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Abstract
Accurate, efficient and robust travel time prediction is crucial to the development

of advanced traveler information systems for providing route guidance information. To
achieve this goal, this paper proposed a travel time prediction through the matching of
the current speed interval pattern to that in a historical database. Speed intervals, instead
of speeds, are considered in this study to simplify the structure of matching patterns for
improving matching efficiency. In this study, speed interval patterns are defined by sets
of link speed intervals that are either spatially or temporarily correlated with the link
considered. With the speed interval patterns, the algorithm is developed for searching the
historical pattern(s) that is/are the closest match with the current one. Then, link speeds
from these matched patterns are combined for travel time prediction. By using the GPS
probe taxi data, which the collected speeds are aggregated in every 5 minutes, the
proposed travel time prediction system is implemented in Bangkok. With the speed data
from probe taxi, this paper has chosen four links/paths with different geometric and flow
characteristics for testing the performance of the proposed travel time prediction system.
From these tests, it is found that the optimal speed interval pattern should include: 1)
speeds of the studied link within three preceding time intervals and; 2) speeds of links in
the first connection level of the studied link. Also, while the computational time is capable
of real-time application, the proposed prediction algorithm is more accurate under
uninterrupted flow conditions.
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1. Introduction
In the Development of the Intelligent

Transportation System (ITS), Advanced
Travelers Information System (ATIS) plays
an important role in providing real-time
traffic conditions and/or traffic
management measures to travelers for
avoiding unnecessary delay and ensuring the
reliability of road network. Among all the
information provided by ATIS, travel time
is one of the key information used by the
route guidance system to evaluate real-time
shortest paths that help in the trip planning
of drivers. As route guidance system is
usually used before the trip is made, an
accurate prediction of future link/path travel
times 1is necessary to ensure good
performance of the system. Travel time
prediction is a challenging problem as the
prediction will be affected by 1) complex
and non-linear interactions of hetero-
geneous groups of vehicles/drivers; ii)
infrastructures and/or traffic management
schemes that interrupt the traffic flows, and;
ii1) availability and types of information for
travel time prediction. Owing to the
complexity of the travel time prediction
problem, various methods/models have
been proposed in the literature and could be
classified into two categories: parametric
and non-parametric prediction models (H.-
E.Linetal). [1]

Table 1 summarized some of the travel
time  prediction studies, with  the
corresponding data sources and prediction
method, in the literature.

N. K. Chowdhury et al. [2] have
proposed a modified moving average
approach, which is another category of time
series model, for travel time prediction. By

eliminating unwanted fluctuations in the
data set, the model proposed in N. K.
Chowdhury et al. [2] outperforms the
conventional moving average methods.
Owing to its nature, the time series model
could only provide an accurate prediction for
a short forecast period (i.e., 5 ~ 10 minutes)
or under stable traffic conditions. Apart from
the parametric models, W.H.K. Lam et al.
[3] have adopted a traffic flow simulator
(TFS), in which the original-destination
demands are calibrated based on the
historical link counts and prior demands by
an upper-level model, for travel time
predictions.

Table 1 Comparison of required data and
prediction methods for travel time
prediction

Prediction

Studies Application Data Method

Properties

N.K.Chowhhury Short-term

et alA[(22]009) prediction GPS Moving average Specific route
W.H.K.Lam et
al. Sl::’;lctfl;‘: AVI  Traffic simulation Uﬁ?&;ﬁfd
2005) 37 P

S.I.Bajwactal.  Short-term Point Pattern matching

. e By Genetic Expressway
(2004) [4] prediction sensor Algorithms
T. Kim et al. Short-term Point Traffic pattern Hichwa
(2005) [5] prediction sensor recognition shway
Z.-P.Lietal Short-term AVI Exponential Urban road
(2008) [6] prediction Smoothing network
W.-H. Lee et al. Traffic .
(2009) [7] Classification GPS Fuzzy C-mean Specific route
Y. Zhang and Traffic state Point Non-linear least
Y. Liu (2009) . e ) Freeway
8] prediction sensor square
A.Khosraviet  Accuracy Bayesian updated .
al. (2011) [9] interval GPS Neural network Specific route
A. Simroth and Lone-term Nonparam etric Nationwide
H. Zdhle (2011) gt GPS Distribution-free
prediction N Road network
[10] Regression model
- Historical
average
. - Auto regressive
W. Qiao et al. Short-term Blucto integreated moving
(2013) dicti oth Freeway
[ prediction data average
- Kalman filter
- K-nearest
neighbors
Y. Zou et al. Short-term Point Space-time Freewa
(2014) [12] prediction sensor diurnal y
H. Jiang et al - Neual Network
: 8 Ctal Short-term Point - Multilinear .
(2016) " . Highway
[13] prediction sensor Regression
- Statistical Model
Our .
Proposed Short/ medium GPS Pattern matching Utban road

Term prediction network

method
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For many cases in actual
implementation, the relationships between
travel time and traffic conditions are too
complicated to be represented by any type
of model. Thus, non-parametric models
are becoming more attractive, especially
for the application in a large and complex
urban road network. In the literature, non-
parametric travel time prediction models
could be categorized into k-nearest
neighbor (k-NN) algorithm (T. Kim et al.
[5], W.H.K. Lam et al. [14]), expert
system (W.-H. Lee et al. [7]) and artificial
neural network (J.W.C. Van Lint et al.
[15], A. Khosravi et al. [9]). T. Kim et al.
[5]) developed pattern recognition
algorithm, which based on link volumes in
current and preceding time intervals, for
short-term  link  volume/travel  time
prediction of a section of expressway in
Washington DC. compare to the other k-NN
approaches that use only current link flows,
pattern recognition algorithm proposed in T.
Kim et al. [5] gives a smaller prediction error
in different neighborhood sizes. Apart from
the prediction of traffic conditions, W.H.K.
Lam et al [14] put a step forward in adopting
the k-NN-based travel time prediction in
incident detection. In their study, a modified
k-NN approach, which depends on the
estimated travel times and the
corresponding temporal
covariance relationships, is adopted in
travel time prediction. By comparing the
predicted travel times and  the
corresponding estimated travel times from
automatic vehicle identification (A VI) data,
the incident could be detected if the
difference exceeds the certain threshold
value. In addition to the data mining

