ของ Recall แต่ยังต้องปรับปรุง 
เพื่อเพิ่ม Precision และ Accuracy ดังนั้น การปรับปรุงคุณภาพของชุดข้อมูล การใช้กระบวนการปรับแต่งค่าพารามิเตอร์
ของโมเดลที่ก าหนดไว้ล่วงหน้า (Hyperparameter Tuning) เพื ่อเพิ ่มประสิทธิภาพของโมเดล การลด Overfitting  
ผ่าน Regularization Techniques และการทดสอบเฟรมเวิร์คกับชุดข้อมูลจริงเพื ่อเพิ ่มความแม่นย า และลดอัตรา 
การแจ้งเตือนผิดพลาด สิ ่งนี้จะช่วยให้สามารถน าไปใช้งานในระบบรักษาความปลอดภัยของเครือข่าย  IoT ได้อย่าง 
มีประสิทธิภาพ 

ค าส าคัญ: อินเทอร์เน็ตในทุกสิ่ง (IoT)  ความปลอดภัยทางไซเบอร์  โครงข่ายประสาทเทียมคอนโวลูชันเชิงอนุกรมเวลา (TCN) 
ระบบตรวจจับการบุกรุก (IDS)  การวิเคราะห์ข้อมูลอนุกรมเวลา 
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Abstract 

This research aims to (1) develop a framework for detecting attack behaviors in IoT networks 

using the Temporal Convolutional Networks (TCN) model and (2) evaluate the performance of the TCN 

model by comparing it with RNN, LSTM, GRU, and DNN models. The experiment was conducted over 

a 12-week period using Python as the primary programming language. A synthetic dataset was utilized, 

simulating Denial-of-Service (DoS) and Man-in-the-Middle (MITM) cyberattacks. The research process 

involved data transformation and preprocessing, followed by training the models using TensorFlow/Keras on 

Google Colab. The experimental results revealed that the TCN model achieved a high recall score  

(0.9986), indicating its ability to detect nearly all attack events. However, its accuracy (≈0.50) and 

precision (0.4978) were low, leading to a high false positive rate. Additionally, the loss values exhibited 

significant fluctuations, reflecting the model's instability in learning the data effectively. In comparison, 

the RNN model provided balanced results, LSTM and GRU demonstrated high efficiency in handling 

complex data, and DNN achieved the highest accuracy. These findings suggest that while the  

TCN model performs well in detecting attack behaviors in terms of recall, it requires further improvements 

to enhance precision and accuracy. To address these issues, improving dataset quality, applying 

hyperparameter tuning, implementing regularization techniques to reduce overfitting, and testing the 

framework with real-world datasets are recommended. These improvements will contribute to a more 

reliable and effective security system for IoT networks. 

Keywords: Internet of things (IoT), Cybersecurity, Temporal convolutional networks (TCN), Intrusion 

detection system (IDS), Time-series analysis 
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1. ท่ีมาและความส าคัญ  
ในยุคดิจิทัลปัจจุบันเครือข่ายอินเทอร์เน็ตในทุกสิ่ง (Internet of Things: IoT) ได้กลายเป็นองค์ประกอบส าคัญ

ของการด าเนินงานในหลากหลายภาคส่วน และเป็นแนวคิดที่ก าลังได้รับความนิยมอย่างรวดเร็วในบริบทของการสื่อสาร
โทรคมนาคมไร้สายในยุคปัจจุบัน [1] แนวคิดน้ีช่วยให้เทคโนโลยีและอุปกรณ์อัจฉริยะสามารถเช่ือมต่อ และท างานร่วมกัน
ได้อย่างมีประสิทธิภาพ ส่งผลให้เกิดระบบอัตโนมัติที่ชาญฉลาดมากขึ้น ตัวอย่างที่โดดเด่น ได้แก่ เทอร์โมสแตต และระบบ
ควบคุม HVAC (Heating Ventilation and Air Conditioning) ซึ่งช่วยยกระดับบ้านอัจฉริยะให้สามารถปรับอุณหภูมิ
และสภาพแวดล้อมได้อย่างแม่นย าและสะดวกสบายยิ่งขึ้น [2] 

นอกจากนี้ IoT ยังถูกน ามาใช้อย่างแพร่หลายในเครือข่ายทั่วโลกโดยเชื่อมโยงวัตถุอัจฉริยะเข้ากับเทคโนโลยี
อินเทอร์เน็ตที่ขยายออกไป ซึ่งครอบคลุมทั้งเทคโนโลยีสนับสนุนที่จ าเป็น เช่น RFID เซ็นเซอร์ ตัวกระตุ้น (Actuators) 
และอุปกรณ์สื ่อสารแบบเครื ่องต่อเครื ่อง (Machine-to-Machine Communication: M2M) รวมถึงชุดแอปพลิเคชัน 
และบริการที่ใช้เทคโนโลยีเหล่าน้ีเพื่อสร้างโอกาสใหม่ทางธุรกิจและการตลาด [3] 

อย่างไรก็ตามการเติบโตอย่างรวดเร็วของ IoT ได้น ามาทั้งโอกาสและความท้าทายโดยเฉพาะอย่างยิ ่ง ในด้าน 
ความปลอดภัยทางไซเบอร์ [4] เนื ่องจากอุปกรณ์ IoT จ านวนมากมีข้อจ ากัดด้านทรัพยากรการประมวลผลพลังงาน  
และหน่วยความจ า [5] อีกทั ้งมีช่องโหว่ที ่อาจถูกแสวงหาประโยชน์ได้ง่าย เช่นการขาดการเข้ารหัส (Encryption)  
และกลไกการพิสูจน์ตัวตนที่ไม่เพียงพอ [6] ท าให้ IoT ตกเป็นเป้าหมายของการโจมตีทางไซเบอร์ในหลากหลายรูปแบบ   
ไม่ว่าจะเป็นการโจมตีแบบ DoS (Denial-of-Service) การละเมิดข้อมูล (Data Breaches) และการแพร่กระจายของ 
มัลแวร์ (Malware Infections) [7] ซึ่งล้วนเป็นปัจจัยที่ต้องให้ความส าคัญในการพัฒนาและเสริมสร้างมาตรการป้องกัน
ด้านความปลอดภัยส าหรับระบบ IoT ในอนาคต 

