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บทคัดย่อ 

บทความนี้น าเสนอผลตอบสนองทางสถิตศาสตร์ของโครงสร้างเปลือกบางแบบรูปทรงรีติดตั ้งในน ้าทะเลลึก  
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ด้วยแรงเฉือนอันดับสูงในการนิยามค่าการเสียรูปของโครงสร้างเปลือกบาง การสร้างฟังก์ชันพลังงานของระบบโครงสร้าง
เปลือกบางจะสามารถเขียนได้โดยใช้หลักการของงานเสมือน การค านวณหาผลลัพธ์เชิงตัวเลขจะใช้วิธีไฟไนต์เอลิเมนต์ 
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ภายใต้การเปลี่ยนแปลงอัตราส่วนของความสูงต่อความยาวรัศมีที่ฐานรองรับของโครงสร้างเปลือกบางรูปทรงรีและ 
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ค่าอัตราส่วนความสูงต่อความยาวรัศมีที ่ฐานรองรับของโครงสร้างเปลือกบางรูปทรงรี  โดยที ่โครงสร้างเปลือกบาง 
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Abstract 

This paper presents the static response of deep water hemi-ellipsoidal shells. The shell geometry 

is determined using differential geometry, while the displacement field is derived based on higher-order 

shear deformation theory. The energy functional of the shell system can be formulated via the principle 

of virtual work. The numerical results of the static deformed configuration of the hemi-ellipsoidal shells 

are obtained by the finite element method employing nine-node quadrilateral isoparametric elements. 

Specifically, this study examines the effects of external hydrostatic pressure on hemi-ellipsoidal  
shells under various height-to-base radius ratios and support conditions. The results indicate that  

the displacement response depends on the height-to-base radius ratios of the hemi-ellipsoidal shells.  
The normal displacement of the hemi-spherical shells is lower than the hemi-oblate and prolate shells at 

the apex and support, respectively. 

Keywords: Static response, Deep water hemi-ellipsoidal shells, Differential geometry, Higher-order 
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1. ท่ีมาและความส าคัญ 
ในปัจจุบันการใช้งานโครงสร้างเปลือกบาง (Shell Structures) ทางวิศวกรรมโยธาและเครื่องกลไม่ได้ถูกจ ากัด

เพียงโครงสร้างเปลือกบางรูปทรงกลม (Spherical Shells) ทั ่วไป ที่มีค่าความยาวรัศมีเท่ากันตลอดหน้าตัดของ 
โครงสร้าง แต่การเลือกใช้งานโครงสร้างเปลือกบางรูปทรงอื่น ๆ  ที่มีความซับซ้อนเริ่มเป็นที่นิยมมากขึ้นในงานวิศวกรรม
หลากหลายแขนง เช่น วิศวกรรมการบิน วิศวกรรมเรือ และวิศวกรรมนอกชายฝั่งทะเล เป็นต้น [1-6] โดยเฉพาะอย่างยิ่ง
โครงสร้างเปลือกบางรูปทรงรี (Ellipsoidal Shells) ซึ่งเป็นโครงสร้างที่ถูกพัฒนาข้ึนจากโครงสร้างเปลือกบางรูปทรงกลม
ที่มีค่าความยาวรัศมีเท่ากันตลอดหน้าตัดของโครงสร้าง แต่โครงสร้างดังกล่าวจะมีลักษณะที่แตกต่างกันคือจะมีค่า  
ความยาวรัศมีหน้าตัดของโครงสร้างไม่เท่ากันตลอดหน้าตัด ดังนั ้นโครงสร้างดังกล่าวจึงมีคุณลักษณะพิเศษท าให้ 
การวิเคราะห์ปัญหามีความซับซ้อนสูงข้ึน [7] 

งานวิจัยที่เกี่ยวข้องกับงานโครงสร้างเปลอืกบางรูปทรงรีจะสามารถแบ่งออกได้เป็น 3 กลุ่มหลัก คือ การวิเคราะห์
ทางสถิตศาสตร์ พลศาสตร์ และเสถียรภาพของโครงสร้างเปลอืกบาง โดยเริ่มต้นจากงานวิจัยของ Zingoni [8] ได้น าเสนอ
สมการส าหรับการวิเคราะห์ความเค้นของโครงสร้างเปลือกบางรปูทรงรีบรรจุของเหลว จากนั้น Ross and Etheridge [9] 
ได้ท าการทดสอบการสั่นและเสถียรภาพของโครงสร้างเปลือกบางรูปทรงรี ต่อมาในปี 2001 Ross และคณะ [10]  
ได้ท าการทดสอบเสถียรภาพของโครงสร้างเปลือกบางรูปทรงรีแบบเตี้ย (Oblate Shells) ภายใต้แรงดันน ้าจากภายนอก 
นอกจากนี้ Ross และคณะ [11] ยังได้ท าการทดสอบการสั่นของโครงสร้างเปลือกบางรูปทรงรีแบบสูง (Prolate Shells) 
ภายใต้แรงดันน ้าจากภายนอก Smith and Błachut [12] ได้ท าการวิเคราะห์และทดสอบเสถียรภาพของโครงสร้าง  
เปลือกบางรูปทรงรีแบบสูงภายใต้แรงดันสม ่าเสมอจากภายนอก Tangbanjongkij และคณะ [13] ได้ท าการวิเคราะห์
ปัญหาการเสียรูปขนาดใหญ่ของโครงสร้างเปลือกบางรูปทรงรีรับแรงดันสม ่าเสมอภายในโดยใช้ทฤษฎีเมมเบรน 
(Membrane Theory) Barathan and Rajamohan [14] ได้ท าการวิเคราะห์ปัญหาเสถียรภาพแบบไม่เป็นเชิงเส้น 
(Nonlinear Buckling Analysis) และทดสอบโครงสร้างเปลือกบางรูปทรงรีรับแรงดันจากภายนอก Chanto และคณะ 
[15] ได้น าเสนอผลของโมเมนต์ดัดแบบไม่เป็นเชิงเส้นที่มีต่อพฤติกรรมการสั่นของโครงสร้างเปลือกบางรูปทรงรี Chanto 
และคณะ [16] และ Kerdsuk และคณะ [17] ได้ท าการศึกษาพฤติกรรมการโก่งเดาะของโครงสร้างเปลือกบางรูปทรงรี
ภายใต้น ้าหนักบรรทุกแบบสม ่าเสมอและแรงดันน ้า ตามล าดับ  

