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Abstract

This paper presents the static response of deep water hemi-ellipsoidal shells. The shell geometry
is determined using differential geometry, while the displacement field is derived based on higher-order
shear deformation theory. The energy functional of the shell system can be formulated via the principle
of virtual work. The numerical results of the static deformed configuration of the hemi-ellipsoidal shells
are obtained by the finite element method employing nine-node quadrilateral isoparametric elements.
Specifically, this study examines the effects of external hydrostatic pressure on hemi-ellipsoidal
shells under various height-to-base radius ratios and support conditions. The results indicate that
the displacement response depends on the height-to-base radius ratios of the hemi-ellipsoidal shells.
The normal displacement of the hemi-spherical shells is lower than the hemi-oblate and prolate shells at
the apex and support, respectively.
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2. Inguszen
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wuusUnsesandsudmezainlaglinguimsidesunisusaiaudunuas (Higher-Order Shear Deformation
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\WaayWus (Differential Geometry) [21-22] ldnann1svesauaiiou (Principle of Virtual Work) [23]
Tunisasaunsndsnuvesseuulassadne ansuldsseuisinludiofdiuud (Finite Element Method)
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Tassafraddenursasiand@danguuuuidudadu (Linearly Elastic Material) Tagfi Aumun
%ﬂmaa%’mL‘UﬁaﬂmaLL‘U‘UEUMN‘%ﬁ]zﬁmmmﬂﬁmiwﬁauwaqmwé’a%‘uLLiQﬁufﬁaﬁmﬂﬂﬂﬂﬂsuaﬂ
(External Hydrostatic Pressure) ﬂ'fm'm?isgﬂLLazmesﬂuﬁLﬁmsﬁuLfiaaﬁnmfmﬁmaq‘[mqa%’w%hiﬁﬂm
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wuuBauly (Clamped Support) aﬂﬂqamgizﬁmuﬁﬁnmﬁumLa
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A(9,¢)=(§—;-%) = (a® cos® @ +b?sin* H)"? (2n)
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PINEANNTTN (2) wa (5) WLAMITAAIUIUNIATSANANTAIUAN (Principal Radii of Curvature)

ﬁuaﬂﬂiaa%ﬁaLﬂﬁaﬂmagUmﬁlﬁﬁqaumiﬁ (6)
R,(0,4)= A2/ L (6n)
R,(6.4)=B?/N (6)
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u(d, ¢, z) = U, (0, $) + zu, (0, ) + 2°u, (0, ) + 2°u, (0, P) (7n)
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jyo L[ uoA) 1 f(u v (or

Y Al+z/R) 60 Bog B(1+z/R) o¢ AdO

g, = ;(&NJ+A(1+Z/R) (*j (102)
Al+z/R,)\ 06 A(l+z/R,)

g, = ;(a""jwaum)—[éj (109)
B(l+z/R,))\ o¢ B(l+z/R,)

wnuAENN151 (7) asluaunisi (10) wazdagUlmiszanunsaeuladeaunisi (11)

52,9 Kéa ng KS@
82¢ K¢1ﬁ¢ K;ﬁ stﬁ
{e}=[ANEY=1 &, 1+ 24, 1+ 27 k2 1+ 220 K, (11)
&g, Ko, K, Koy
o) e el e

A 0 0 0 0 _0 1 i
LD {5}:[599 E4p €0 €01 €4 Kuo ";lsqﬁ’(agf Kp, K 2 Koo K¢¢K¢K K¢z Koo K¢¢K ¢K K¢z]
way [I-_|]:[[I]5X5 2[1]ss 2°[1)sss 23[I]5X5} Towdl 1], A9 we3ndiendnwal (Identity Matrix)

YU 5x5

3.4 HINYUNS 91U

AUNNTANUFUN U TERINANUAU-AULATEA (Stress-Strain Relations) [23] azanusadenulaann

41N (12)

to}=[Clief (12)

a (3

T va U ¥V
e { [099 Oy Og O O'¢Z:| war [C] Ao wmindamautivesianlassasiauionuis
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Wo Q,=Q,=E/(l-4%), Q,=Q,=uE/(1-4*), waz 2Q,=2Q,=2Q,=E/(1- )
lnedl E flo nondadangu (Young’s Modulus) uay 4 e snsnadmilidens (Poisson’s Ratio) fatiuazansnsa

muwmnaasnuanaasen (U) laanaunisn (14)

u =%z:f{5}T[D]{,§} ABd¢d6 (14)

e [D] fie weindauung Feanansadeulafaunisi (15)

AT [C][H](Méj{ﬂé}dz (15
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0] |

—h/2

4. 33 HunN15IY
NsmAmaUTIRIaTYeTsUUlaTIaIulFeNUNIUNSSTuLsuhainanewenavatunsavinla
Tagldszidouaslwludiodmud [24-25] vin1suusiudliuredlassasraldonuiadududiugosauuulInng
v ca a o Y a e o Y a . .
WWuessinvulaziduso unlagldodmuddmasuiuduuulelsnisuunin (Quadrilateral Isoparametric

Elements) §117u 9 arslunsuszanurn sy feaunisi (16)
9
{4} =2 Ni {4y} (16)
i=1

o () =[Us Vo Wo Uy Vi Uy Vy Uy Yy | waz N, Aedlsidugusredmiugasie |
Favgdedaaunisit (17)

N, =0.25(£° - &)(n* —n) (170)

) (17%)

) (170)

) (172)

N; =0.50(1-&%)(n* -7) (179)

) (179)

) (172)

) (17%)

N, =1.00(1-&%)(1-7°) (17%)
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Wl & uay 5 PesrEziinal@nIzdl (Local Coordinate) [25] Aauanslugui 2 Mviual

{ZO}TZVm o s A A Ae Ay s Aw Farfuaunsi (16) azannsadeulnsl
I¢idsennisil (18)

{4} =[N} %} (18)
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Equation) vesszuulastaiialdenunesunsesfuussiuatinanneuenlansaunisi (24)

or=0U-00Q=0 (24)

=4

We ¢ Ae dgdnwaln1suusiu (Variational Symbol) 7 Ao wasiusnuailou (Total Virtual Work)
wazr 00 Ao Aualiouliada NI ULNEDRS Fearunsateuleseaunisn (25)

0, 4,
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L

We p, Ao AWIIRULIEALUUT LAY (Linearly Hydrostatic Pressure) @ sanunsatienula fvaunns
1 (26)
Pu = Pu9Z,, (26)
~ a o S a i I a a
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lassasiaudenugunsssuuswinhainanngueniaunisi (27)
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