การรักษาความปลอดภัยในเครือข่าย IoT จึงเป็นสิ ่งส าคัญระบบตรวจจับการบุกรุกที ่ใช้ในการเฝ้าระวัง  
และวิเคราะห์ทราฟฟิกในเครือข่าย หรือระบบคอมพิวเตอร์เพื่อระบุพฤติกรรมที่เป็นอันตราย หรือการโจมตีทางไซเบอร์
( Intrusion Detection System: IDS) เป ็นกลไกพื ้นฐานในการเฝ ้าส ังเกต  (Monitor) และการตรวจจับกิจกรรม 
ที ่เป ็นอันตราย (Detect malicious activities) [8] IDS แบบดั ้งเดิมมักใช้วิธ ีการที ่อาศัยกฎ ( rules) หรือเง ื ่อนไข 
ที่ก าหนดไว้ล่วงหน้าเพื่อใช้ในการตรวจจับหรือจ าแนกข้อมูลต่าง  ๆ  เช่น การระบุพฤติกรรมที่ผิดปกติ หรือการตรวจจับ 
ภัยคุกคามทางไซเบอร์ (Rule-based) หรือเทคนิคในการตรวจจับภัยคุกคามทางไซเบอร์ (Signature-based methods) 
ซึ ่งอาศัยรูปแบบหรือโครงสร้างที ่ถูกก าหนดล่วงหน้า  (Predefined patterns) เพื ่อใช้ในการตรวจจับ จัดประเภท  
หรือวิเคราะห์ข้อมูลในระบบต่าง ๆ  เช่น ความปลอดภัยทางไซเบอร์ หรือการประมวลผลข้อมูล หรือลายเซ็นทางดิจิทัล 
(Signatures) ของการโจมตีที่เป็นที่รู้จักและถูกบันทึกไว้แล้วในฐานข้อมูลของระบบรักษาความปลอดภัยทางไซเบอร์   
(Known attacks) ในการระบุและการจ าแนก (classify) และจัดประเภททราฟฟิกที่เป็นอันตราย (Malicious traffic)  
ที่ไหลเวียนอยู ่ในระบบเครือข่ายหรืออุปกรณ์โดยอาศัยกฎ ( rules) ลักษณะเฉพาะหรือรูปแบบที่สามารถใช้ระบุ   
และตรวจจับข้อมูลบางอย่างได้ (Signature) หรืออัลกอริธึมในการวิเคราะห์พฤติกรรมของทราฟฟิก  เพื ่อตรวจจับ 
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ภัยคุกคามทางไซเบอร์ [9] อย่างไรก็ตามวิธีการเหล่านี ้อาจไม่เพียงพอในการตรวจจับการโจมตีรูปแบบใหม่  ๆ   
หรือการโจมตีทางไซเบอร์ที่อาศัยช่องโหว่ (vulnerabilities) ของซอฟต์แวร์หรือระบบที่ยังไม่มีการแก้ไข หรือยังไม่เป็น 
ที ่ร ู ้จ ักโดยเจ้าของระบบหรือผู ้พ ัฒนา  (zero-day vulnerability) [10] เนื ่องจากผู ้โจมตีทางไซเบอร์ (Attackers)  
มักพัฒนาวิธีการโจมตีที่ซับซ้อนเพื่อการหลบเลี่ยง หรือข้ามผ่านกลไกความปลอดภัยแบบดั้งเดิม (Bypass traditional 
security mechanisms) เช่น ระบบป้องกันเครือข่ายที่ท าหน้าที่กรอง และควบคุมทราฟฟิกที่เข้าและออกจากเครือข่าย
ตามกฎที่ก าหนดไว้ (Firewall) และซอฟต์แวร์ป้องกันไวรัส (Antivirus) โดยที่ระบบเหล่านี ้ไม่สามารถตรวจจับหรือ 
บล็อกการโจมตีได้ [11] เช่น มัลแวร์ที ่สามารถเปลี ่ยนแปลงโค้ดของตัวเอง (Mutate) โดยอัตโนมัติ เพื ่อหลบเลี ่ยง 
การตรวจจับจากซอฟต์แวร์ป้องกันไวรัส (Antivirus Software) และระบบรักษาความปลอดภัย (Plymorphic malware) 
เทคนิคในการแปลงหรือดัดแปลงโค้ดโปรแกรมให้มีลักษณะที่ซับซ้อน และอ่านยากเพื่อป้องกันการวิเคราะห์ (0bfuscate 
code) และการใช้ประโยชน์จากช่องโหว่ (Vulnerabilities) ในระบบคอมพิวเตอร์ซอฟต์แวร์ หรือเครือข่ายเพื่อเจาะ  
ระบบหรือโจมตีเป้าหมาย (Exploit vulnerabilities) ที่ยังไม่ถูกค้นพบ การเรียนรู้ของเครื่อง (Machine Learning: ML) 
เป็นเทคโนโลยีที่ถูกน ามาประยุกต์ใช้ในระบบตรวจจับการบุกรุก ( Intrusion Detection System: IDS) เพื่อยกระดับ
ความสามารถในการตรวจจับความผิดปกติหรือสิ ่งที ่แตกต่างจากรูปแบบปกติในข้อมูลหรือระบบ  (Anomalies)  
และกิจกรรมที่เป็นอันตรายหรือมีเจตนาร้ายในระบบคอมพิวเตอร์เครือข่าย (Malicious activities) โดยอาศัยขั้นตอนวิธี 
(Algorithms) ที่สามารถเรียนรู้รูปแบบจากข้อมูลในอดีตที่ถูกเก็บรวบรวมและบันทึก (Historical data) และการจ าแนก
ประเภทของทราฟฟิกในเครือข่าย (Classify network traffic) เป ็นทราฟฟิกที ่ปลอดภัย (Benign) หรือทราฟฟิกที ่เป็น 
อันตราย (Malicious) [12] ML algorithms เช่น เครื่องเวกเตอร์สนับสนุน (Support Vector Machine: SVM) ต้นไม้
ตัดสินใจ (Decision Tree) และป่าการตัดสินใจแบบสุ่ม (Random Forest) ได้ถูกน ามาใช้ใน IDS [13,14] อย่างแพร่หลาย 
อย่างไรก็ตาม โมเดลการเรียนรู้ของเครื่องแบบดั้งเดิม (Traditional ML models) อาจมีข้อจ ากัดในการดึงความสัมพันธ์
ของข ้อม ูลที ่ข ึ ้นอย ู ่ก ับช ่วงเวลา  (Capture temporal dependencies) ในข ้อม ูลทราฟฟิกเคร ือข ่าย  (Network  
traffic data) ซึ ่งเป็นสิ ่งส าคัญในการตรวจจับการโจมตี (Detect attacks) ที่มีร ูปแบบความซับซ้อนตามช่วงเวลา 
(Complex temporal patterns) [15] ตัวอย่างเช่น การโจมตีแบบปฏิเสธการให้บริการ (Denial-of-Service: DoS 
attack) อาจมีรูปแบบการส่งทราฟฟิกจ านวนมาก (Flood traffic pattern) ที่เปลี่ยนแปลงไปตามเวลา หรือการโจมตี
แบบคนกลาง (Man-in-the-Middle attack) อาจมีร ูปแบบการดักจับและแก้ไขข้อมูลที ่ซับซ้อน (Intercept and  
modify data) การเรียนรู ้เชิงลึก (Deep Learning: DL) เป็นสาขาย่อยของการเรียนรู ้ของเครื ่อง (Subfield of ML)  
ที่ได้รับความนิยมเพิ่มข้ึนในช่วงไม่กี่ปีที่ผ่านมา โมเดลการเรียนรู้เชิงลกึ เช่น โครงข่ายประสาทเทียมเชิงลกึ (Deep Neural 
Networks: DNNs)  โครงข่ายประสาทเทียมเชิงคอนโวลูชัน (Convolutional Neural Networks: CNNs) และโครงข่าย 
ประสาทเทียมเชิงซ ้าซ้อน (Recurrent Neural Networks: RNNs) ได้แสดงให้เห็นถึงประสิทธิภาพที่เหนือกว่าโมเดล 
การเรียนรู้ของเครื่องแบบดั้งเดิม (Traditional ML models) ในหลายงาน เช่น การรู ้จ  าภาพ (Image recognition)  
การประมวลผลภาษาธรรมชาติ (Natural language processing) และการวิเคราะห์ข้อมูลแบบอนุกรมเวลา (Time-series 
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analysis) [16] โดยเฉพาะอย่างยิ ่งโครงข่ายประสาทเทียมเชิงซ ้าซ้อน  (RNNs) เช่นหน่วยความจ าระยะยาวระยะสั้น  
(Long Short-Term Memory: LSTM) และหน่วยความจ าแบบซ ้าซ้อน (Gated Recurrent Unit: GRU) ได้ถูกน ามาใช้
เพื ่อแก้ปัญหาการดึงความสัมพันธ์ของข้อมูลที่ขึ ้นอยู ่กับช่วงเวลาในระบบตรวจจับการบุกรุก  (Capture temporal 
dependencies in IDS) เนื่องจาก RNNs สามารถเรียนรู้รูปแบบตามล าดับของข้อมูล (Learn temporal patterns from 
sequential data) [17] อย่างไรก็ตาม RNNs มีข้อจ ากัดเรื่องการลดทอนของเกรเดียนท์ (Vanishing gradient) ซึ่งท าให้
การฝึกฝนโมเดลที่มีล าดับข้อมูลยาวมากเป็นไปได้ยาก (Train models with long sequences) และความซับซ้อน 
ในการค านวณที่สูง (High computational complexity) ท าให้การน าไปใช้งานในอุปกรณ์ IoT ที่มีทรัพยากรจ ากัด 
(Deploy in resource-constrained IoT devices) เป็นไปได้ยาก โครงข่ายประสาทเทียมเชิงอนุกรมเวลาคอนโวลูชัน 
(Temporal Convolutional Networks: TCN) เป็นโมเดลการเรียนรู้เชิงลึกที ่ได้รับความนิยมในการวิเคราะห์ข้อมูล 
แบบอนุกรมเวลา (Time-series data analysis) [18] โดยมีสถาปัตยกรรมที ่คล้ายกับโครงข่ายประสาทเทียมเชิง 
คอนโวลูชัน (Architecture similar to CNNs) แต่มีการปรับเปลี่ยนเพื่อให้สามารถดึงความสัมพันธ์ของข้อมูลที่ข้ึนอยู่กับ
ช ่วงเวลาได้อย ่างม ีประสิทธ ิภาพ (Modified to capture temporal dependencies effectively) [19] ข้อด ีของ TCN  
ที ่ท  าให ้โดดเด่นกว่า RNNs ได้แก่ความเร ็วในการฝึกฝนที ่รวดเร ็วกว่า (Faster training speed) เนื ่องจากสามารถ 
ประมวลผลข้อมูลแบบขนาน (Process data in parallel) [20] การเรียนรู้ล าดับข้อมูลระยะยาวได้ดีกว่า (Better long-term 
sequence learning) โดยใช้การขยายขนาดของคอนโวลูชัน (Dilated convolutions) [21] การใช้หน่วยความจ าน้อยกว่า 
(Lower memory usage) เนื่องจากไม่ต้องเก็บสถานะภายใน (Hidden state) ของเครือข่าย [18] ด้วยคุณสมบัติเหล่านี้ 
TCN จึงเหมาะสมกับการตรวจจบัการโจมตีทางไซเบอร์ (Detect cyber-attacks) ในเครือข่าย IoT ซึ่งมีข้อมูลแบบอนกุรม
เวลาจ านวนมาก (Large time-series data) และต้องการโมเดลที่สามารถฝึกฝนได้รวดเร็ว และน าไปใช้ในอุปกรณ์  
ที่มีทรัพยากรจ ากัดได้ (Fast-training models that can be deployed on resource-constrained devices) 