จากงานวิจัยดังกล่าวข้างต้นจะพบว่า การวิเคราะห์ปัญหาทางสถิตศาสตรข์องโครงสร้างเปลอืกบางรปูทรงรีภายใต้
แรงดันน ้าสถิตจะมีการศึกษาน้อยมาก ยกเว้นงานวิจัยของ Tangbanjongkij และคณะ [18] ได้น าเสนอสมการส าหรับ 
การวิเคราะห์ทางสถิตศาสตร์ของโครงสร้างเปลือกบางรูปทรงรีรับแรงดันน ้าสถิตโดยใช้ทฤษฎีเมมเบรนเพียงอย่างเดียว  
ในการวิเคราะห์ปัญหา อย่างไรก็ตามในทางปฏิบัติพบว่าถ้าโครงสร้างมีขนาดความหนาเพิ่มขึ้นจ าเป็นอย่างยิ่งที่จะต้อง
พิจารณาผลของความแข็งแกร่งเนื่องจากโมเมนต์ดัด (Bending Rigidity) และการเสียรูปเนื่องจากแรงเฉือน (Shear 
Deformation) เพื ่อให้ผลการค านวณมีความถูกต้องแม่นย าสูงขึ้น และเกิดความเหมาะสมกับการใช้งานโครงสร้าง  
เปลือกบางรูปทรงรีในงานวิศวกรรมนอกชายฝั่งทะเลดังกล่าว 
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2. วัตถุประสงค์ 
ส าหรับวัตถุประสงค์ของบทความนี้ คือ การน าเสนอผลการวิเคราะห์ทางสถิตศาสตร์ของโครงสร้างเปลือกบาง 

แบบรูปทรงรีติดตั้งในน ้าทะเลลึกโดยใช้ทฤษฎีการเสียรูปด้วยแรงเฉือนอันดับสูง  (Higher-Order Shear Deformation 
Theory) [19-20] การก าหนดรูปทรงเรขาคณิตของโครงสร้างเปลือกบางแบบรูปทรงรีจะอาศัยทฤษฎีเรขาคณิต  
เชิงอนุพันธ์ (Differential Geometry) [21-22] ใช้หลักการของงานเสมือน (Principle of Virtual Work) [23]  
ในการสร้างสมการพลังงานของระบบโครงสร้าง  จากนั้นใช้ระเบียบวิธีไฟไนต์เอลิเมนต์ (Finite Element Method)  
[24-25] ในการหาผลลัพธ์เชิงตัวเลขเพื่อหาค่าการเสียรูปของโครงสร้างเปลือกบางแบบรูปทรงรีติดตั้งในน ้าทะเลลึก 
 
3. ทฤษฎีท่ีใช้ในการวิเคราะห์ 

3.1 สมมติฐานที่ใช้ในการวิเคราะห ์
โครงสร้างเปลือกบางจะมีสมบัติยืดหยุ ่นแบบเป็นเชิงเส้น (Linearly Elastic Material) โดยที ่ความหนา 

ของโครงสร้างเปลือกบางแบบรูปทรงรีจะมีค่าคงที ่ไม่มีการเปลี ่ยนแปลงภายหลังรับแรงดันน ้าสถิตจากภายนอก  
(External Hydrostatic Pressure) ค่าการเสียรูปและแรงภายในที่เกิดขึ้นเนื่องจากน ้าหนักของโครงสร้างจะไม่น ามา
พิจารณาเนื่องจากมีค่าน้อยมากเมื่อเทียบกับแรงดันน ้าสถิตจากภายนอก และเงื่อนไขของฐานรองรับจะสมมติให้เป็น  
แบบยึดแน่น (Clamped Support) อย่างสมบูรณ์แบบที่บริเวณพื้นทะเล 

3.2 แบบจ าลองโครงสร้างเปลือกบางแบบรูปทรงรี 
ก าหนดให้รูปทรงเรขาคณิตของโครงสร้างเปลือกบางแบบรูปทรงรีสามารถนิยามได้โดยอ้างอิงตามระบบพิกัด  

เส้นโค้งมุมฉาก ( , , )z   โดยที่ ( , )   คือ พารามิเตอร์ของพื ้นผิวอ้างอิงตามแนวเส้นพิกัดเส้นเมอร์ริเดียนและ 
ลองจิจูดตามล าดับ ดังแสดงในรูปที่ 1 ดังนั้น เราสามารถนิยามเวคเตอร์ระบุต าแหน่งของโครงสร้างเปลือกบางรูปทรงรี 
ที่ต าแหน่งกึ่งกลางความหนา ( 0)z =  ได้ดังสมการที่ (1) 

ˆ ˆ ˆsin cos sin sin cosa a b    = + +r i j k         (1) 

เมื่อ a และ b คือ ความยาวรัศมีที่ฐานรองรับและความสูงของโครงสร้างเปลือกบางตามล าดับ โดยที่ ˆ( , , )ˆ ˆi j k  
คือ เวคเตอร์หนึ่งหน่วย (Unit Vectors) อ้างอิงตามแนวพิกัดคาร์ทีเซียน (Cartesian Coordinate) ดังนั้น การจ าแนก
ประเภทของโครงสร้างเปลือกบางรูปทรงรีจะสามารถท าได้โดยก าหนดให้  / 1b a   และ / 1b a   จะเรียกโครงสร้าง
ดังกล่าวว่าโครงสร้างเปลือกบางรูปทรงรีแบบเตี้ยและแบบสูงตามล าดับ ส าหรับกรณี  / 1b a =  จะเรียกว่าโครงสร้าง
เปลือกบางรูปทรงกลม จากทฤษฎีเรขาคณิตเชิงอนุพันธ์ (Differential Geometry) [21-22] จะสามารถค านวณ 
หาค่าองค์ประกอบเมตริกซ์เทนเซอร์ (Metric Tensor Components) ของพื้นผิวของโครงสร้างเปลือกบางรูปทรงรี 
ที่ต าแหน่งกึ่งกลางความหนา ได้ดังสมการที่ (2) 
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 
+
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r r         (2ก) 
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( , ) sinaB  
 

  
=  = 

  

r r           (2ข) 

ส าหรับการค านวณหาค่าเวคเตอร์ระบุต าแหน่งของโครงสร้างเปลือกบางรูปทรงรีที่ต าแหน่งอื่น ๆ  ( , , )z    
จะสามารถนิยามได้ดังสมการที่ (3) 

), , , ˆ( ) ( ) ( ,z z     = +R r n          (3) 