variance-

approaches, expert systems improve the
accuracy of predictions by the introduction
of prior-knowledge rules. W.-H. Lee et al.
[7] have proposed an expert system for
travel time prediction in Taipei urban road
network. In their study, travel times are
predicted based on a weighted sum of the
current (based on current speeds and
flows) and historical (based on traffic
patterns in the historical database) travel
time predictions. Rules, which are
responsive to real-time
introduced by the expert of the test area
for the automatic determination of
weights. W.-H. Lee et al. [7] show that
such an expert system in travel time
prediction could achieve a root mean
square error (RMSE) as low as 11%. J.JW.C.
Van Lint et al. [15], on the other hand, has
adopted a state-space neural network
(SSNN) to ensure the accuracy and
robustness of travel time predictions in the
presence of missing data. In their study,
missing data (e.g., speeds from loop
detectors) are estimated using simple

events, are

imputation (i.e., exponential moving average
and/or spatial interpolation) and the
proposed method is tested on a simulated
model with different patterns of missing
data. JJW.C. Van Lint et al. [15] shows that
even with 40% of data are missing, their
SSNN could achieve a prediction error
similar to the case with no missing data.
Apart from the aforementioned models,
there are other non-parametric models, such
as the least square support vector machines
discussed in Y. Zhang and Y. Liu [8] and
the  nonparametric  distribution-free
regression model introduced in A. Simroth
and H. Zihle [10]), for travel time
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prediction. In developing the
aforementioned parametric and non-
parametric models, traffic data plays a
crucial role in model calibration/training
that affects their performance. In practices,
traffic data are commonly collected by
global-positioning system (GPS), automatic
vehicle identification (AVI) system and
point sensor (e.g., loop detectors), while
each of these methods will have their pros
and cons under different types of
implementation (e.g., freeway, arterial, etc).
Table 1, summarized some of the travel time
prediction studies and their required types
of data. From the reviewed studies, the
majority of data is collected using GPS
(Table 1). It is because GPS data, which
could be collected by inexpensive onboard
GPS sensors, does not require a substantial
investment  in  infrastructure  and
maintenance as in the other two methods
(point sensors and AVI). Apart from the
inexpensiveness, GPS data could be used to
provide the precise locations of the tracked
vehicle (e.g., location for every 30 seconds)
for further use in the path-related analysis.
Despite the high implementation and
maintenance cost, point sensors are still the
most common data collection method in
practices for its continuous collection of
relatively reliable traffic data (e.g., speeds
and flows). Also, unlike the GPS data that
passively depend on the installed vehicles,
point sensors could be strategically placed
for maximizing the coverage of the
monitored network. AVI data, as another
data source, provides travel time between
two points through the identification and
match of vehicles. Unlike the GPS data,
AVI data is not able to provide the chosen

path of the matched vehicles and, thus,
models/algorithms should be developed to
estimate the path choice from the AVI data
(T. Siripirote et al. [16]). Owing to the
different characteristics of data sources,
data fusion techniques have recently be
considered for providing an accurate and
robust travel time prediction (K.P. Hwang
etal. [17])

Considering the problems of
parametric travel time prediction models
for long-term prediction under unstable
traffic conditions and the computational
efficiency of wvarious data mining
approaches, this study proposed a travel
time prediction algorithm through the
matching of link speed interval patterns,
which  consist of  spatiotemporally
correlated link speed intervals. In this
study, speed intervals, instead of speeds,
are considered to simplify the structure of
matching patterns for improving matching
efficiency. This paper is organized as
follows. Section 2 will describe the
variables used in this study. The
formulation and solution algorithm of the
proposed travel time prediction model will
also be given in Section 2. Section 3 will
then carried out various empirical tests
based on the data and models introduced in
the previous section. Lastly, the paper will
be concluded in Section 4.

2. Travel time prediction through

speed intervals matching
In this study, link travel times are

predicted by the corresponding historical
value(s) with speed interval pattern(s) that
is/are the most similar to the current one.
In defining speed interval patterns, this



RMUTP Research Journal, Vol. 15, No. 1, January-June 2021 197

study will not only consider the speed
interval of the link under concern, instead,
speed intervals of the surrounding links
(spatial) and previous time intervals
(temporal) will also be considered. In this
section, the collection and processing of
speed data used in this study will be
discussed in Section 2.1. Then, Section 2.2
will define the speed interval patterns used
in the travel time prediction. With the speed
interval patterns, Section 2.3 introduces a
matching algorithm for finding the most
similar speed interval pattern in the
historical database. Finally, Section 2.4 will
give the architecture of travel time
prediction in Bangkok road network based
on the collected data and developed
algorithm in Section 2.1~2.3.

2.1 Collection and processing of speed
data
In Bangkok, taxi companies will

usually set up an IP
communication (Taxi radio) for normal
voice-based communication with their taxi
drivers. Even though taxis in Bangkok are
not mandatory to equip with GPS devices,
these established communication channels
could also be used to transmit GPS data to

wireless

enhance real-time taxi dispatching. In this
research, traffic data is obtained from
around 10,000 taxis, which are equipped
with GPS devices, in Bangkok. The GPS
devices will wirelessly transmit the latitude,
longitude, altitude, traveling speed,
heading, and timestamp of the equipped taxi
to a designated computer server for every 45
seconds.