งานวิจัยนี ้มุ ่งเน้นเพื ่อพัฒนาเฟรมเวิร์คส าหรับตรวจจับพฤติกรรมการโจมตีบนเครือข่ายทุกสรรพสิ ่งด้วย  
Temporal Convolutional Networks (TCN) และเพื่อประเมินประสิทธิภาพ และความแม่นย าของโมเดล Temporal 
Convolutional เพื่อหาวิธีที่มีประสิทธิภาพที่สุดส าหรับการป้องกันภัยคุกคามไซเบอร์ในยุคดิจิทัล โดยมุ่งหวังให้โมเดล
สามารถตรวจจับพฤติกรรมที่เป็นอันตรายได้อย่างแม่นย ามีความสามารถในการประมวลผลแบบเรียลไทม์ และสามารถ
น าไปปรับใช้ในระบบที่มีทรัพยากรจ ากัด เช่นเครือข่าย IoT และโครงสร้างพื้นฐานด้านความปลอดภัยทางไซเบอร์ 
ในอนาคต 
 
2. วัตถุประสงค ์

2.1 เพื ่อพัฒนาเฟรมเวิร์คส าหรับตรวจจับพฤติกรรมการโจมตีบนเครือข่ายทุกสรรพสิ ่งด้วย  Temporal 
Convolutional Networks (TCN)  



241 ประวีณ ไม้เกตุ และ กัญณัฏฐ์ สุริยันต์ 
 

2.2 เพื่อประเมินประสทิธิภาพของโมเดล TCN ในการตรวจจับพฤติกรรมการโจมตีโดยการเปรียบเทียบกบัโมเดล 
RNN LSTM GRU และ DNN 
 
3. ทฤษฎี และงานวิจัยท่ีเกี่ยวข้อง  

3.1 Internet of Things (IoT) หรือ "อินเทอร์เน็ตในทุกสิ ่ง" หมายถึง เครือข่ายของอุปกรณ์เครื ่องจักร  
และเซ็นเซอร์ที่สามารถเช่ือมต่อกันผ่านอินเทอร์เน็ต [1] อุปกรณ์เหล่าน้ีสามารถรวบรวม วิเคราะห์ และแลกเปลี่ยนข้อมูล
ระหว่างกันได้โดยอัตโนมัติ [2] ปัจจุบัน IoT ถูกน ามาใช้ในหลากหลายแอปพลิเคชัน เช่น บ้านอัจฉริยะ (Smart Home)
เมืองอัจฉริยะ (Smart City) ระบบขนส่งอัจฉริยะ (Smart Transportation) และระบบอัตโนมัติในภาคอุตสาหกรรม 
(Industrial Automation) [3] อย่างไรก็ตามการเติบโตอย่างรวดเร็วของ IoT น ามาซึ่งความท้าทายด้านความปลอดภัย 
[4] เนื่องจากอุปกรณ์ IoTจ านวนมากมีทรัพยากรจ ากัด (Resource Constraints) และมีช่องโหว่ (Vulnerabilities)     
ที่สามารถถูกโจมตีหรือแสวงหาประโยชน์ได้ง่าย (Exploit) ท าให้อุปกรณ์ IoT กลายเป็นเป้าหมายส าคัญของภัยคุกคาม 
ทางไซเบอร์ 

3.2 การโจมตีแบบปฏิเสธการให้บริการ (Denial-of-Service: DoS) ภัยคุกคามในเครือข่าย IoT มีหลากหลาย
รูปแบบ เช่น การโจมตีแบบปฏิเสธการให้บร ิการ (Denial-of-Service: DoS) การละเมิดข้อมูล (Data Breaches)  
และการโจมตีโดยมัลแวร์ (Malware Attacks) [5] ช่องโหว่ด้านความปลอดภัยในอุปกรณ์ IoT อาจเกิดจากการใช้ขอ้มูล
ประจ าตัวเริ่มต้น (Default Credentials) การขาดการเข้ารหัสข้อมูล (Lack of Encryption) และกลไกการพิสูจน์ 
ตัวตนที่ไม่แข็งแกร่งเพียงพอ (Weak Authentication Mechanisms) [6] การโจมตีเหล่านี้อาจส่งผลกระทบร้ายแรง 
ต่อความเป็นส่วนตัวของข้อมูล (Privacy) ความสมบูรณ์ของข้อมูล (Data Integrity) และความพร้อมใช้งานของระบบ 
(System Availability) ในเครือข่าย IoT [7] โดยเฉพาะอย่างยิ่งการโจมตีแบบ DoS อาจท าให้อุปกรณ์ IoT ไม่สามารถ
ให้บริการได้ตามปกติ ส่งผลต่อประสิทธิภาพและความน่าเชื่อถือของระบบอัจฉริยะในภาคส่วนต่าง  ๆ เช่น โครงสร้าง
พื้นฐานด้านพลังงาน การแพทย์ และอุตสาหกรรม 