โดยที่ / 2 / 2h z h−    และ n̂  คือ เวคเตอร์ตั้งฉากหนึ่งหน่วย สามารถนิยามได้ดังสมการที่ (4) 

( )s
1 1

ˆ n( , ˆ ˆ ˆi cos sin sin cos) b b a
AB A

 
 

   
  

= + + = 
  

i j k
r r

n     (4) 

 

 
รูปท่ี 1 โครงสร้างเปลือกบางแบบรปูทรงรีติดตัง้ในน ้าทะเลลึก 

 

จากสมการที่ (1) และ (4) จะสามารถนิยามค่าองค์ประกอบเมตริกซ์ความโค้ง (Metric Curvature Components) 
ของพื้นผิวอ้างอิง ได้ดังสมการที่ (5) 

2

2
ˆ( , )

ab
L

A
 




=  = −


r
n           (5ก) 

2 2

2

sin
ˆ( , )

ab
N

A


 




=  = −


r
n          (5ข) 
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จากสมการที่ (2) และ (5) จะสามารถค านวณหาค่ารัศมีความโค้งหลัก (Principal Radii of Curvature)  
ของโครงสร้างเปลือกบางรูปทรงรีได้ดังสมการที่ (6) 

2( , ) /R A L   =             (6ก) 
2( , ) /R B N   =             (6ข) 

3.3 ความสัมพันธ์ระหว่างความเครียด-การเสียรูป 
ค่าการเสียรูปของโครงสร้างเปลอืกบางจะพิจารณาผลของแรงเฉือนโดยใช้ทฤษฎีการเสยีรูปด้วยแรงเฉือนอันดับสงู 

[19-20] ซึ่งจะสามารถนิยามได้ดังสมการที่ (7) 

2 3

0 1 2 3( , , ) ( , ) ( , ) ( , ) ( , )u z u zu z u z u         = + + +        (7ก) 
2 3

0 1 2 3( , , ) ( , ) ( , ) ( , ) ( , )v z v zv z v z v         = + + +        (7ข) 

0( , , ) ( , )w z w   =             (7ค) 

เมื่อ 0 0 0( , , )u v w  คือ ค่าการเสียรูปของโครงสร้างเปลือกบางรูปทรงรีที่ต าแหน่งกึ่งกลางความหนา  ( 0)z =  
ตามแนวเส้นเมอร์ริเดียน เส้นรอบวง และเส้นตั้งฉากกับเส้นเมอร์ริเดียนตามล าดับ ส าหรับค่าพารามิเตอร์ 1 1( , )u v , 

2 2( , )u v , และ 3 3( , )u v  คือค่าการหมุนเนื่องมาจากผลของแรงเฉือนอันดับที่หนึ่ง สอง และสาม ตามล าดับ ดังนั้นสมการ
ที่ (7) จะสามารถเขียนในรูปแบบของเมตริกซ์ได้ดังสมการที่ (8) 

0{ } [ ]{ }H =            (8) 

เมื่อ { }T u v w =     และ 0 0 0 0 1 1 2 2 3 3{ }T u v w u v u v u v =     คือ เวคเตอร์ของค่า
การเสียรูปในระบบพิกัดรวมและพิกัดเฉพาะที่ต าแหน่งกึ่งกลางความหนา  ( 0)z =  ตามล าดับ ส าหรับ [ ]H  จะมีค่า 
ดังสมการที่ (9) 

2 3

2 3

1 0 0 0 0 0

[ ] 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

z z z

H z z z

 
 

=  
 
 

        (9) 

ดังนั้นเราจะสามารถนิยามความสัมพันธ์ระหว่างความเครียด-การเสียรูป [26-27] ได้ดังสมการที่ (10) 
1

(1 / )

u v A Aw

A z R B R


 


 

  
= + + 

+   
         (10ก) 

1

(1 / )

v u B Bw

B z R A R


 


 

  
= + +  +   

         (10ข) 
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1 1

(1 / ) (1 / )

v u A u v B

A z R B B z R A


 


   

      
= − + −   

+   +     
      (10ค) 

1
(1 / )

(1 / ) (1 / )
z

w u
A z R

A z R z A z R
 

 




   
= + +   

+   +   
       (10ฆ) 

1
(1 / )

(1 / ) (1 / )
z

w v
B z R

B z R z B z R
 

 




   
= + +     +   +   

       (10ง) 

แทนค่าสมการที่ (7) ลงในสมการที่ (10) และจัดรูปใหม่จะสามารถเขียนได้ดังสมการที่ (11) 
0 1 2 3

0 1 2 3

2 30 1 2 3

0 1 2 3

0 1 2 3

{ } [ ]{ }

z z z z

z z z z

H z z z

   

   

   

   

   

   

   

     

   

   

       
       
       
       

= = + + +       
       
       
              

      (11) 

เมื่อ 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3{ }
T

z z z z z z z z                                        =    

และ 2 3

5 5 5 5 5 5 5 5[ ] [ ] [ ] [ ] [ ]H I z I z I z I   
 =    โดยท ี ่  5 5[ ]I   คือ เมตร ิกซ ์เอกลักษณ์  (Identity Matrix)  

ขนาด 5x5 

3.4 ฟังก์ชันพลังงาน 
สมการความสัมพันธ์ระหว่างความเค้น-ความเครียด (Stress-Strain Relations) [23] จะสามารถนิยามได้จาก

สมการที่ (12) 

    C =              (12) 

เมื่อ  
T

z z          =    และ  C  คือ เมตริกซ์คุณสมบัติของวัสดุโครงสร้างเปลือกบาง 

โดยที่สามารถนิยามได้ดังสมการที่ (13) 

 

11 12

21 22

66

55

44

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Q Q

Q Q

C Q

Q

Q

 
 
 
 =
 
 
  

          (13) 
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เ ม ื ่ อ  2

11 22 / (1 )Q Q E = = − ,  2

12 21 / (1 )Q Q E = = − ,  แล ะ  44 55 662 2 2 / (1 )Q Q Q E = = = −   
โดยที่ E คือ มอดุลัสยืดหยุ่น (Young’s Modulus) และ   คือ อัตราส่วนปัวส์ซอง (Poisson’s Ratio) ดังนั้นจะสามารถ
ค านวณหาค่าพลังงานความเครียด ( )U  ได้จากสมการที่ (14) 

    
2 2

1 1

1

2

T
U D ABd d

 

 

   =             (14) 

เมื่อ  D  คือ เมตริกซ์สมมาตร ซึ่งสามารถนิยามได้ดังสมการที่ (15) 

