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Application of Differential Evolution Optimization Algorithm for
Raw Material Allocation Problems in Multi-Stage
Rice Transportation
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Abstract

The research aims to compare results of algorithm for solving allocation problem in multi-
stage rice transportation between formulation of mathematical model with computation by Lingo
V.11 and application of Differential Evolution (DE). The research was conducted in two stages:
1) comparing efficiency of the two employed applications in terms of economic, and 2) comparing
for minimum computation time. The proposed algorithm was tested with problems in six simulated
case studies. Results show that, in terms of economic, DE did not generate better solutions than
Lingo V.11 at an average of 0.525%. However, it used faster response time at an average of 206

minutes when compared to Lingo V.11.
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