3.3 ระบบตรวจจับการบุกรุก (Intrusion Detection System: IDS) เป็นซอฟต์แวร์หรือฮาร์ดแวร์ที่ใช้เฝ้าระวัง
และวิเคราะห์ทราฟฟิกเครือข่ายหรือกิจกรรมในระบบ เพื่อระบุพฤติกรรมที่เป็นอันตรายหรือการโจมตีทางไซเบอร์  [8]  
IDS สามารถแบ่งออกเป็นสองประเภทหลักตามวิธีการตรวจจับพฤติกรรมที่เบี่ยงเบนไปจากรูปแบบปกติ (Deviations 
from Normal Behavior) [9] ได้แก่ 1) Signature-based IDS ใช้การจับคู่รูปแบบ (Pattern Matching) กับลายเซ็น 
ของการโจมตีที่ร ู ้จัก (Known Signatures) เพื ่อตรวจจับภัยคุกคาม เช่นมัลแวร์ หรือการโจมตีที ่เคยถูกบันทึกไว้  
ในฐานข้อมูลความปลอดภัย 2) Anomaly-based IDS ใช้การวิเคราะห์พฤติกรรม (Behavioral Analysis) และการเรียนรู้
ของเครื่อง (Machine Learning) เพื่อตรวจจับพฤติกรรมที่ผิดปกติในระบบ โดยไม่จ าเป็นต้องอ้างอิงกับฐานข้อมูล 
ของการโจมตีที่รู้จักมาก่อน ซึ่งช่วยให้สามารถตรวจจับ Zero-day Attacks และภัยคุกคามที่ไม่เคยพบมาก่อนได้ IDS  
ถือเป็นกลไกส าคัญในการเสริมสร้างความปลอดภัยของเครือข่าย IoT เนื่องจากสามารถเฝ้าระวังพฤติกรรมที่เป็นอันตราย 
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และแจ้งเตือนผู้ดูแลระบบใหด้ าเนินการป้องกัน หรือบรรเทาผลกระทบได้อย่างทนัท่วงที อย่างไรก็ตามระบบ IDS แบบเดิม
ยังมีข้อจ ากัดในเรื่องของความแม่นย า และการประมวลผลข้อมูลแบบเรียลไทม์ท าให้มีการพัฒนาระบบป้องกันการบุกรุก
ตรวจจับป้องกันภัยคุกคามทางไซเบอร์แบบเรียลไทม์  (Intrusion Prevention System :IPS) ซึ ่งสามารถตรวจจับ  
และบล็อกการโจมตีได้โดยอัตโนมัติเพื่อเพิ่มขีดความสามารถในการป้องกันภัยคุกคามทางไซเบอร์ในเครือข่าย IoT 

3.4 การเรียนรู้เชิงลึก (Deep Learning: DL) เป็นสาขาย่อยของ Machine Learning ที่ใช้โครงข่ายประสาทเทยีม 
(Artificial Neural Networks: ANN) เพื่อเรียนรู้รูปแบบข้อมูลที่ซับซ้อน [15] DL ถูกน ามาใช้ใน IDS เพื่อเพิ่มความสามารถ 
ในการตรวจจับพฤติกรรมผิดปกติ (Anomalies) และกิจกรรมที่เปน็อันตราย (Malicious Activities) ได้อย่างแม่นย า [12] 
DL มีข้อได้เปรียบ IDS แบบดั้งเดิมเพราะสามารถเรียนรู ้จากข้อมูล  และตรวจจับภัยคุกคามที่ไม่เคยพบมาก่อน  
อย่างไรก็ตามความต้องการทรัพยากรสูง และความซับซ้อนของโมเดลยังคงเป็นความท้าทายที่ต้องได้รับการพัฒนา  
เพื่อให้สามารถใช้งานได้อย่างมีประสิทธิภาพในเครือข่าย IoT และระบบความปลอดภัยทางไซเบอร์  

3.5 โครงข่ายประสาทเทียมเชิงเวลาคอนโวลูชัน (Temporal Convolutional Networks: TCN)  โมเดล 
การเรียนรู้เชิงลึกที่เหมาะส าหรับการวิเคราะห์ข้อมูลแบบอนุกรมเวลา (Time-Series Data) [18] โครงสร้างของ TCN  
คล้ายกับโครงข่ายประสาทเทียมเชิงคอนโวลูชัน (Convolutional Neural Networks: CNNs) แต่ได้รับการปรับปรุง
เพื ่อให ้สามารถเร ียนร ู ้ความสัมพันธ ์ของข ้อม ูลในช่วงเวลาต่าง  ๆ (Capture Temporal Dependencies)  
ได้อย่างมีประสิทธิภาพ [19] ข้อดี TCN ที่มากกว่าโครงข่ายประสาทเทียมเชิงซ ้าซ้อน (Recurrent Neural Networks: 
RNNs) ได้แก่ ความเร็วในการฝึกฝนที่สูงกว่า การเรียนรู ้ข้อมูลระยะยาวที ่ดีกว่า และการใช้หน่วยความจ าน้อยลง   
ท าให้ TCN เป็นทางเลือกที่เหมาะสมส าหรับงานที่ต้องการวิเคราะห์ข้อมูลล าดับเวลา เช่นการตรวจจับภัยคุกคาม  
ทางไซเบอร์ในเครือข่าย IoT 

3.6 งานวิจัยการประยุกต์ใช้ TCN ในการพยากรณ์ข้อมูลพลังงาน โดย Lara-Benitez et al. ได้น า TCN  
มาใช้พยากรณ์ความต้องการพลังงานไฟฟ้า โดยท าการเปรียบเทียบกับ โมเดล Long Short-Term Memory (LSTM)  
โดยแบบจ าลองมาตรฐานในการพยากรณ์ข้อมูลชุดเวลาโดยใช้ข้อมูลพลังงานจากประเทศสเปน 2 ชุด ได้แก่ ความต้องการ 
ใช้ไฟฟ้าระดับประเทศ และการใช้พลังงานของสถานีชาร์จรถยนต์ไฟฟ้าส าหรับการศึกษาความสามารถของโมเดล  
ที่แตกต่างกัน จากการทดลองพบว่า TCN สามารถให้ผลการพยากรณ์ที่แม่นย ากว่า LSTM ในทุกกรณี นอกจากนี้ TCN  
ยังสามารถจับรูปแบบของข้อมูลในระยะยาวได้ดีกว่า LSTM และใช้ทรัพยากรคอมพิวเตอร์น้อยลง [22]  
 