In this study, the urban and suburban
road networks in Bangkok, which consist of

3,000 links and cover more than 3,500
origin-destination ~ (O-D)
considered and the corresponding GPS data
is collected. In the Bangkok network model,
new links are usually defined wherever
there is a change of road geometry (e.g.,
increase in several lanes), intersection with
other roads (e.g., signalized junction,
priority junction), and land use pattern (e.g.
exit of a parking lot). The increasing detail
of the modeled network (e.g., number of
parking lot exits included) will substantially
decrease the length of each link and, thus,
cause the same network to have a larger
number of links. As the number of links
increases, there will be a higher chance that
the real-time GPS data, especially the speed
data, from probe taxi is not available for a
certain link at a certain time period. With
insufficient, or missing, link speed data at
different traffic conditions, it is not possible
to provide a reliable travel time prediction
for the Bangkok network due to its highly
varied traffic conditions. On the other hand,
if unreasonably long links are defined, the
average of collected speeds could not
precisely represent the actual speed profile
of the links. With such inaccurate average
speeds for long links, it is not possible to
achieve a reliable prediction of travel time.
Thus, in this study, data availability and data
accuracy are traded off in choosing the
length of the links in the network. Apart
from longitude and latitude, the altitude
from GPS data will also be used in this
study to separate speeds collected from
links that are vertically overlapped. With
this consideration, traffic links in this study
will be categorized into three types: road (at
grade), elevated (flyover), and toll road.

pairs,  are
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These link types and the other link
characteristics (e.g., location of U-turn and
road junction) will be stored as the local
parameters of traffic link in the database.

Table 2 Samples of GPS data obtained

from probe taxi
GPS_ID Latitude Longitude Timestamp Speed (km/hr)
1311042 13.581726  100.867721 2011-12-15 10:00:13 84
1310992 13.581680 100.867248 2011-12-1510:00:14 114
1311751 13.581893 100.867095 2011-12-15 10:00:22 85
65679 13.582565 100.861358 2011-12-15 10:00:26 71
1311401 13.583236 100.860351 2011-12-15 10:01:07 93

For each set of GPS data collected
from probe taxis, which some samples are
shown in Table 2, the map-matching
algorithm is adopted to check whether the
GPS device (i.e. taxi) is located on road
segments and screen out those data that
are not on the road segment (e.g., in the
parking lot). The location information will
also be used to locate the collected GPS
data into different links for determining
the average speeds that are used for travel
time prediction. Apart from the location
information, the collected vehicle speeds
will also be used in this study and will be
considered as the spot speeds of the vehicles
at the corresponding location (link) and
time. Before these spot speeds could be
used to estimate the historical link speeds for
travel time prediction, filtering procedure
will be adopted to filter out outlying and/or
erroneous speed data. For instance, if a
GPS device transmitted back a zero
vehicle speed while most of the other
speed data on the same link and in the time
period are greater than 80 kph, this speed
data will be considered as erroneous and
filtered out.

After filtering out the outlying and
erroneous spot speeds, a stratified

sampling technique is applied to the
remaining spot speeds for sampling a
balanced number of spot speeds from each
speed interval within each time period.
Such stratified sampling of spot speeds is
crucial for this study as the spot speeds
within Bangkok network usually have a
large variation (even they are from the
same link and in the same time period) due
to the frequent interruptions of traffic
flows. For example, considering a link
with a signalized intersection located at its
downstream end, vehicles will queue up in
front of the stop line of the intersection (i.e.
at the downstream end of the link) during
the red times. As the queue is building up,
the number of vehicles (probed taxis)
within the queues will increase and become
larger than those that have not joined the
queue. As a result, there will be a large
proportion of spot speeds collected from
the probed taxis that are in the queue as
compared to those that are not. Thus, if a
simple average of spot speeds is used to
define the speed of that link, this estimated
speed will be underestimated. To overcome
such an issue, the stratified sampling
technique divides the spot speeds into
several speed intervals and randomly
chooses the same number of data from
each interval for estimating the average
speed of the link (Table 3).

Table 3 Probe vehicle data stratified by
speed intervals

Speed Number of Randomly
interval spot speed chosen spot
data speeds
0-12 12 1,6,11
13-25 3 15, 22,25
26 —38 6 28, 30,33




RMUTP Research Journal, Vol. 15, No. 1, January-June 2021 199

The average link speed will be
estimated for every 5 minutes and classified
by different day of the week for further
uses in travel time prediction.

2.2 Definition of speed interval pattern
In this study, a traffic pattern, which

is used to match the current traffic
condition with the historical database for
travel time prediction, is defined by speed
interval pattern. For each of the spot speeds
and historical average speeds, the
corresponding speed interval is defined as:

~k | Lk
Vab,t - Lvab,t /SJ (1)

where v,  is the speed interval of link ab

ab,t
(or the link from a to b) in time interval ¢

and day k, V'

w: 18 the spot speed
(historical average speed) of link ab in
time interval ¢, s is the width of speed
interval, and x denotes the largest integer

that is less than x. For example, if the spot
speed of link ab (v%,,) equals to 21 kph

and the width of speed interval (s) is taken
as 5 kph, the speed interval (%, ) for this

spot speed will be equal to 4. In this study,
for each of the time interval (say 5 minutes
duration), the speed interval of the
average speed, which is determined by the
stratified sampling technique described in
the previous section, is determined for
each of the links (Fig 1a).

In this study, the speed interval
pattern is defined by the speed intervals of a
set of links that are spatially and/or
temporally correlated to the link under
concern (i.e., the link for travel time

prediction). In defining the spatial
correlation between links, this study has
adopted the idea of connection level. Fig.1b
shows the connection level of the
surrounding links to the link ab. In this
figure, link bc, bd, and be are the links
with connection level (i) equals to 1 as
they are directly connected to node b,
which is the end node of the link ab. Other
links in Fig. 1b (e.g., cg, cf, etc) have the
connection level equals to 2 as they are
connected to the end nodes of links in the
previous connection level (i.e.,i= 1).
Under such a definition, the connection
level of all links within the network
concerning link ab could be established.
Compare to the spatial correlation, the
definition of temporal correlation of link
speed intervals is simpler. In this study,
link speed intervals are assumed to be
temporally correlated in time interval.

