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Abstract 

Accurate, efficient and robust travel time prediction is crucial to the development 
of advanced traveler information systems for providing route guidance information. To 
achieve this goal, this paper proposed a travel time prediction through the matching of 
the current speed interval pattern to that in a historical database. Speed intervals, instead 
of speeds, are considered in this study to simplify the structure of matching patterns for 
improving matching efficiency. In this study, speed interval patterns are defined by sets 
of link speed intervals that are either spatially or temporarily correlated with the link 
considered. With the speed interval patterns, the algorithm is developed for searching the 
historical pattern(s) that is/are the closest match with the current one. Then, link speeds 
from these matched patterns are combined for travel time prediction. By using the GPS 
probe taxi data, which the collected speeds are aggregated in every 5 minutes, the 
proposed travel time prediction system is implemented in Bangkok. With the speed data 
from probe taxi, this paper has chosen four links/paths with different geometric and flow 
characteristics for testing the performance of the proposed travel time prediction system. 
From these tests, it is found that the optimal speed interval pattern should include: 1) 
speeds of the studied link within three preceding time intervals and; 2) speeds of links in 
the first connection level of the studied link. Also, while the computational time is capable 
of real-time application, the proposed prediction algorithm is more accurate under 
uninterrupted flow conditions. 
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1. Introduction 
In the Development of the Intelligent 

Transportation System (ITS), Advanced 
Travelers Information System (ATIS) plays 
an important role in providing real-time 
traffic conditions and/or traffic 
management measures to travelers for 
avoiding unnecessary delay and ensuring the 
reliability of road network. Among all the 
information provided by ATIS, travel time 
is one of the key information used by the 
route guidance system to evaluate real-time 
shortest paths that help in the trip planning 
of drivers. As route guidance system is 
usually used before the trip is made, an 
accurate prediction of future link/path travel 
times is necessary to ensure good 
performance of the system.  Travel time 
prediction is a challenging problem as the 
prediction will be affected by i) complex 
and non-linear interactions of hetero- 
geneous groups of vehicles/drivers; ii) 
infrastructures and/or traffic management 
schemes that interrupt the traffic flows, and; 
iii) availability and types of information for 
travel time prediction. Owing to the 
complexity of the travel time prediction 
problem, various methods/models have 
been proposed in the literature and could be 
classified into two categories: parametric 
and non-parametric prediction models (H.-
E. Lin et al.). [1] 

Table 1 summarized some of the travel 
time prediction studies, with the 
corresponding data sources and prediction 
method, in the literature.  

N. K. Chowdhury et al. [2] have 
proposed a modified moving average 
approach, which is another category of time 
series model, for travel time prediction. By 

eliminating unwanted fluctuations in the 
data set, the model proposed in N. K. 
Chowdhury et al. [2] outperforms the 
conventional moving average methods. 
Owing to its nature, the time series model 
could only provide an accurate prediction for 
a short forecast period (i.e., 5 ~ 10 minutes) 
or under stable traffic conditions. Apart from 
the parametric models, W.H.K. Lam et al. 
[3] have adopted a traffic flow simulator 
(TFS), in which the original-destination 
demands are calibrated based on the 
historical link counts and prior demands by 
an upper-level model, for travel time 
predictions. 
 
Table 1 Comparison of required data and 
prediction methods for travel time 
prediction 

 

Studies Application Data Prediction 
Method Properties 

N.K.Chowhhury 
et al. (2009) 

[2] 

Short-term 
prediction GPS Moving average Specific route 

W.H.K.Lam et 
al. 

(2005)     [3] 

Short-term 
prediction AVI Traffic simulation Urban road 

network 

S.I.Bajwa et al. 
(2004)  [4] 

Short-term 
prediction 

Point 
sensor 

Pattern matching 
By Genetic 
Algorithms 

Expressway 

T. Kim et al. 
(2005) [5] 

Short-term 
prediction 

Point 
sensor 

Traffic pattern 
recognition Highway 

Z.-P. Li et al. 
(2008) [6] 

Short-term 
prediction AVI Exponential 

Smoothing 
Urban road 

network 
W.-H. Lee et al. 