4. วิธีด าเนินการวิจัย  

ในงานวิจัยน้ี มีวิธีการด าเนินการวิจัยส าหรับพัฒนาเฟรมเวิร์คส าหรับตรวจจับพฤติกรรมการโจมตีบนเครือข่าย 
ทุกสรรพสิ ่งด้วย Temporal Convolutional Networks (TCN) และประเมินประสิทธิภาพของโมเดล TCN  
ในการตรวจจับพฤติกรรมการโจมตี โดยการเปรียบเทียบกับโมเดล RNN LSTM GRU และ DNN โดยมีวิธีการด าเนินการ
วิจัยประกอบด้วย 6 หัวข้อหลัก ดังนี ้
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4.1 การเก็บรวบรวมข้อมูล (Data Collection) เนื่องจากข้อจ ากัดในการเข้าถึงข้อมูลการโจมตีในเครือข่าย IoT จริง 
งานวิจัยนี้จึงเลือกใช้ชุดข้อมูลสังเคราะห์ที่สร้างขึ้นโดยใช้ make classification` function จาก Scikit-learn library  
ใน Python ชุดข้อมูลนี้ประกอบด้วยข้อมูลอนุกรมเวลา (time-series data) ที่จ าลองการรับส่งข้อมูลในเครือข่าย IoT 
โดยมี ตัวแปรและคุณลักษณะของข้อมูล (features) ที่หลากหลาย เช่น ปริมาณทราฟฟิก ความถี ่ใน การส่งข้อมูล 
โปรโตคอล (protocol) ช่องทางสื่อสารระหว่างอุปกรณ์หรือโปรแกรมที่ท างานบนเครือข่าย (port) และ IP address  
ชุดข้อมูลแบ่งออกเป็น 3 ส่วน คือ ข้อมูลปกติ ข้อมูลที่จ าลองพฤติกรรมการโจมตีแบบการโจมตีทางไซเบอร์ที่มีเป้าหมาย
เพื่อท าให้ระบบเครือข่ายบริการ หรือเซิร์ฟเวอร์ไม่สามารถให้บริการได้ตามปกติ (Denial-of-Service :DoS) ซึ่งมีปริมาณ
ข้อมูลมหาศาลที่ถูกส่งไปยังเซิร์ฟเวอร์ หรือเครือข่ายอย่างต่อเนื่อง (flood traffic) ไปยังอุปกรณ์เป้าหมาย และข้อมูล 
ที่จ าลองพฤติกรรมการโจมตีทางไซเบอร์ที่แฮกเกอร์แอบดักจับ และแก้ไขข้อมูลที่ถูกส่งระหว่างสองฝ่ายที่คิดว่าก าลัง  
สื่อสารกันอย่างปลอดภัย (Man-in-the-Middle) ซึ่งมีลักษณะดักจับหรือขัดขวางข้อมูลที่ถูกส่งผ่านเครือข่ายโดยบุคคล 
ที่สามที่ไม่ได้รับอนุญาตสามารถน าไปใช้เพื่อดักฟัง แก้ไข หรือขโมยข้อมูลที่ก าลังถูกส่งระหว่างสองฝ่าย (Intercept)  
และปรับปรุงข้อมูลระหว่างผู้ใช้ (Client) และผู้ให้บริการ (Server) การใช้ชุดข้อมูลสังเคราะห์ช่วยให้สามารถควบคุม
ลักษณะ และปริมาณของข้อมูลรวมถึงรูปแบบการโจมตีได้ตามต้องการ 

4.2 ชุดข้อมูลสังเคราะห์ (Dataset) 

ตารางท่ี 1 ชุดข้อมูลสังเคราะห์สร้างขึ้นโดยมี ตัวแปรที่ใช้ควบคุมหรือก าหนดพฤติกรรมของระบบ (Parameter) 
Parameter ค าอธิบาย ค่าท่ีใช ้

จ านวนอุปกรณ์ IoT (n_devices) จ านวนอุปกรณ์ IoT ที่ใช้ในการจ าลอง 10 
ระยะเวลา (n_days) ระยะเวลาที่ใช้ในการจ าลอง 7 วัน 
ความถ่ีในการเก็บ ข้อมลู
(frequency) 

ความถ่ีในการเก็บข้อมูล 1440 ครั้ง/วัน (1 นาที/ครั้ง) 

คุณลักษณะ (Features)  คุณลักษณะของข้อมลู เช่น ปริมาณ traffic, 
ความถ่ี, protocol, port, IP address 

5 features 

รูปแบบการโจมต ี รูปแบบการโจมตีที่ใช้ในการจ าลอง คือ DoS, 
Man-in-the-Middle 

DoS, Man-in-the-Middle 

4.3 เครื่องมือวิจัย (Research Instruments) งานวิจัยน้ีเลือกใช้ภาษาไพทอล (Python Language) เป็นภาษา
โปรแกรมหลักเนื ่องจากมีความยืดหยุ ่นสูงและมีไลบรารีส าหรับ Data Science และ Machine learning โดยใช้  
Scikit-learn ในการสร้าง Dataset และ preprocess ข้อมูล TensorFlow/Keras ซึ่งใช้ในการสร้างและฝึกฝน TCN 
Model การทดลองด าเนินการบน Google Colab Platform ซึ่งเป็น Cloud platform เพื่อเร่งการฝึกฝนโมเดลใช้ 
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Wireshark ส าหรับ capture และ วิเคราะห์ network traffic ใช้ Nmap ส าหรับ network scanning และ 
vulnerability analysis ตามความเหมาะสม 

4.4 ข้ันตอนการพัฒนาโมเดล 
4.4.1 ก าหนดวัตถุประสงค์ของโมเดลโดยการระบุเป้าหมายของการพัฒนาโมเดล และก าหนดขอบเขต  

การท างานของโมเดล 
4.4.2 เตรียมชุดข้อมูล โดยการรวบรวมข้อมูลที ่เกี ่ยวข้อง จากนั ้นท าความสะอาดข้อมูลและจัดการ  

ค่าที่ขาดหายไป และแปลงและเลือกฟีเจอร์ที่ส าคัญ 
4.4.3 แบ่งชุดข้อมูล ท าการแบ่งข้อมูลเป็น Training Set, Validation Set และ Test Set พร้อมทั้ง

ตรวจสอบความสมดุลของข้อมูล 
4.4.4 ออกแบบโครงสร้างของโมเดล เลือกประเภทของโมเดลที่เหมาะสม และก าหนดจ านวนช้ันของโมเดล

และพารามิเตอร์ต่าง ๆ 
4.4.5 เลือก Loss Function และ Optimizer ท าการก าหนด Loss Function ที่เหมาะสมกับปัญหา  

และเลือก Optimizer ที่ช่วยให้โมเดลเรียนรู้ได้อย่างมีประสิทธิภาพ 
4.4.6 ฝึกโมเดล (Model Training) ท าการป้อนข้อมูลเข้าโมเดลเพื่อให้เรียนรู้ รวมถึงปรับพารามิเตอร์   

และค่า Hyperparameters เพื่อเพิ่มประสิทธิภาพ 
4.4.7 ประเมินผลการฝึกโมเดล ท าการตรวจสอบค่า Accuracy, Precision, Recall และ F1-Scor จากนั้น

วิเคราะห์ค่า Loss และ Validation Loss และเลือกใช้ Confusion Matrix และ ROC Curve เพื่อประเมินผล 
4.4.8 ปร ับปรุงและปรับแต ่งโมเดล ปร ับโครงสร ้างของโมเดลเพื ่อลด Overfitting โดยใช ้ เทคนิค  

Regularization หรือเพิ่มข้อมูลฝึก 
4.4.9 ทดสอบโมเดลกบัชุดข้อมูลทีไ่ม่เคยเหน็มาก่อน ท าการตรวจสอบความสามารถของโมเดลในการท างาน