M %H?

GRS b0 o—ob @
or i@ @*m{?}m@
() Spead mtervals (b) Connection levels of link ab

Fig. 1 Speed Intervals and Spatial Connections
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-3 =z _®
U5e
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-3

@2
o=0}

Z
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Fig. 2 Temporally correlated speed intervals
for link ab at day k and time interval ¢
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Fig. 2 shows the examples of
temporally correlated speed intervals on
different days and time intervals for the
speed interval measured on link ab at
day k and time interval t.

In this study, the speed interval
pattern is defined by the speed interval of
the set of links that are spatially and/or
temporally correlated to the link under
concern.

?, |
O~0=-0F 7. "
bo-b-09 | o-bl09
b~ $O+0-09
& & OG-0

Fig. 3 Spatially and temporally correlated
speed interval pattern in different days

Fig. 3 shows the example of speed
interval pattern on day k-1 and k-2 for
speed interval measured on link ab at
day kand time intervalz. In the speed
interval patterns given in Fig. 3, it is
assumed that: 1) speed interval of links
with a connection-level equals to 1 (i.e. i =
1) is spatially correlated to the speed
interval of link ab and, 2) the current speed
intervals are temporally correlated to the 3
preceding time intervals (i.e. -1, -2 and #-
3).

2.3 Speed interval pattern matching
(SIPM) for travel time prediction
Based on the definition of speed

interval pattern (Section 2.2), speed interval
pattern for the current time interval is
established and the historical database,
which is built based on the data

collection/processing method introduced in
section 2.1, is searched for finding the most
similar pattern (i.e., matching of speed
interval pattern). Due to the large number of
links in the Bangkok road network, an
efficient and effective pattern matching
algorithm should be proposed to ensure a
fast matching process for real-time
applications. In this study, the similarity of
two-speed interval pattern (e.g., the current
and historical speed interval pattern) is

. k
measured by a mismatch value, m, ,

defined as:

Vke K ()

~k ~n
v/',z—p - v/',z—p y

where mlk is the mismatch of speed interval

pattern derived from link/at current
timetand daynas compare to the
corresponding speed interval on day, P is the
number of preceding time intervals that are
considered to have temporal correlation with
the current time interval, / is the connection
levels that are considered to have spatial
correlation, Lf. is the set of links with
connection-level i concerning link /, and K is
the set of days in the database to be compared
for determining the mismatch value.
Typically, two different sets of K will be
considered: 1) set of specific days on a week,

K={n-7,n-14,n-21,..,n—K}, and
2) set of unclassified days,

K={n-1,n-2,n-3,.,n—K}. Based
on the above definition of mismatch value
(m,k ), the SIPM for travel time prediction of

link / could be formulated as following
constrained minimization problem:



RMUTP Research Journal, Vol. 15, No. 1, January-June 2021 201

Minimize  Z, (8)=>_8'm; (3a)
keK
Subject to Z@k =1 (3b)

keK
where é‘,k =1 if speed interval pattern of

day k is chosen as the match of current
pattern (i.e. the corresponding speed
interval pattern of day £ is used to evaluate

the mismatch value, m,k , through

equation (2)), otherwise equal to zero.
Minimizing equation (3a) guarantees that
the chosen speed interval pattern, which is

determined by the variable, é}k , gives the

smallest mismatch value (i.e. most similar
pattern). Constraint (3b) is to ensure that
only one historical speed interval pattern
is used to match with the current one. The
above minimization problem will be set
up and solved for all links within the
transportation network that need a speed
interval travel time
prediction. Note that the formulation of
speed interval matching problem
(equation (3)) is general optimization
framework of which additional constraint
could be easily added to refine the feasible
solution set. For instance, an additional

matching for

constraint,

1<V, <3 VkeK,I'e L, pe[L2,...Plic[L2,...]]
, could be added to limit the number of
speed intervals, or the search space, in the
database for speeding up the searching
process.

As the mismatch value mlk 1s

defined by speed intervals, which are
integer variables, the above minimization
problem (equation (3)) likely has multiple

solutions (i.e., multiple days in the history
with the speed interval patterns that give
the same mismatch value as compared
with the current pattern).

Thus, to handle cases with multiple
matches, the procedure in Fig. 4 is
adopted to match/estimate the speed
pattern that is used for travel time
prediction.

Yes

s

Update: Compute
M, =M, u{m} m;

med _ K
s v =V
Either I_

D wWi=vF

2) ¥

3) v™=vF

Fig. 4 Speed interval pattern search for
travel time prediction

For the iterative loop on the left-
hand side of Fig. 4, the algorithm will

compute the mismatch value (mlk) of link

[ for each day k€K in a reverse
chronological order (i.e., starting from the
most recent day and then evaluate back in
time). Within these iterative steps, the
procedure will terminate whenever a
speed interval pattern in the historical
database (k = k") is completely matched

with the current pattern (i.e., m,k =0).

Then, speeds on that day will be taken as
the speed pattern used in travel time

prediction (v/"*), which is defined as:
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T
pred __ pred _ pred pred
vl = (Vz,m Vs Vyrers
x « « T x
N k k ok
= (VI,HPVI,HZ’ ...... ,v/mp) =v, 4)

where ¢ is the number of future time
intervals that travel time prediction is
required. If the speed interval pattern is
not a complete match with the current

pattern (i.e., mlk*;tO), the estimated

mismatch value will be included in a set
M and the mismatch value of next day (or
k) will be calculated.