(2009) [7] 
Traffic 

Classification GPS Fuzzy C-mean Specific route 

Y. Zhang and 
Y. Liu (2009) 

[8] 

Traffic state 
prediction 

Point 
sensor 

Non-linear least 
square Freeway 

A. Khosravi et 
al. (2011) [9] 

Accuracy 
interval GPS Bayesian updated 

Neural network Specific route 

A. Simroth and 
H. Zähle  (2011)

[10] 

Long-term 
prediction GPS 

Nonparam etric 
Distribution-free 
Regression model 

Nationwide 
Road network 

W. Qiao et al. 
(2013) 

[11] 

Short-term 
prediction 

Blueto
oth 
data 

- Historical 
average 

- Auto regressive 
integreated moving 

average 
- Kalman filter 

- K-nearest 
neighbors 

Freeway 

Y. Zou et al. 
(2014)   [12] 

Short-term 
prediction 

Point 
sensor 

Space-time 
diurnal Freeway 

H. Jiang et al. 
(2016) 
[13] 

Short-term 
prediction 

Point 
sensor 

- Neual Network 
- Multilinear 
Regression 

- Statistical  Model 

Highway 

Our 
Proposed 
method 

Short/ medium 
Term prediction GPS Pattern matching Urban road 

network 
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For many cases in actual 
implementation, the relationships between 
travel time and traffic conditions are too 
complicated to be represented by any type 
of model. Thus, non-parametric models 
are becoming more attractive, especially 
for the application in a large and complex 
urban road network. In the literature, non-
parametric travel time prediction models 
could be categorized into k-nearest 
neighbor (k-NN) algorithm (T. Kim et al. 
[5], W.H.K. Lam et al. [14]), expert 
system (W.-H. Lee et al. [7]) and artificial 
neural network (J.W.C. Van Lint et al. 
[15], A. Khosravi et al. [9]). T. Kim et al. 
[5]) developed pattern recognition 
algorithm, which based on link volumes in 
current and preceding time intervals, for 
short-term link volume/travel time 
prediction of a section of expressway in 
Washington DC. compare to the other k-NN 
approaches that use only current link flows, 
pattern recognition algorithm proposed in T. 
Kim et al. [5] gives a smaller prediction error 
in different neighborhood sizes. Apart from 
the prediction of traffic conditions, W.H.K. 
Lam et al [14] put a step forward in adopting 
the k-NN-based travel time prediction in 
incident detection. In their study, a modified 
k-NN approach, which depends on the 
estimated travel times and the 
corresponding temporal variance-
covariance relationships, is adopted in 
travel time prediction. By comparing the 
predicted travel times and the 
corresponding estimated travel times from 
automatic vehicle identification (AVI) data, 
the incident could be detected if the 
difference exceeds the certain threshold 
value. In addition to the data mining 