กับข้อมูลใหม่ พร้อมวิเคราะห์ข้อผิดพลาดและปรับปรุงโมเดลเพิ่มเติม 
4.4.10 น าโมเดลไปใช้งาน (Deployment) บันทึกโมเดลที่ผ ่านการฝึกแล้ว จากนั ้นน าไปใช้งานใน

สภาพแวดล้อมจริงหรือสร้าง API ส าหรับการใช้งาน 
4.5 การประเมินประสิทธิภาพ และความแม่นย า ประกอบด้วย ข้ันตอนดังต่อไปนี้ 

4.5.1 เตรียมชุดข้อมูลทดสอบ (Test Set Preparation) ประกอบด้วย การแบ่งข้อมูลออกเป็น Training Set 
Validation Set และ Test Set จากนั้นท าการตรวจสอบความสมดุลของข้อมูล (Data Imbalance) 
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4.5.2 ค านวณค่า Accuracy Precision Recall และ F1-Score ใช้สูตรในการค านวณค่า Accuracy  
เพื ่อวัดความแม่นย าของโมเดล ค านวณค่า  Precision และ Recall เพื ่อตรวจสอบอัตราการท านายผิดพลาด  
และการตรวจจับที่ถูกต้อง และค านวณค่า F1-Score เพื่อประเมินประสิทธิภาพโดยรวมของโมเดล 

4.5.3 วิเคราะห์ค่า Loss และ Validation Loss ท าการตรวจสอบว่า Loss ลดลงอย่างต่อเนื่องหรือไม่ 
จากนั้นเปรียบเทียบระหว่าง Training Loss และ Validation Loss เพื่อดูว่ามี Overfitting หรือไม่ 

4.5.4 วิเคราะห์ผลลัพธ์ผ่าน Confusion Matrix ตรวจสอบค่าที ่โมเดลท านายถูกต้องและผิดพลาด  
และวิเคราะห์อัตราการเกิด False Positives และ False Negatives 

4.5.6 สร้าง ROC Curve และค านวณ AUC Score วัดความสามารถของโมเดลในการแยกแยะระหว่างคลาส 
พร้อมทั้งค านวณค่า AUC (Area Under Curve) เพื่อดูประสิทธิภาพของโมเดล 

4.5.7 ตรวจสอบแนวโน้มของค่า Accuracy และ Loss ตลอดการฝึกโมเดล ใช้กราฟแสดงผล Accuracy  
กับ Epochs และ Loss กับ Epochs และวิเคราะห์แนวโน้มว่าค่า Accuracy เพิ่มข้ึน และค่า Loss ลดลงหรือไม่ 

4.5.8 เปร ียบเทียบผลลัพธ์กับโมเดลอื ่น ๆ น าค่า Accuracy Precision Recall และ F1-Score  
มาเปรียบเทียบกับโมเดลอื่น เช่น RNN LSTM GRU และ DNN จากนั้นวิเคราะห์ข้อดีและข้อเสียของแต่ละโมเดล 

4.5.9 ปรับปรุงโมเดลเพื่อเพิ่มประสิทธิภาพ ปรับพารามิเตอร์ของโมเดล เช่น Learning Rate Batch Size 
และจ านวน Epochs ใช้เทคนิค Regularization เช่น Dropout เพื่อลด Overfitting และปรับปรุงโครงสร้างของโมเดล
เพื่อเพิ่มประสิทธิภาพในการเรียนรู้ 

4.6 การวิเคราะห์ข้อมูล ประกอบด้วย 
4.6.1 เตรียมข้อมูล โดยการตรวจสอบค่าที่ขาดหายไป ปรับขนาดข้อมูล และแบ่งชุดข้อมูล 
4.6.2 สร้างชุดข้อมูลสังเคราะห์ จ าลองพฤติกรรมปกติ และการโจมตี เช่น DoS และ MITM 
4.6.3 วิเคราะห์เชิงพรรณนา ค านวณสถิติเบื้องต้น เช่น ค่าเฉลี่ย และการกระจายตัวของข้อมูล 
4.6.4 วิเคราะห์ความสัมพันธ์ของตัวแปร ใช้ Correlation Matrix และ Feature Selection 
4.6.5 ประเมินโมเดล ค านวณ Accuracy, Precision, Recall, F1-Score และ Loss 
4.6.6 วิเคราะห์ Confusion Matrix ตรวจสอบอัตราการเกิดข้อผิดพลาด (False Positives False Negatives) 
4.6.7 ปรับปรุงโมเดล วิเคราะห์แนวโน้มการเรียนรู้ และปรับพารามิเตอร์ให้เหมาะสม 
4.6.8 เปรียบเทียบกับโมเดลอื่น วิเคราะห์ประสิทธิภาพของ TCN เทียบกับ RNN LSTM GRU และDNN 

 
5. ผลและวิจารณ์  

5.1 ผลการทดลองการพัฒนาเฟรมเวิร์คส าหร ับตรวจจับพฤติกรรมการโจมตีบนเคร ือข่ายทุกสรรพสิ่ง  
ด้วย Temporal Convolutional Networks (TCN) เป็นไปดังตารางที่ 2 
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ตารางท่ี 2 ผลการทดลองที่ได้รับจากการ Train TCN Model 

รอบการฝึก
โมเดล 

(Epoch) 

ความแม่นย า
ของโมเดลจาก
ชุดข้อมูลฝึก 
(Accuracy) 

ค่าความ
ผิดพลาดของ
โมเดลจากชุด

ข้อมูลฝึก 
(Loss) 

ความแม่นย า
ของโมเดล 

จากชุดข้อมูล
ตรวจสอบ 

(Val_Accuracy) 

ค่าความ
ผิดพลาดของ
โมเดลจากชุด

ข้อมูลตรวจสอบ 
(ValLoss) 

อัตราการ
เรียนรู้ของ

โมเดล 
(Learning Rate) 

เวลาที่ใช้ในการ
ฝึกแต่ละรอบ 

(Time/Epoch) 

1 0.5814 1.4105 0.5096 0.5096 0.01 29s 

2 0.5299 2.8932 0.5008 2.0804 0.01 29s 

3 0.4998 1.8371 0.5013 0.7905 0.01 42s 
4 0.5007 2.9269 0.4984 2.9081 0.01 27s 

5 0.4995 1.3288 0.4992 2.0398 0.01 27s 

6 0.4992 1.4011 0.5023 0.7518 0.01 28s 
7 0.4998 0.9236 0.4977 0.7134 0.01 30s 

8 0.5000 1.5425 0.4987 2.5159 0.01 28s 

9 0.5021 1.3080 0.5021 0.9836 0.01 41s 

10 0.5009 1.0523 0.5020 1.7645 0.01 41s 
 

จากตารางที่ 2 ผลการทดลองแสดงให้เห็นว่า TCN Model ที่พัฒนาขึ้นยังไม่สามารถเรียนรู้รูปแบบของข้อมูล 
ได้อย่างมีประสิทธิภาพโดยมีรายละเอียดดังนี้ ค่า Accuracy ต ่า โดยค่า Accuracy ของโมเดลอยู่ที่ประมาณ 0.49 - 0.50 
ซึ่งถือว่าต ่ากว่าเกณฑ์มาตรฐานที่ยอมรับได้ส าหรับงานตรวจจับการโจมตีทางไซเบอร์  (Cyber Attack) โดยทั่วไปแล้ว  
ค่า Accuracy ควรอยู่ที่ 80% ข้ึนไปเพื่อให้มั่นใจได้ว่า Model มีความน่าเช่ือถือในการใช้งานจริง 