After the mismatch value of all days
in the set, K is evaluated and none of these
days has a speed interval pattern that is
completely matched with the current
pattern, the procedure in the right part of
Fig. 4 will carry out to estimate the speed

pattern used for travel time prediction

(V7). Mo defines a set that contains the

smallest element(s) of M;, which is the set
of mismatch values for all days within K.
If the size of Mo (i.e., |Mo|) is equal to 1,
which indicates that there is only one
solution for the matching problem (3), the
speeds of that day (ko), which is

will be taken as the speed pattern used in
travel time prediction (v/"*’). The size of
Mo is larger than unity, which indicates
that there exists multiple solutions for the
matching problem (3), v/ will be

estimated by three different methods:
random sample,
closest speed pattern. For random sample,

average value, and

a day (k') is randomly chosen from the

set Ko, which is the set of days within K
with minimum mismatch values, for
providing the speeds

\s

rnd rnd rnd
k() — vk() VkO
Lt+12 VL4200 000 > L t+t?

: T
k)nd
)

used in travel time prediction. For

average value, each element of v/ will
be taken as the average of the

corresponding element of all the speed
patterns within Ko (i.e.
=sz",w Vi'e [t+1,t+tpp~

€K,

M,
For closest speed pattern, the day (kf)nirl ) is
chosen such that the speed pattern, not
speed interval pattern, is the most similar
(or the closest) to the current speed pattern

(ie., k™ =arg minii z
keK

p=l i=l l'el!

k n
V[.J_p - Vl',l—p‘ )'

Then the speeds on that day (ie.,
k(l]nin k(r)nin k(;nin k(l)nin

T
v, =(v,vt+1,vlvt+2, ...... ,vl’mp) ), will be

used for travel time prediction. With the
speed vector, v/’ estimated by various

methods in this procedure, the travel time

for link / in the future time intervals (i.e.,

t+1, t+2, ..., etc) could be predicted by

dividing the link length with the
pred

corresponding speed in Vv,

2.4 Architecture for travel time
prediction system in Bangkok
In this study, as the travel time

prediction system will be implemented to
the large-scale Bangkok network that
consists of 3,000 links, the feasibility of
real-time application will not only rely on
the efficiency of prediction algorithm
(Section 2.3) but also depend on the
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efficient flow of data between all related
large-scale databases.

= 1%
i = == —_—_ll
Ly BT A
ey @
|-:u',d;:x

Fig. 5 Architecture for travel time prediction
system in Bangkok

Fig. 5 shows the architecture of the
real-time travel time prediction system for
the implementation in Bangkok. In this
study, data collected from GPS, AVI and
various point sensors (e.g., Autoscope,
loop detector, microwave sensors) are
used to provide the necessary link travel
time and/or link speed data (Fig. 5).
Before these data could be used for travel
time prediction, they are filtered by using
the filtering procedure described in
Section 2.1 to provide link speeds (link
travel times) for different time intervals.
Based on the transportation network
extracted from the map, the link speeds
(link travel times) from different data
sources are combined to provide the
network-wide speed pattern for each time
interval and day. These filtering and
combining processes will be carried out in
real-time and the created speed patterns
will then be stored in the database as
historical speed patterns for travel time

prediction. To carry out travel time
prediction, speed patterns of the current
and preceding time intervals are taken
from the database for forming the speed
interval patterns as described in Section
2.2. With the speed interval patterns,
pattern search is carried out on the chosen
set of speed interval patterns in the
database for travel time prediction
(Section 2.3).

3. Empirical studies
The proposed SIPM algorithm and

the corresponding system architecture are
implemented in the Bangkok road
network for travel time prediction based
on the collected/estimated speed data. In
this section, the performance of the
proposed model is evaluated in link travel
time prediction (Section 3.1) and path
travel time prediction (Section 3.2).

3.1 Link travel time prediction
To test the performance of the

proposed model in the prediction of link
travel time, four different types of links
are considered: 1) link with free-flow
condition on a multi-lane road without
weaving, on- and off-ramp (Link A); 2)
link with free-flow condition on a local
side road connected to community areas
(Link B); 3) main road connected to
business areas with traffic signals (Link
(), and; 4) link in central business district
with traffic signals and U-turns (Link D).
The characteristics of these links are
shown in Table 4 and their corresponding
geographical locations are shown in Fig.
6.
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Table 4 Links for travel time prediction

Distance
(km)
Inbound 5.7

Link From/To Direction”

A Bang Khun
Thian —
Bang Khru

B Bangkok
University
Statium —
Tollway
Rangsit

C MRT
Ratchada —
The Emerald
Hotel

D  Pratumnam

Inbound 2.9

Inbound 2.6

Outbound 1.1
Ratchatawee

*Inbound (outbound) refers to traffic travelling

towards (out of) the centre of Bangkok city

Nonthaburi

P

:/\/ 2 %
) Samut Prakan

Fig. 6 Links and paths adopted in travel
time prediction

The Road network in Bangkok is
relatively complex as the upstream and
downstream ends of links may connect to
various types of roads, for example,
elevated roads, toll-way ramps, and
community streets. Fig. 7 shows the set of

links that are correlated to Pratunam —
Ratchatawee link (Link D) at connection
level i = 1. Among these correlated links,
which the traffic flow directions are
marked by the in  Fig. 7,
Link ef represents the flyover at the
intersection of Ram Inthra Road and Ramintra-
At narong Expressway (Intersection a).

arrow

Connection level i = 1

O O
O A @J V f Be Q;)!{mchma\\'cc O
Pratunam
& Q

Fig. 7 Spatially correlated links of Link
D (Connection level i = 1)

To demonstrate the variation of
speed interval pattern over time, the speed
interval pattern (s =5 kph, [ =1, P=1) of
Link D during time interval 09:20 ~ 09:25
is compared with the corresponding speed
interval patterns in the past 52 weeks and
the mismatch values are evaluated (Fig.
8).

Mismatch value
8

0 4 8 12 16 20 24 28 32 36 40 a4 a8 52
Week before

Fig. 8 Variation of mismatch values for
the speed interval pattern of Link D
during 09:20 ~ 09:25
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In Fig. 8, while the majority of the
mismatch values are between 30 and 50,
the minimum mismatch value (i.e., 20) is
found when the speed interval pattern of
21 weeks ago is considered. This indicates
that traffic pattern on that day (21 weeks
ago) is the most similar to the current
pattern and, thus, could potentially be
used in travel time prediction.