   
/2

/2

1 1

h
T

h

z z
D H C H dz

R R 

+

−

  
   = + +       

  
        (15) 

 

4. วิธีด าเนินการวิจัย 
การหาค าตอบเชิงตัวเลขของระบบโครงสร้างเปลือกบางรูปทรงรีรับแรงดันน ้าสถิตจากภายนอกจะสามารถท าได้

โดยใช้ระเบียบวิธีไฟไนต์เอลิเมนต์ [24-25] ท าการแบ่งชิ้นส่วนของโครงสร้างเปลือกบางเป็นชิ้นส่วนย่อยตามแนวพิกัด 
เส้นเมอร์ริเดียนและเส้นรอบวงโดยใช้เอลิเมนต์สี่เหลี่ยมผืนผ้าแบบไอโซพาราเมตริก (Quadrilateral Isoparametric 
Elements) จ านวน 9 จุดต่อในการประมาณค่าการเสียรูป ดังสมการที่ (16) 

   
9

0 0

1

i i

i

N 
=

=           (16) 

เมื่อ  0 0 0 0 1 1 2 2 3 3

T

i i i i i i i i i iu v w u v u v u v =     และ iN  คือฟังก์ชันรูปร่างส าหรับจุดต่อ i  
ซึ่งจะมีค่าดังสมการที่ (17) 

 ( )( )2 2

1 0.25N    = − −          (17ก) 

 ( )( )2 2

2 0.25N    = + −          (17ข) 

 ( )( )2 2

3 0.25N    = + +          (17ค) 

 ( )( )2 2

4 0.25N    = − +          (17ฆ) 

 ( )( )2 2

5 0.50 1N   = − −          (17ง) 

 ( )( )2 2

6 0.50 1N   = + −          (17จ) 

 ( )( )2 2

7 0.50 1N   = − +          (17ฉ) 

 ( )( )2 2

8 0.50 1N   = − −          (17ช) 

 ( )( )2 2

9 1.00 1 1N  = − −          (17ซ) 
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 เมื่อ   และ   คือระยะพิกัดเฉพาะที่ (Local Coordinate) [25] ดังแสดงในรูปที่ 2 ก าหนดให ้

  0 01 02 03 04 05 06 07 08 09

T

         =     ดังนั ้นสมการที ่ (16) จะสามารถเขียนใหม่ 

ได้ดังสมการที่ (18) 

    0 0N =            (18) 

เมื ่อ        1 2 99 9 9 9 9 9
...N N I N I N I

  
 =     โดยที่ 9 9[ ]I   คือ เมตริกซ์เอกลักษณ์ (Identity Matrix)  

ขนาด 9x9 

4.1 เมตริกซ์ความแข็งแกร่งของช้ินส่วน 
การค านวณหาค่าเวคเตอร์ความเคร ียดที ่ต าแหน่งกึ ่งกลางความหนา ( 0)z =  โดยใช้สมการที ่ (11) จะได้ดัง 

สมการที่ (19) 

     0 1 2 9 0{ } [ ] [ ]...[ ]i iB B B B = =         (19) 

เมื่อ  B  คือ เมตริกซ์ความสัมพันธ์ระหว่างความเครียด-การเสียรูป ซึ่งจะสามารถนิยามได้ดังสมการที่ (20)  

 

       
       
       
       

11 12 13 14

9
21 22 23 24

1 31 32 33 34

41 42 43 44

i

B B B B

B B B B
B

B B B B

B B B B

=

 
 
 =
 
 
  

        (20) 

โดยที่ค่าเมตริกซ์ย่อยในสมการที่ (20) จะมีค่าดังสมการที่ (21) 

 11

1

1

1 1
0

1
0

1
0

i i i

i i i

i i i i

i i

i i

N N NA

A AB R

N N NB

AB B R

N N N NA B
B

B AB A AB

N N

R A

N N

R B









 

 

   





    
   

     
    
    

    
 

          = − −                
 

  
−    

 
   

−  
  

     (21ก) 

 



295 พิชญ์ นันทไชยศรี  และคณะ 
 

     22 33 44

1

1

1 1

0

0

i i

i i

i i i i

i

i

N N A

A AB

N NB

AB B

N N N NA B
B B B

B AB A AB

N

R

N

R





 

 

   

    
   

     
    
    

    
 

          = = = − −                
 
 −
 
 
 −
 
 

    (21ข) 

 

     12 23 34

0 0

0 0
1 1

0 0
2 3

0

0

i

i

B B B

N

N

 
 
 
 = = =
 
 
  

        (21ค) 

 
รูปท่ี 2 ช้ินส่วนและพิกัดทั่วไปของเอลิเมนตเ์อลิเมนตส์ี่เหลี่ยมผืนผ้าแบบไอโซพาราเมตริก  

 
ส าหรับเมตริกซ์ย่อย  21B ,  31B , และ  41B  จะเป็นเมตริกซ์ศูนย์ขนาด 5x3 ในขณะที่เมตริกซ์ย่อย  13B , 

 14B ,  24B ,  32B ,  42B , และ  43B  จะเป็นเมตริกซ์ศูนย์ขนาด 5x2 จากนั้นท าการเขียนสมการของพลังงาน
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ความเครียดของชิ้นส่วนย่อยโครงสร้างเปลือกบางรูปทรงรีได้โดยแทนสมการที ่ (16) และ (19) ลงในสมการที่ (14)  
จะได้ดังสมการที่ (22) 

     0 0

1

2

eTe

i iU K =          (22) 

เมื่อ  
e

K  คือ เมตริกซ์ความแข็งแกร่งของช้ินส่วนย่อย ซึ่งสามารถนิยามได้ดังสมการที่ (22) 

      
1 1

1 1

e T
K B D B J ABd d 

− −

=            (23) 

เมื่อ J  คือ ดีเทอร์มิแนนท์ของเมตริกซ์จาโคเบียน [28] 

 

4.2 สมการควบคุม 
จากหลักการของงานเสมือน (Principle of Virtual Work) [23] จะสามารถเขียนสมการควบคุม (Governing 

Equation) ของระบบโครงสร้างเปลือกบางรูปทรงรีรับแรงดันน ้าสถิตจากภายนอกได้ดังสมการที่ (24) 

0U  = − =            (24) 

เมื่อ   คือ สัญลักษณ์การแปรผัน (Variational Symbol)   คือ ผลรวมงานเสมือน (Total Virtual Work)  
และ    คือ ค่างานเสมือนเนื่องจากแรงดันน ้าสถิต ซึ่งสามารถนิยามได้ดังสมการที่ (25) 