ค่า Loss ผันผวน ค่า Loss ในตารางที่ 2 มีความผันผวนสูงในแต่ละรอบการฝึก Epoch ชี ้ให้เห็นว่าโมเดล 
ยังไม่สามารถเรียนรู้จนถึงจุดที่ค่าความผิดพลาด (Loss) ลดลงอย่างมีเสถียรภาพ (Converge) และไม่เปลี่ยนแปลงมากนัก
เมื่อฝึกต่อไป (Converge) และอาจเกิดปัญหาภาวะที่โมเดลเรียนรู้ข้อมูลฝึก ได้ดีเกินไป  จนไม่สามารถท างานได้ดีกับ 
ข้อมูลใหม่ (Overfitting) ซึ่งส่งผลให้โมเดลมีประสิทธิภาพต ่าในการท างานกับข้อมูลใหม่โดยยังคงให้ผลลัพธ์ที่แม่นย า 
(Generalize) 

ค่า Learning Rate ที่ใช้ในการฝึกโมเดลสูงเกินไป ท าให้โมเดลไม่สามารถปรับพารามิเตอร์ได้อย่างเหมาะสม  
และพลาดจุดที่ให้ผลลัพธ์ดีที่สุด (Optimal Point) ในการเรียนรู้ 
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ตารางที่ 3  Confusion Matrix แสดงประสิทธิภาพของโมเดลการเรียนรู้เชิงลึก (Deep Learning) และการเรียนรู้ 
ของเครื่อง (Machine Learning) โดยใช้แสดงผลลัพธ์ของการจ าแนกประเภท (Classification) เปรียบเทียบระหว่าง 
ค่าจริง (Actual) และค่าที่โมเดลท านาย (Predicted)  

ท านายว่าไม่ใช่การโจมตี (Predicted Negative) ท านายว่าเป็นการโจมตี (Predicted Positive) 
108 60,648 
85 60,119 

 จากตารางที่ 3 พบว่า โมเดลมีข้อผิดพลาดในการจ าแนกพฤติกรรมการโจมตีในเครือข่าย  IOT แสดงค่าท านาย 
ว่าไม่ใช่การโจมตี (Predicted Negative) และท านายว่าเป็นการโจมตี (Predicted Positive) โดยโมดลสามารถท านาย
ค่าที ่ไม่ใช่การโมตี ได้ถูกต้อง 108  แต่กลับท านายผิดพลาดว่าเป็นการโจมตี มากถึง 60,648 ครั ้ง ซึ ่งหมายถึงว่า  
โมเดลมีอัตราการแจ้งเตือนผิดพลาดสูงมาก (False Positive) ในทางกลับกัน โมเดลสามารถท านายว่าเป็นการโจมตี  
ได้ถูกต้อง 60,119 ครั ้ง แต่ย ังมีการท านายว่าไม่ใช่การโจมตี อยู ่ 85 ครั ้ง แสดงให้เห็นว่าโมดลมีความสามารถ 
ในการตรวจจับการโจมตีได้ดี (พิจารณาค่า Recall สูง) แต่มีปัญหาในด้านความแม้นย าของการแจ้งเตือน(Precision ต ่า) 
ซึ่งแสดงให้เห็นว่า โมเดลควรได้รับการปรับปรุงเพื่อเพิ่มความแม่นย าในการตรวจจับพฤติกรรมการโจมตี และลดอัตรา  
การแจ้งเตือนผิดพลาด และท าให้โมเดลสามารถใช้งานจริงได้อย่างมีประสิทธิภาพมากข้ึน  

ตารางท่ี 4 ผลค านวณการฝึกโมเดล TCN 

Metric Value 
Accuracy 0.4979 
Precision 0.4978 
Recall 0.9986 

F1-score 0.6644 

จากตารางที่ 4 ผลการค านวณการฝึกโมเดล TCN พบว่า มีความแม่นย าไม่เพียงพอส าหรับการน าไปใช้งานจริง
พิจารณา ค่า Accuracy เท่ากับ 0.4979 สามารถท านายได้ถูกต้องเพียงประมาณ 49.79 % แสดงว่าค่าต ่ากว่ามาตรฐาน 
ที่เหมาะสม ค่า Precision เท่ากับ 0.4978 แสดงว่าโมเดลมีอัตราการท านายว่ามีการโจมตี (Positive) ได้ถูกต้องเพียง 
49.78 % ซึ่งหมายความว่ามี False Positive สูง ค่า Recall เท่ากับ 0.9986 แสดงว่า โมเดลสามารถตรวจจับเหตุการณ์ 
ที่โจมตีที่เกิดขึ้นจริงได้ถึง 99.86 % ซึ่งเป็นค่าสูง แสดงว่าโมเดลสามารถตรวจจับการโจมตีทางไซเบอร์ได้แทบทุกกรณี   
ค่า F1-score เท่ากับ 0.6644 ซึ่งเป็นค่าเฉลี่ยระหว่างค่า Precision และค่า Recall แสดงให้เห็นว่าโมเดลต้องปรับปรุง 
ให้สามารถจ าแนกได้แม่นย าขึ ้น โมเดลTCN มีความสามารถในการตรวจกับภัยคุกคามทางไซเบอร์ได้ดี  เนื ่องจาก 
มีค่า Recall ที่สูง แต่ยังมีปัญหาในด้านของ Precision ต ่า และAccuracyต ่า หมายความว่า โมเดลมีอัตราการแจ้งเตือน
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ข้อผิดพลาด (False Positive) สูง จ าเป็นต้องปรับปรุงให้สามารถแยกแยะพฤติกรรมที่เป็นอันตรายและไม่เป็นอันตราย 
ให้ดีข้ึน เช่น การปรับพารามิเตอร์ของโมเดลหรือเพิ่มคุณภาพของข้อมูลฝึก  

5.2 ประเมินประสิทธิภาพของโมเดล TCN ในการตรวจจับพฤติกรรมการโจมตี โดยการเปรียบเทียบกับโมเดล 
RNN LSTM GRU และDNN 

ผลการเปรียบเทียบประสิทธิภาพของ TCN Model กับ Model ที่นิยมใช้ในการตรวจจับ Cyber Attack  
จ านวน 4 โมเดล ได้แก่ RNN, LSTM, GRU หรือ DNN  โดยใช้ชุดข้อมูลเดียวกัน และเปรียบเทียบผลลัพธ์โดยใช้ค่า 
Accuracy  Precision Recall F1-score และ Confusion Matrix เป็นเกณฑ์ในการวัดผล โดยแสดงการเปรียบเทียบ 
ในกราฟ รูปที่ 1 

 

รูปท่ี 1 แสดงการเปรียบเทียบประสทิธิภาพ ของ TCN Model กับ Model อื่น ๆ 

จากรูปที่ 1 จากกราฟแสดงให้เห็นถึงว่า โมเดล TCN มีค่า Recall สูงที่สุด แต่ค่า Precision และ Accuracy ต ่า
ท าให้เหมาะกับงานที่เน้นการตรวจจับทุกกรณีส าคัญ ส าหรับโมเดล RNN มีผลลัพธ์สมดุลเหมาะกับงานทั ่วไป   
โมเดล LSTM ประสิทธิภาพสูงในทุกด้านเหมาะส าหรับข้อมูลที ่มีล าดับซับซ้อน โมเดล GRU ใกล้เคียงกับ LSTM  
แต่เหมาะกับงานที่ต้องการประสิทธิภาพสูง และโมเดล DNN มีความสมดุลและประสิทธิภาพสูงสุดในทุกด้านเหมาะกับ
งานที่ต้องการความแม่นย าและความครอบคลุมสูง 