Table S Testing of pattern search parameters
for travel time prediction on Link D

Set (No. fftime K (Corrilatiun MIO\PE CPU time
intervals) (No. of day) level) (%) (seconds)
135 12 24 48 1 2
e o . 271 203
2 ® L . 2006 224
3 o o . 218 257
4 ® U . 1926 314
3 i o o 1713 413
6 ° . o 1740 564
MAPE :ij@xloo
=

where Y] is the actual travel time at time 7, Y is the predicted travel time at time 7, and

n is the number of dataset.

Table 5 shows the impact of different

pattern search parameters (P, I and K ) on
the performance of travel time prediction
on Link D. In this table, the mean absolute
percentage error (MAPE) is estimated by
comparing the predicted and observed
travel times in time interval 09:00 ~ 09:05
on 10 different Monday mornings. The
algorithm was developed in Java and
executed on a Linux operating system
with 3.2 GHz quad-core processor. The
CPU time in Table 5 records the required
time (in seconds) for carrying out the
proposed algorithm in finding the
predicted travel time. Comparing Set 1
and 2 in Table 5, it could be seen that the
MAPE decreases as the number of

temporally correlated time intervals (P) is
increased from 1 to 3. Such a decrease
suggests that the speed interval patterns of
Link D are temporally correlated with the
preceding 15 minutes (3-time intervals).
Thus, setting P = 3 could better describe
(i.e., more information) the current traffic
condition for finding a closer (more
similar) pattern in the historical database
and, thus, resulted in a reduction in
MAPE. For case P =5 (i.e., Set 3), despite
more preceding time intervals are used in
forming the speed interval patterns, the
MAPE is larger than that of the case P =
3. The reason for having such an increase
in MAPE comes from the low correlation
of the speed intervals in the two additional
time intervals (i.e., -4 and #-5) with the
current one. Thus, including these two-
time intervals in the speed interval pattern
may result in an incorrect match that gives
an inaccurate prediction of travel time.
Comparing the CPU time of Set 1, 2 and
3, it could be seen that CPU time increases
as the speed interval pattern are becoming
more complex (i.e., a more preceding time
interval is considered).

Considering the MAPE of Set 2, 4
and 5, it could be seen that as the search
space increases (i.e., K increases),
prediction error reduces and CPU time
increases. It is because, as the search
space increases, the number of historical
speed interval patterns will increase and,
thus, there will be a higher chance to have
a historical pattern that is similar to the
current pattern (i.e., small or zero
mismatch value) for improving the
accuracy of travel time prediction (i.e.,
reduction in MAPE). Considering Set 5
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and 6 in Table 5, despite the increase in
computation time, the increase in the
spatial connection level (i.e., /) could not
improve the accuracy of travel time
prediction on Link D (i.e., MAPE
increases as / is increased from 1 to 2).
Similar to the explanation for the impact
of P, such the increase in MAPE could be
explained by the non-correlation of speed
intervals between the second-level links

(L)) and Link D.

Sum up, the proposed algorithm
gives the best prediction of travel time for
Link D when P=3,7=1 and K =48.
Thus, this set of searching parameters will
be adopted in the remaining empirical
studies of this paper. In this initial

experiment, apart from the fact that |M0|

is usually very small (mostly equal to 1),
it is also found that speed interval patterns
that give the minimum mismatch value

. k . ..
(i.e., m; € M) will have similar accuracy

on the travel time prediction. Thus, unless
otherwise stated, the speed used for travel

time prediction (v/** ) will be taken as the

average of speed patterns with minimum
mismatch value (i.e., v/ =v") for

remaining empirical studies. With the
above set up, the proposed SIPM
algorithm (Section 2.3) is adopted to
predict travel times of the 4 links (Link A,
B, C, and D) during 09:05 ~ 09:30 (5
intervals) on 10 different Monday mornings.
Note that the travel time predictions are
made during the time interval 09:00 ~ 09:05.

Table 6 shows the MAPE of the
proposed SIPM algorithm and 3-interval
moving average of speed (MA) for travel

time prediction of Link A ~ D during
09:05 ~09:30. In Table 6, it could be seen
that the performance of MA in travel time
prediction decrease (i.e., MAPE increase)
as the predicted time interval increases. It
is because MA approach is directly
depended on the speeds of the preceding
time intervals for travel time predictions.

Table 6 Errors (MAPE) of link travel time
predictions for 5 future time intervals
(09:05 ~ 09:30)

SIPM MA *
Link Future time interval Future time interval
1 2 3 4 5 1 2 3 4 5
1321 1210 1385 14.61 1420 12.85 1455 16.03 2120 2245
1450 1522 1392 14.68 1532 1290 12.17 1546 1925 21.10
16.18 1639 1645 17.46 1584 1541 2094 23.88 2542 29.57
18.20 19.23 18.69 21.40 20.22 2245 2640 32.10 30.56 34.20

*MA = moving average of speed

TAOw>

Thus, error in the first few future time
intervals (e.g., 09:05 ~ 09:10 in this test)
will propagate to the subsequent
predictions and cause a substantial
increase in MAPE. For the SIPM
algorithm, the MAPEs are in general
smaller than that for the MA approach and
they are not necessarily increased with the
number of predicted future time intervals
(Table 6). It is because in SIPM
algorithm, speeds from preceding time
intervals are only used in searching the
historical database but not directly be used
in predicting speeds and travel times.
Thus, error in the first few predicted future
time intervals will not directly propagate
to the subsequent intervals to cause an
increase in MAPE. Also, as the SIPM
algorithm will independently search the
historical database for travel time prediction
in each of the future time intervals, it is
possible to have a decrease in MAPE even
when the number of future time interval
increases (e.g., Link A 1st and 2nd future
time interval).