2 2

1 1

0{ } { }T

wp ABd d

 

 

    =            (25) 

เมื ่อ wp  คือ ค่าแรงดันน ้าสถิตแบบเชิงเส้น (Linearly Hydrostatic Pressure) ซึ ่งสามารถนิยามได้ดังสมการ 
ที่ (26) 

w w wp gZ=             (26) 

เมื่อ w  คือ ความหนาแน่นจ าเพาะของน ้าทะเล g  คือ ค่าแรงโน้มถ่วงของโลก และ 
wZ  คือ ระยะทางในแนวดิ่ง  

ณ ต าแหน่งที่พิจารณา ดังแสดงในรูปที่ 1 ดังนั้นเราจะสามารถเขียนสมการสมดุล (Equilibrium Equation) ส าหรับ
โครงสร้างเปลือกบางรูปทรงรีรับแรงดันน ้าสถิตจากภายนอกดังสมการที่ (27) 

    K  =             (27) 
เมื่อ  K  คือ เมตริกซ์ความแข็งแกร่งของโครงสร้างเปลือกบางรูปทรงรี และ    คือ เวคเตอร์ของแรงภายนอก 

ที่กระท าต่อโครงสร้าง ซึ่งสามารถนิยามได้จากผลรวมของช้ินส่วนย่อยดังสมการที่ (28) 

   
1 1

1 1

{ }
T

w

e
J ABdp d  

− −

 =           (28) 
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เมื่อ    คือ เมตริกซ์ฟังก์ชันรูปร่างที่พิจารณาเฉพาะเทอมของค่าการเสียรูปในแนวตั้งฉากกับเส้นเมอร์ริเดยีน  

เท่านั้น 

4.3 เงื่อนไขขอบเขต 

ส าหรับเงื ่อนไขที ่บริเวณฐานรองรับ ( 90o = ) จะพิจารณาเป็นแบบยึดหมุน (Hinged support ) และ 
แบบยึดแน่น (Clamped support) จะมีค่าดังสมการที่ (29) 

 แบบยึดหมุน: 0 0 0 0u v w= = =            (29ก) 

 แบบยึดแน่น: 0 0 0 1 1 2 2 3 3 0u v w u v u v u v= = = = = = = = =        (29ข) 

ดังนั้นสมการที่ (27) เป็นระบบสมการของโครงสร้างเปลือกบางรูปทรงรีรับแรงดันน ้าสถิตจากภายนอก ต้องท า

การก าหนดเงื่อนไขของฐานรองรับจากสมการที่ (29) จึงจะสามารถค านวณหาผลลัพธ์เชิงตัวเลขได้ด้วยวิธีไฟไนต์เอลิเมนต์ 

[24-25] 

 

5. ผลการวิเคราะห์ 
ส าหรับผลการวิเคราะห์เชิงตัวเลขทางสถิตศาสตร์ของโครงสร้างเปลือกบางแบบรูปทรงรีติดตั้งในน ้าทะเลลึก 

โดยใช้ทฤษฎีการเสียรูปด้วยแรงเฉือนอันดับสูง เนื่องจากผลเฉลยแบบแม่นตรงยังไม่ครอบคลุมปัญหาของโครงสร้าง  
เปลือกบางรูปทรงรี ดังนั ้นในการทดสอบการลู ่เข้าและตรวจสอบความถูกต้องของแบบจ าลองไฟไนต์เอล ิเมนต์  
จึงมีความจ าเป็น โดยเริ ่มต้นจากโครงสร้างเปลือกบางรูปทรงกลมที่มีค่าความยาวรัศมี 5  เมตร รับแรงดันภายใน 
ขนาด 0.5 เมกะปาสคาล โดยที่ความหนาและคุณสมบัติทางกลของโครงสร้างแสดงในตารางที่ 1 จากผลการศึกษาพบว่า  
เมื่อแบบจ าลองมีจ านวนชิ้นส่วนย่อยตามแนวพิกัดเส้นเมอร์ริเดียนตั้งแต่ 12 ชิ้นส่วน  และจ านวนชิ้นส่วนตามแนวพิกัด 
เส้นรอบวงตั้งแต่ 16 ชิ้นส่วนขึ ้นไป จะมีความแม่นย าของค าตอบสูงมากเมื่อเปรียบเทียบกับแบบจ าลองที ่มีจ  านวน 
ชิ ้นส่วนสูงกว่า ดังแสดงในตารางที ่ 2 ดังนั ้นในบทความนี ้เลือกใช้แบบลองไฟไนต์เอลิเมนต์ที ่มีจ  านวนชิ ้นส ่วน  
ตามแนวพิกัดเส้นเมอร์ริเดียนและเส้นรอบวงเท่ากับ 16 และ 20 ชิ้นส่วน ตามล าดับ จากนั้นท าการเปรียบเทียบกับ 
สูตรของ Roark [29] ที่มีค่าการเสียรูปที่ปลายด้านบน ( aw ) เท่ากับ 0.428921569 มิลลิเมตร ในขณะผลลัพธ์ที่ได้ 
จากแบบจ าลองมีค่าเท่ากับ 0.428917993 มิลลิเมตร ซึ่งมีความแตกต่างกันน้อยมาก 
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ตารางท่ี 1  ข้อมูลและสมบัติที่ใช้ในการวิเคราะห์ 
รายการ ปริมาณ 

ความยาวรัศมีที่ฐานรองรบั ( )a    5 เมตร 

ความหนาของโครงสร้างเปลือกบาง ( )h  0.05 เมตร 

ความสูงของระดับน ้าทะเล ( )H    40 เมตร 
ความหนาแน่นของน ้าทะเล ( )w  1025 กิโลกรัมต่อลูกบาศก์เมตร 
มอดุลสัยืดหยุ่น ( )E    204×103 เมกะปาสคาล 

อัตราส่วนปัวส์ซอง ( )    0.3 
 

ตารางท่ี 2  การทดสอบการลู่เข้าของระยะการเสียรูปที่ปลายด้านบนของโครงสร้างเปลือกบางแบบรูปทรงกลมรับแรงดัน
ภายในสม ่าเสมอโดยใช้ทฤษฎีการเสียรูปด้วยแรงเฉือนอันดับสูง 

จ านวนชิ้นส่วนย่อยตามแนวพิกัด
เส้นเมอร์ริเดียน 

จ านวนชิ้นส่วนย่อยตามแนวพิกัด
เส้นรอบวง 

aw  
(มิลลิเมตร) 