ประสิทธิภาพการน าเครื่องมือเหล่าน้ีมาประยุกต์ใช้จะช่วยพัฒนาโมเดลที่มีประสิทธิภาพสูง ส าหรับการตรวจจับ
ภัยคุกคามทางไซเบอร์ได้อย่างมีประสิทธิภาพยิ่งขึ้น ซึ่งจะส่งผลดีต่อการวิจัยและพัฒนา ระบบรักษาความปลอดภัย  
ในอนาคตการน าเสนอผลการเรียนรู ้ของโมเดล และการใช้เครื ่องมือช่วยในการพัฒนาโมเดลเป็นขั ้นตอนส าคัญ  
ในการสร้างโมเดลส าหรับงานตรวจจับไซเบอร์โดยการวิเคราะห์กราฟการฝึกฝนและการเลือกใช้ Framework ที่เหมาะสม
จะช่วยให้สามารถเข้าใจและปรับปรุงประสิทธิภาพของโมเดลได้อย่างมีประสิทธิภาพซึ่งจะน าไปสู่การพัฒนาระบบ  
รักษาความปลอดภัยที่มีประสิทธิภาพสูงข้ึนในอนาคต 
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6. สรุปผล  
การพัฒนาเฟรมเวิร์คโดยใช้ Temporal Convolutional Networks (TCN) ซึ่งเป็นโมเดล Deep Learning  

ที่เหมาะกับการวิเคราะห์ข้อมูลแบบอนุกรมเวลา (Time-Series Data) ส าหรับการตรวจจับพฤติกรรมการโจมตี 
ในเครือข่าย IoT พบว่า เฟรมเวิร์คนี ้ใช้ชุดข้อมูลสังเคราะห์ที ่จ  าลองการโจมตีแบบ Denial-of-Service (DoS)  
และ Man-in-the-Middle (MITM) โดยใช้ Python และ TensorFlow/Keras บน Google Colab โดยโมเดลถูกฝึกฝน
ด้วยชุดข้อมูลที ่ผ ่านการ Standardization One-Hot Encoding และ Feature Engineering เพื ่อให้สามารถ 
เรียนรู้พฤติกรรมปกติและพฤติกรรมการโจมตี ผลการทดลองพบว่า โมเดล TCN ยังไม่สามารถเรียนรู้รูปแบบของขอ้มูล 
ได้อย่างมีประสิทธิภาพ ค่า Accuracy อยู่ที่ประมาณ 0.49 - 0.50 ซึ่งต ่ากว่าเกณฑ์มาตรฐาน (≥ 80%) ส าหรับการใช้งานจริง 
ส าหรับ ค่า Loss มีความผันผวนสูงในแต่ละ Epoch แสดงให้เห็นว่าโมเดลยังไม่สามารถเรียนรู้ได้อย่างมีเสถียรภาพ  
และอาจเกิดปัญหา Overfitting ท าให้ประสิทธิภาพลดลงเมื่อใช้กับข้อมูลใหม่ รวมถึงค่า Learning Rate สูงเกินไป  
ท าให้โมเดลไม่สามารถปรับค่าพารามิเตอร์ได้อย่างเหมาะสม ส่งผลให้พลาดจุดที่ให้ผลลัพธ์ดีที่สุด (Optimal Point)  

 การประเมินประสิทธิภาพของโมเดล TCN ในการตรวจจับพฤติกรรมการโจมตีโดยการเปรียบเทียบกับโมเดล 
RNN, LSTM, GRU และ DNN โดยใช้ Accuracy Precision Recall F1-score และ Confusion Matrix เป็นเกณฑ์วัดผล 
สามารถสรุปได้ว่า TCN มีค่า Recall สูงสุด (0.9986) แสดงว่าโมเดลสามารถตรวจจับเหตุการณ์โจมตีได้แทบทุกกรณี 
Precision ต ่ามาก (0.4978) ซึ่งหมายถึงอัตราการแจ้งเตือนผิดพลาด (False Positive) สูง Accuracy เพียง 0.4979  
ท าให้ไม่สามารถใช้งานจริงได้อย่างมีประสิทธิภาพ F1-score อยู่ที่ 0.6644 แสดงถึงความไม่สมดุลของ Precision  
และ Recall เมื่อ Confusion Matrix พบว่า โมเดลมีอัตราการแจง้เตือนผิดพลาดสงูมาก (False Positive = 60,648 ครั้ง)
แม้จะสามารถตรวจจับการโจมตีได้แม่นย า (True Positive = 60,119 ครั้ง) แต่ยังคงมีปัญหาในการแยกแยะระหว่าง
พฤติกรรมปกติและพฤติกรรมโจมตีแต่เม ื ่อเทียบกับโมเดลอื ่น  ๆ LSTM และ GRU มีประสิทธิภาพดีในทุกด ้าน  
โดยเหมาะกับข้อมูลที่มีล าดับซับซ้อน DNN มีความสมดุลและมีประสิทธิภาพสูงสุดส าหรับงานที่ต้องการความแม่นย า  
RNN มีผลลัพธ์สมดุล เหมาะส าหรับงานทั่วไป และTCN เหมาะกับงานที่ต้องการตรวจจับทุกกรณีส าคัญ แต่ยังต้อง
ปรับปรุงเรื่อง Precision และ Accuracy 
 
7. ข้อเสนอแนะ 

เพื ่อเพิ ่มประสิทธิภาพของ framework ในการตรวจจับพฤติกรรมการโจมตีในเครือข่าย IoT ควรปรับปรุง 
คุณภาพของชุดข้อมูลโดยใช้ Dataset จริงหรือ Dataset สังเคราะห์ที ่มีความซับซ้อนมากขึ ้น พร้อมทั้งเพิ ่มขนาด 
ข้อมูลก าจัด noise และ outliers และใช้ Data Augmentation เพื ่อเพิ ่มความหลากหลายของข้อมูล นอกจากนี้  
ควรปรับปรุงโครงสรา้งของ TCN Model โดยทดลองเปลี่ยน จ านวนช้ัน (layers) kernel size และactivation functions 
รวมถึงใช้ Attention Mechanism เพื่อให้โมเดลสามารถโฟกัสกับลักษณะส าคัญของข้อมูล 
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ในส่วนของการปรับแต่งค่าพารามิเตอร์ (Hyperparameter Tuning) ควรลด Learning Rate ปรับ Batch Size 
และ Epochs ให้เหมาะสม และใช้ Regularization Techniques เช่น Dropout หรือ L1/L2 Regularization เพื่อลด 
Overfitting สุดท้าย ควรทดสอบโมเดลกับ  ชุดข้อมูลจร ิง , วิเคราะห์ข้อผิดพลาดผ่าน Confusion Matrix และใช้  
Ensemble Learning โดยรวมโมเดลอื่น เช่น LSTM หรือ GRU เพื่อเพิ่มความแม่นย าและลดอัตราการแจ้งเตือนผิดพลาด 
ซึ่งจะช่วยให้เฟรมเวิร์คมีประสิทธิภาพและสามารถน าไปใช้งานจริงได้อย่างมีประสิทธิภาพย่ิงข้ึน 
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