RMUTP Research Journal, Vol. 15, No. 1, January-June 2021 207

Comparing the MAPEs of SIPM
algorithm for travel time predictions of
Link A to Link D, it could be seen that
Link A has the smallest MAPEs among
the four predicted links. It is because, as
traffic on Link A is not interrupted (i.e., no
weaving sections, on-ramp and off-ramp),
the speeds along Link A will relatively
stable and could be closely represented by
the speeds collected at certain location on
Link A. Thus, speed interval patterns that
are similar to the current traffic condition
could be found in the database to provide
a more accurate prediction of future travel
times. On the other hand, the MAPEs for
Link C and D are higher than that of Link
A and B. It is because the traffic

Signals on Link C and D cause extra
delays (i.e., deceleration of vehicles and
waiting at the stop lines) that could not be
reflected by the collected speeds on that
link. Thus, the speed interval pattern on
that link may not truly reflect their actual
traffic conditions and causes an increase
in MAPE of the travel time predicted by
SIPM algorithm.

Fig. 9 shows the variation of actual
and predicted link travel times, which are
calculated from the collected and predicted
speeds for every 5 minutes, of the four links
(Link A ~ D) on Monday, 26th December
2014, 06:00 — 24:00. In Fig. 9, it could be
seen that the travel time predictions are
relatively accurate in the morning and
evening periods (i.e., 06:00 ~ 12:00 and
18:00 ~ 24:00), while most of the
discrepancies (i.e., the differences between
grey squares and black crosses) appear
between 12:00 and 18:00. It is because
during the morning and evening periods, as

a
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600 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Actual —Predicted

(d) Link D

Travel time (minutes)
8

Fig. 9 Actual and predicted link (Link A
~ D) travel times on Monday, 26th
December 2014, 06:00 ~ 24:00

the links are highly congested with the peak
period traffics, the traffic patterns (i.e., the
spatial and temporal variation of flows) and
the corresponding traffic characteristics (e.g.,
speed) are relatively stable. With such stable
traffic characteristics, highly matched speed
interval patterns could be found in the
database for accurate prediction of travel
times. On the other hand, as the travel
patterns and traffic characteristics are largely
varied during 12:00 ~ 18:00, prediction
accuracies reduce in this period. Comparing
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the prediction errors in Link A/Link B with
that in Link C/Link D, it could be seen that
the errors are much larger for the predictions
in Link C and D. It is because Link C and D
are located in the central business district
(CBD) with lots of disturbances to the traffic
(e.g., pedestrian crossings, bus stops, on-
street parking, etc). These disturbances will
cause a large variety of speeds on these links
and resulted in reduction in prediction
accuracies.

In Fig. 10, predicted travel times of
the four links (Link A ~ D), which are
predicted by the proposed SIPM algorithm,
are plotted against their corresponding
actual travel time. Based on the typical
pattern in  Bangkok, three
representative peak periods: AM peak
(09:00 ~ 09:05), inter-peak (14:00 ~ 14:05)
and PM peak (18:00 ~ 18:05) are considered
in this empirical study. In this figure, 30 sets
of data are predicted for (collected from)
each period as AM peak, inter-peak and PM
peak, and the corresponding coefficient of
determination (R?) is estimated. In this
study, a large R®> value between the
predicted and actual travel times indicates a
high forecasting accuracy of the proposed
SIPM algorithm. Considering the Rs in Fig,
10, it could be seen that links with stable
flow conditions (i.e., Link A and Link B
with R? between 0.80 and 0.86) have a
higher forecasting accuracy than links under
interrupted flow conditions (i.e., Link C and
Link D with R? between 0.64 and 0.75).
Comparing among the AM peak and PM
peak, it could be seen that the forecasting
accuracy for PM peak is, in general, slightly
lower than that for the AM peak.

travel
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Fig. 10 Performance of link (Link A ~ D,
respectively), travel time prediction by
SIPM algorithm
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As the start time of work is quite
similar (e.g., 09:00) for all travellers, the
link volumes in AM peak, which are mainly
home-based work trips, are relatively stable
and give a better forecasting accuracy. On
the other hand, as the PM travel demands
are spread out for a longer period of time
(e.g., people try to avoid the traffic by
shifting their time to go home or go to
other places first), the link volumes in PM
peak is less stable than that in the AM
peak and causes a reduction in forecasting
accuracy. For the inter-peak, as the travel
demand is mainly based on the non-
recurrent daily events (e.g., delivery of
packages by courier), the link volumes
and, thus, forecasting accuracies for this
period are substantially varied. To sum up,
the proposed SIPM algorithm gives a high
forecasting accuracy on link travel time
under stable traffic conditions that could
either be achieved by uninterrupted traffic
flow and/or congested travel conditions.

3.2 Path travel time prediction
With the testing of SIPM algorithm

in travel time prediction on single links
(Section 3.1), this section focuses on the
more practical use of the algorithm on
path travel time prediction. In this study,
four different paths, which are all formed
by a series of links, are tested: 1) Path E is
a path with free-flow condition on a multi-
lane road without weaving, on- and off-
ramp (similar to Link A); 2) Path F is a
path with free-flow condition on a local
side road connected to community areas
(similar to Link B); 3) Path G, which
contains Link C, is arterial connected to
business areas, and; 4) Path H is path in

CBD with traffic signals and U-turns
(similar to Link D). The characteristics of
these paths are shown in Table 7 and their
geographical locations are shown in Fig.
6.

Table 7 Paths for travel time prediction

Path From /To Direction” Links Distance (km)

E  Bang Khru — Bang Pli Inbound 4 19.7
F  Minburi — Watcharaphol Inbound 4 9.8
G Ratchada 4 —- Wongsawang  Outbound 6 12.0

H  BTS Nana — Udom Suk
*Inbound (outbound) refers to traffic travelling
towards (out of) the centre of Bangkok city

Outbound 5 9.4

To predict path travel times, the
proposed algorithm will first predict the
link travel time of each of the links within
the network for the next time interval
(e.g., 09:05 ~ 09:10). Then, based on the
predicted departure time of the first links
of the considered path, the speed interval
pattern that is used for travel time
prediction of the second link is generated.
For example, if the predicted departure
time of the first link is 09:11, the speed
interval pattern for travel time prediction
in the second link will be generated by
taking 09:05 ~ 09:10 as the current time
interval, ¢. The above steps will be
repeated for all links within the considered
paths and path travel times could be
calculated by summing up the predicted
travel time of all constituent links.