8 12 0.428918018 
12 16 0.428917991 
16 20 0.428917993 
20 24 0.428917994 
24 28 0.428917994 

5.1 ผลของการแปรเปลี่ยนความสูงของระดับน ้าทะเลที่มีต่อโครงสร้างเปลือกบางแบบรูปทรงรี 
การศึกษาผลของการแปรเปลี ่ยนความสูงของระดับน ้าทะเลที ่ม ีต ่อโครงสร ้างเปลือกบางแบบรูปทรงรี 

ที่มีฐานรองรับแบบยึดแน่น โดยเริ่มท าการเปลี่ยนแปลงตั้งแต่ 40 ถึง 200 เมตร ในขณะที่ค่าพารามิเตอร์อื่น ๆ  ดังแสดง 
ในตารางที่ 1 เป็นค่าคงที่ไม่มีการเปลี ่ยนแปลง พบว่า เมื่อระดับความลึกของน ้าทะเลมีค่าเพิ ่มสูงขึ้นจะส่งผลท าให้  
ค่าการเสียรูปของโครงสร้างมีค่าเพิ่มสูงข้ึน ดังแสดงในรูปที่ 3 เนื่องจากค่าการเสียรูปมีค่าน้อยมาก ดังนั้น ในการแสดงผล 
จึงจ าเป็นต้องท าการคูณแฟคเตอร์ปรับค่าการเสียรูป (Displacement Scaling Factor, DSF) เพื ่อท าการขยาย 
ค่าการเสียรูปให้เกิดความชัดเจนยิ ่งขึ้น จากผลการศึกษาพบว่า  โครงสร้างเปลือกบางรูปทรงรีแบบเตี้ย ( / 1b a  )  
จะมีค่าการเสียรูปสูงมากเมื่อเปรียบเทียบกับกรณีที่เป็นโครงสร้างเปลือกบางรูปทรงกลม ( / 1b a = ) และโครงสร้าง
เปลือกบางรูปทรงรีแบบสูง ( / 1b a  ) จากนั้นเมื่อท าการพิจารณาค่าการเสียรูปของโครงสร้างเปลือกบางรูปทรงกลม 
จะค่อนข้างสม ่าเสมอตลอดแนวพิกัดเมอร์ริเดียน ดังแสดงในรูปที่ 3(ข) และเมื่อพิจารณาค่าการเสียรูปของโครงสร้าง
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เปลือกบางรูปทรงรีแบบสูงจะพบว่ามีค่าการเสียรูปสูงมากในช่วงบริเวณฐานรองรับและจะเกิดค่าการเสียรูปน้อยมาก
ในช่วงบริเวณจุดยอด ดังแสดงในรูปที่ 3(ค)  

รูปที ่ 4(ก) แสดงผลของการแปรเปลี่ยนความสูงของระดับน ้าทะเลที ่มีต่อค่าการเสียรูปตามแนวเส้นสัมผัส 
กับความยาวส่วนโค้งเมอร์ริเดียนของโครงสร้างเปลือกบางแบบรูปทรงรีแบบเตี้ย พบว่า ค่าการเสียรูปตามแนวเส้นสัมผัส
สูงสุดจะอยู ่บริเวณกึ่งกลางความยาวส่วนโค้งเมอร์ริเดียน ส าหรับโครงสร้างเปลือกบางแบบรูปทรงกลมจะเกิดค่า 
การเสียรูปตามแนวเส้นสัมผัสสูงสุดในช่วงบริเวณฐานรองรับ ดังแสดงในรูปที่ 4(ข) ในขณะที่โครงสร้างเปลือกบางรูปทรงรี
แบบสูงจะเกิดค่าการเสียรูปตามแนวเส้นสัมผัสสูงสุดในช่วงกึ่งกลางความยาวส่วนโค้งเมอร์ริเดียนและจะมีค่าสูงในช่วง
บริเวณฐานรองรับอีกด้วย ซึ่งจะแตกต่างจากกรณีของโครงสร้างเปลือกบางแบบรูปทรงรีแบบเตี้ย ดังแสดงในรูปที่ 4(ค)  
รูปที่ 5(ก) แสดงผลของการแปรเปลี่ยนความสูงของระดับน ้าทะเลที่มีต่อค่าการเสียรูปตามแนวเส้นตั้งฉากกับเส้นเมอร์
ริเดียนของโครงสร้างเปลือกบางแบบรูปทรงรีแบบเตี ้ย พบว่า ค่าการเสียรูปตามแนวเส้นตั้งฉากสูงสุดจะอยู ่จุดยอด 
ของโครงสร้างจะสอดคล้องกับรูปร่างของโครงสร้างดังแสดงในรูปที่ 3(ก) ส าหรับโครงสร้างเปลือกบางแบบรูปทรงกลม 
จะเกิดค่าการเสียรูปตามแนวเส้นตั้งฉากกับเส้นเมอร์ริเดียนสูงสุดในช่วงบริเวณจุดยอดของโครงสร้างโดยมีค่าสม ่าเสมอ
ตลอดช่วงแนวพิกัดเมอร์ริเดียนและจะมีค่าลดลงอย่างรวดเร็วในช่วงบริเวณฐานรองรับ  ดังแสดงในรูปที่ 5(ข) ในขณะที่
โครงสร้างเปลือกบางรูปทรงรีแบบสูงจะเกิดค่าการเสียรูปตามแนวเส้นตั้งฉากกับเส้นเมอร์ริเดียนสูงสุดในช่วงบริเวณ
ฐานรองรับ และจะมีค่าลดลงอย่างรวดเร็วในช่วงบริเวณจุดยอด ดังแสดงในรูปที่ 5(ค) 

 
(ก) / 0.25b a =  
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    (ข) / 1.00b a =         (ค) / 2.00b a =  

รูปท่ี 3 ผลของการแปรเปลี่ยนความสูงของระดบัน ้าทะเลทีม่ีต่อรูปร่างของโครงสร้างเปลือกบางแบบรปูทรงร ี
ที่มีฐานรองรบัแบบยึดแน่น 

 
(ก) / 0.25b a =  
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(ข) / 1.00b a =  

 
(ค) / 2.00b a =  

รูปท่ี 4 ผลของการแปรเปลี่ยนความสูงของระดบัน ้าทะเลทีม่ีต่อค่าการเสียรูปตามแนวเส้นสมัผสัของโครงสร้างเปลอืกบาง
แบบรปูทรงรีที่มีฐานรองรบัแบบยึดแน่น 