Fig. 11 shows the variation of actual
and predicted path travel times, which are
calculated from the collected/predicted
speeds for every 5 minutes, of the four
paths (Path E ~ H) on Monday, 26th
December 2014, 06:00 — 24:00. Owing to
the same reasons discussed for link travel
time prediction, the majority of
discrepancies between actual and predicted
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path travel times are concentrated in the
period 12:00 ~ 18:00. Similarly, Path G
and H, which are within CBD, tend to
have lower prediction accuracies due to
the frequent disturbances of traffic flows
along these paths.
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Fig. 11 Actual and predicted path (Path
E~ H) travel times on Monday, 26th
December 2014, 06:00 ~ 24:00

Comparing the prediction errors of
link and path travel time (i.e., the
difference between the actual and
predicted travel times in Fig. 9 and 11), it
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could be seen that the prediction of path
travel time is less accurate and start to
have significant errors in
morning/evening period. The main reason
for having such reductions inaccuracy
comes from accumulation of errors in link
travel time prediction for each of the links
within the path considered.

In order to have a more detailed
analysis of errors in path travel time
predictions, Table 8 shows the mean
absolute error (MAE) and MAPE of the
four paths in AM period (07:00 ~ 09:00),
Midday period (13:00 ~ 15:00) and PM
period (17:00 ~ 19:00). Comparing the
MAPE of each of the paths for different
periods, it could be seen that the AM
periods have the smallest error while the
midday periods have the highest.

Table 8 Errors of path travel time prediction

Path Period” Time MAE MAPE

AM period 16.26 1.75 10.53

E Midday 20.52 2.76 13.33
period

PM period 19.77 2.63 12.62

AM period 13.87 1.74 12.02

F Midday 14.02 2.47 16.81
period

PM period 17.06 2.45 13.63

AM period 19.96 3.18 15.88

G  Midday 23.17 5.31 23.51
period

PM period 40.62 8.00 19.35

AM period 4448 11.06 21.56

H  Midday 3448 10.51 30.91
period

PM period 53.65 16.85 29.43

*AM period: 07:00~09:00; Midday period: 13:00~15:00; PM period: 17:00~19:00

-7
MAPE = Z x100

t

As discussed in Section 3.1, the low
MAPE in AM period could be explained
by the stable flows, which comes from the
concentration of demand during the AM
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Fig. 12 Performance of path (Path E~H)
travel time prediction by SIPM algorithm

period, of the predicted path. For the PM
periods, as the demand is spread out for a
longer period of time, path flows are less
stable than the AM periods and, thus, give
a slightly higher MAPE. Lastly, the high
MAPEs in midday periods are resulted
from the unpredictable path volumes (e.g.,
business trips) at this time of the day.
Thirty sets of path travel time data
(predicted and actual) from each of the
period (AM peak, inter-peak and PM peak)
are plotted in Fig. 12 with the corresponding
R? estimated. Comparing the R?s for different
time of the day and paths, it could be seen
that performance of the proposed SIPM
algorithm in path travel time prediction is
similar to that in link travel time prediction
(Section 3.1).

4. Conclusions

In this paper, the proposed system is
an extension of the real-time travel time
estimation system in BAL-Labs. [18] and
K. Sringiwai et al. [19] to path travel time
predictions for effective route planning in
Bangkok. For predicting path travel times,
this paper has proposed an algorithm for
the matching of speed interval pattern
(i.e., SIPM algorithm), which has
included speeds (or speed intervals) that
are spatially and temporally correlated to
the current link speed, of the current
traffic conditions with those in the
historical database.
interval pattern with
mismatch value, which is determined by
the sum of absolute difference of the speed
intervals as compared to the current pattern,
is considered to be the matched traffic
condition and the speeds in the subsequent

Historical speed
the minimum
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time intervals of that time and day will be
used for travel time prediction. For cases
with multiple historical speed interval
patterns that have achieved the same
minimum mismatch value, this paper has
proposed three different methods (i.e.,
random sample, average value, and
closest speed pattern) in determining the
speed pattern used for travel time
prediction.

To demonstrate the efficiency of the
SIPM algorithm and the performance of
corresponding travel time prediction
system, empirical tests are carried out on
four different links and paths in Bangkok.
In these tests, it is found that the optimal
speed interval pattern, which gives the
minimum MAPE in link travel time
prediction, should include 3 preceding
time intervals (P) and links in the 1%
connection level (/). Apart from the
optimal speed interval pattern, these tests
also show that the proposed algorithm for
travel time predictions under
uninterrupted flow conditions (MAPE:
12% ~ 15% for links and 11% ~ 17% for
paths) are more accurate than under the
interrupted flow conditions in central
business areas (MAPE: 16% ~ 21% for
links and 16% ~ 31% for paths).

Concerning the proposed real-time
path travel time prediction algorithm, there
are four directions of future work. First, the
development of multi-threaded processing of
the proposed algorithm should be completed
to further reduce the computational time for
practical implementation in real-time route
planning system in Bangkok. Second, an
adaptive traffic data fusion algorithm should
be developed to make use of other potential

sources of data (e.g., cell phone probes, GPS,
traffic flow data, etc) for improving the
accuracy of travel time prediction. Third,
location-dependent speed interval pattern
should be considered to improve the
performance of travel time prediction on
arterials and/or in congested areas. Lastly,
this study aimed to capture parameters
under uninterrupted flow conditions. The
main effective variable is speed. The
study of other variables and methods
would make the prediction more accurate
and would be included in the future study.
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