 
(ก) / 0.25b a =  
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(ข) / 1.00b a =  

 
(ค) / 2.00b a =  

รูปท่ี 5 ผลของการแปรเปลี่ยนความสูงของระดบัน ้าทะเลทีม่ีต่อค่าการเสียรูปตามแนวเส้นต้ังฉากของโครงสร้างเปลือกบาง
แบบรปูทรงรีที่มีฐานรองรบัแบบยึดแน่น 

5.2 ผลของการแปรเปลี ่ยนอัตราส่วนความยาวรัศมีที ่ฐานรองรับต่อความหนาที่มีต่อโครงสร้างเปลือกบาง 
แบบรูปทรงรี 

การศึกษาผลของอัตราส่วนการแปรเปลี่ยนความยาวรัศมีที่ฐานรองรับต่อความหนาที่มีต่อโครงสร้างเปลือกบาง
แบบรูปทรงรีที่มีฐานรองรับแบบยึดแน่นโดยเริ่มท าการท าการเปลี่ยนแปลงตั้งแต่ 20 ถึง 100 โดยที่ค่าความยาวรัศมี 
ที่ฐานรองรับและค่าพารามิเตอร์อื่น ๆ  ดังแสดงในตารางที่ 1 เป็นค่าคงที่ไม่มีการเปลี่ยนแปลง พบว่า เมื่อความยาวรัศมี 
ที่ฐานรองรับต่อความหนามีค่าเพิ ่มสูงขึ ้นจะส่งผลท าให้ค่าการเสียรูปตามแนวเส้นสัมผัสมีค่าเพิ่มสูงขึ้นตามไปด้วย 
เนื ่องจากความแข็งแกร่งของโครงสร้างมีค่าลดลง ดังแสดงในรูปที ่ 6 นอกจากนี้ยังพบว่าความสัมพันธ์ระหว่าง 
ค่าการเสียรูปตามแนวเส้นสัมผัสกับความยาวส่วนโค้งเมอร์ริเดียนของโครงสร้างเปลือกบางแบบรูปทรงรีจะมีลักษณะ
แตกต่างกันออกไปตามรูปทรงของโครงสร้างเปลือกบาง รูปที่ 6(ก) แสดงค่าการเสียรูปตามแนวเส้นสัมผัสของโครงสร้าง
เปลือกบางแบบรูปทรงรีแบบเตี้ย ซึ่งจะพบว่ามีค่าสูงสุดในช่วงบริเวณกึ่งกลางความยาวส่วนโค้งเมอร์ริเดียน ในขณะที่
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โครงสร้างเปลือกบางแบบรูปทรงกลมและโครงสร้างเปลือกบางรูปทรงรีแบบสูงจะเกิดค่าการเสียรูปตามแนวเส้นสัมผัส
สูงสุดในช่วงบริเวณฐานรองรับ ดังแสดงในรูปที่ 6(ข) และ 6(ค) ตามล าดับ 

รูปที่ 7(ก) แสดงผลของการแปรเปลี่ยนความยาวรัศมีที่ฐานรองรับต่อความหนาที่มีต่อค่าการเสียรูปตามแนว 
เส้นตั้งฉากกับเส้นเมอร์ริเดียนของโครงสร้างเปลือกบางแบบรูปทรงรีแบบเตี้ย พบว่า ค่าการเสียรูปตามแนวเส้นตั้งฉาก
สูงสุดจะอยู ่จุดยอดของโครงสร้าง ส าหรับโครงสร้างเปลือกบางแบบรูปทรงกลมจะเกิดค่าการเสียรูปตามแนวเส้น 
ตั้งฉากกับเส้นเมอร์ริเดียนสูงสุดในช่วงบริเวณจุดยอดของโครงสร้างโดยมีค่าสม ่าเสมอตลอดช่วงแนวพิกัดเมอร์ริเดียนและ
จะมีค่าลดลงอย่างรวดเร็วในช่วงบริเวณฐานรองรับ ดังแสดงในรูปที่ 7(ข) ในขณะที่โครงสร้างเปลือกบางรูปทรงรีแบบสูง 
จะเกิดค่าการเสียรูปตามแนวเส้นต้ังฉากกับเส้นเมอร์ริเดียนสูงสุดในช่วงบริเวณฐานรองรับ และจะมีค่าลดลงอย่างรวดเร็ว
ในช่วงบริเวณจุดยอด ดังแสดงในรูปที่ 7(ค) 

 
(ก) / 0.25b a =  

 
(ข) / 1.00b a =  
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(ค) / 2.00b a =  

รูปท่ี 6 ผลของการแปรเปลี่ยนความยาวรัศมทีี่ฐานรองรับตอ่ความหนาที่มีต่อค่าการเสียรปูตามแนวเส้นสมัผสัของ
โครงสร้างเปลือกบางแบบรูปทรงรีทีม่ีฐานรองรบัแบบยึดแน่น 

 
(ก) / 0.25b a =  

 
(ข) / 1.00b a =  
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(ค) / 2.00b a =  

รูปท่ี 7 ผลของการแปรเปลี่ยนความยาวรัศมทีี่ฐานรองรับตอ่ความหนาที่มีต่อค่าการเสียรปูตามแนวเส้นต้ังฉากของ
โครงสร้างเปลือกบางแบบรูปทรงรีทีม่ีฐานรองรบัแบบยึดแน่น 

5.3 ผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรับที่มีต่อโครงสร้างเปลือกบางแบบรูปทรงรี 
ส าหรับค่าพารามิเตอร์สุดท้ายที่จะท าการศึกษาจะเป็นผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรับที่มีต่อ

โครงสร้างเปลือกบางแบบรูปทรงรี ดังแสดงในสมการที่ (29) ภายใต้เงื่อนไขค่าพารามิเตอร์ดังแสดงในตารางที่ 1 จะพบว่า
แนวโน้มความแตกต่างส าหรับค่าการเสียรูปตามแนวเส้นสัมผัสและเส้นตั้งฉากของโครงสร้างเปลือกบางรูปทรงรีแบบเตี้ย
จะมีค่าน้อยมาก อย่างไรก็ตามโครงสร้างเปลือกบางรูปทรงรีที่มีฐานรองรับแบบยึดแน่นจะให้ค่าการเสียรูปน้อยกว่า
ฐานรองรับแบบยึดหมุน ดังแสดงในรูปที่ 8 และ 9 ตามล าดับ ในขณะที่ผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรับ  
จะส่งผลให้เกิดความแตกต่างส าหรับค่าการเสียรูปตามแนวเส้นสัมผัสของโครงสร้างเปลือกบางแบบรูปทรงรีแบบสูง  
ดังแสดงในรูปที่ 10 แต่จะส่งผลให้เกิดความแตกต่างส าหรับค่าการเสียรูปตามแนวเส้นตั้งฉากของโครงสร้างเปลือกบาง
แบบรูปทรงรีแบบสูงน้อยมาก ดังแสดงในรูปที่ 11 สอดคล้องกับผลในตารางที่ 3 ซึ่งจะแสดงค่าการเสียรูปในเทอมไร้มิติ 
ที่ปลายด้านบน  ( /aw h ) ของโครงสร้างเปลือกบางแบบรูปทรงรีภายใต้การเปลี่ยนแปลงเงื่อนไขของฐานรองรับ พบว่า 
ค่าการเสียรูปที่ปลายด้านบนจะมีค่าลดลงเมื ่ออัตราส่วนของความสูงต่อความยาวรัศมีที ่ฐานรองรับของโครงสร้าง 
เปลือกบางรูปทรงรีมีค่าเพิ่มสูงข้ึน 

ตารางที ่ 3  ค่าการเสียรูปในเทอมไร้มิติที ่ปลายด้านบน ( /aw h ) ของโครงสร้างเปลือกบางแบบรูปทรงรีภายใต้ 
การเปลี่ยนแปลงเงื่อนไขของฐานรองรับ 

b/a ฐานรองรับแบบยึดแน่น ฐานรองรับแบบยึดหมุน 
0.25 -0.249239 -0.290366 
0.50 -0.052361 -0.055606 
0.75 -0.016059 -0.016022 
1.00 -0.005688 -0.005183 
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b/a ฐานรองรับแบบยึดแน่น ฐานรองรับแบบยึดหมุน 
1.25 -0.002236 -0.001625 
1.50 -0.001136 -0.000479 
1.75 -0.000949 -0.000255 
2.00 -0.001133 -0.000404 

 

 
(ก) ฐานรองรับแบบยึดแน่น 

(ข)  

.  
(ข) ฐานรองรับแบบยึดหมุน 

รูปท่ี 8 ผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรับทีม่ีตอ่ค่าการเสียรปูตามแนวเส้นสมัผสัของโครงสร้างเปลือกบาง
แบบรปูทรงรีแบบเตี้ย 
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(ก) ฐานรองรบัแบบยึดแน่น 

 
(ข) ฐานรองรับแบบยึดหมุน 

รูปท่ี 9 ผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรับทีม่ีตอ่ค่าการเสียรปูตามแนวเส้นต้ังฉากของโครงสร้างเปลอืกบาง
แบบรปูทรงรีแบบเตี้ย 

 

 
(ก) ฐานรองรบัแบบยึดแน่น 
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(ข) ฐานรองรับแบบยึดหมุน 

รูปท่ี 10 ผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรบัทีม่ตี่อค่าการเสียรปูตามแนวเส้นสัมผสัของโครงสร้างเปลือกบาง
แบบรปูทรงรีแบบสูง 

 

 
(ก) ฐานรองรับแบบยึดแน่น 
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(ข) ฐานรองรับแบบยึดหมุน 

รูปท่ี 11 ผลของการเปลี่ยนแปลงเงื่อนไขของฐานรองรบัทีม่ตี่อค่าการเสียรปูตามแนวเส้นต้ังฉากของโครงสร้าง
เปลือกบางแบบรปูทรงรีแบบเตี้ยสงู 

 
6. สรุปผลการศึกษา 

งานวิจัยนี้น าเสนอผลการวิเคราะห์ทางสถิตศาสตร์ของโครงสร้างเปลือกบางรูปทรงรีรับแรงดันน ้าสถิตโดยใช้
ทฤษฎีเรขาคณิตเชิงอนุพันธ์และหลักการงานเสมือนในการสร้างฟังก์ชันพลังงานของระบบโครงสร้างเปลือกบาง  
ความสัมพันธ์ระหว่างความเครียด-การเสียรูปจะสามารถค านวณได้จากค่าการเสียรูปของโครงสร้างเปลือกบาง 
ที่พิจารณาผลของแรงเฉือนโดยใช้ทฤษฎีการเสียรูปด้วยแรงเฉือนอันดับสูง การหาผลลัพธ์เชิงตัวเลขใช้ระเบียบวิธี  
ไฟไนต์เอลิเมนต์โดยใช้เอลิเมนต์สี่เหลี่ยมผืนผ้าแบบไอโซพาราเมตริกจ านวน 9 จุดต่อ ผลการศึกษาสามารถสรุปได้ดังนี้ 

1. ค่าการเสียรูปของโครงสร้างเปลือกบางรูปทรงรีจะมีค่าสูงขึ้นเมื่อความสูงของระดับน ้าทะเลและอัตราส่วน
ความยาวรัศมีที ่ฐานรองรับต่อความหนาของโครงสร้างมีค่าสูงขึ ้น เนื ่องจากแรงดันภายนอกและความแข็งแกร่ง  
ของโครงสร้างมีค่าเพิ่มข้ึนและลดลง ตามล าดับ โดยที่ค่าการเสียรูปของโครงสร้างจะเกิดข้ึนเนื่องจากผลของค่าการเสียรูป
ตามแนวเส้นต้ังฉากเป็นหลัก 

2. ความสัมพันธ์ระหว่างค่าการเสียรูปจะขึ ้นอยู ่กับค่าอัตราส่วนความสูงต่อความยาวรัศมีที ่ฐานรองรับ 
ของโครงสร้างเปลือกบางรูปทรงรี โดยที่โครงสร้างเปลือกบางรูปทรงกลมจะมีค่าการเสียรูปตามแนวเส้นตั้งฉากน้อยกว่า
กรณีของโครงสร้างเปลือกบางรูปทรงรีแบบเตี้ยและแบบสูงที่บริเวณจุดยอดและฐานรองรับ ตามล าดับ 

3. การเปลี่ยนแปลงเงื่อนไขของฐานรองรับจะส่งผลต่อแนวโน้มความแตกต่างส าหรับค่าการเสียรูปตามแนวเส้น
สัมผัสและการเสียรูปตามแนวเส้นสัมผัสน้อยมาก อย่างไรก็ตามโครงสร้างเปลือกบางรูปทรงรีที่มีฐานรองรับแบบยึดแน่น 
จะให้ค่าการเสียรูปน้อยกว่าฐานรองรับแบบยึดหมุน 
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