approaches, expert systems improve the 
accuracy of predictions by the introduction 
of prior-knowledge rules. W.-H. Lee et al. 
[7] have proposed an expert system for 
travel time prediction in Taipei urban road 
network. In their study, travel times are 
predicted based on a weighted sum of the 
current (based on current speeds and 
flows) and historical (based on traffic 
patterns in the historical database) travel 
time predictions. Rules, which are 
responsive to real-time events, are 
introduced by the expert of the test area 
for the automatic determination of 
weights. W.-H. Lee et al. [7] show that 
such an expert system in travel time 
prediction could achieve a root mean 
square error (RMSE) as low as 11%. J.W.C. 
Van Lint et al. [15], on the other hand, has 
adopted a state-space neural network 
(SSNN) to ensure the accuracy and 
robustness of travel time predictions in the 
presence of missing data. In their study, 
missing data (e.g., speeds from loop 
detectors) are estimated using simple 
imputation (i.e., exponential moving average 
and/or spatial interpolation) and the 
proposed method is tested on a simulated 
model with different patterns of missing 
data. J.W.C. Van Lint et al. [15] shows that 
even with 40% of data are missing, their 
SSNN could achieve a prediction error 
similar to the case with no missing data. 
Apart from the aforementioned models, 
there are other non-parametric models, such 
as the least square support vector machines 
discussed in Y. Zhang and Y. Liu [8] and 
the nonparametric distribution-free 
regression model introduced in A. Simroth 
and H. Zähle [10]), for travel time 
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prediction. In developing the 
aforementioned parametric and non-
parametric models, traffic data plays a 
crucial role in model calibration/training 
that affects their performance. In practices, 
traffic data are commonly collected by 
global-positioning system (GPS), automatic 
vehicle identification (AVI) system and 
point sensor (e.g., loop detectors), while 
each of these methods will have their pros 
and cons under different types of 
implementation (e.g., freeway, arterial, etc). 
Table 1, summarized some of the travel time 
prediction studies and their required types 
of data. From the reviewed studies, the 
majority of data is collected using GPS 
(Table 1). It is because GPS data, which 
could be collected by inexpensive onboard 
GPS sensors, does not require a substantial 
investment in infrastructure and 
maintenance as in the other two methods 
(point sensors and AVI). Apart from the 
inexpensiveness, GPS data could be used to 
provide the precise locations of the tracked 
vehicle (e.g., location for every 30 seconds) 
for further use in the path-related analysis. 
Despite the high implementation and 
maintenance cost, point sensors are still the 
most common data collection method in 
practices for its continuous collection of 
relatively reliable traffic data (e.g., speeds 
and flows). Also, unlike the GPS data that 
passively depend on the installed vehicles, 
point sensors could be strategically placed 
for maximizing the coverage of the 
monitored network. AVI data, as another 
data source, provides travel time between 
two points through the identification and 
match of vehicles. Unlike the GPS data, 
AVI data is not able to provide the chosen 

path of the matched vehicles and, thus, 
models/algorithms should be developed to 
estimate the path choice from the AVI data 
(T. Siripirote et al. [16]). Owing to the 
different characteristics of data sources, 
data fusion techniques have recently be 
considered for providing an accurate and 
robust travel time prediction (K.P. Hwang 
et al. [17]) 

Considering the problems of 
parametric travel time prediction models 
for long-term prediction under unstable 
traffic conditions and the computational 
efficiency of various data mining 
approaches, this study proposed a travel 
time prediction algorithm through the 
matching of link speed interval patterns, 
which consist of spatiotemporally 
correlated link speed intervals. In this 
study, speed intervals, instead of speeds, 
are considered to simplify the structure of 
matching patterns for improving matching 
efficiency. This paper is organized as 
follows. Section 2 will describe the 
variables used in this study. The 
formulation and solution algorithm of the 
proposed travel time prediction model will 
also be given in Section 2. Section 3 will 
then carried out various empirical tests 
based on the data and models introduced in 
the previous section. Lastly, the paper will 
be concluded in Section 4. 

 
2. Travel time prediction through 

speed intervals matching 
In this study, link travel times are 

predicted by the corresponding historical 
value(s) with speed interval pattern(s) that 
is/are the most similar to the current one. 
In defining speed interval patterns, this 
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study will not only consider the speed 
interval of the link under concern, instead, 
speed intervals of the surrounding links 
(spatial) and previous time intervals 
(temporal) will also be considered. In this 
section, the collection and processing of 
speed data used in this study will be 
discussed in Section 2.1. Then, Section 2.2 
will define the speed interval patterns used 
in the travel time prediction. With the speed 
interval patterns, Section 2.3 introduces a 
matching algorithm for finding the most 
similar speed interval pattern in the 
historical database. Finally, Section 2.4 will 
give the architecture of travel time 
prediction in Bangkok road network based 
on the collected data and developed 
algorithm in Section 2.1~2.3.  

 
2.1 Collection and processing of speed 

data 
In Bangkok, taxi companies will 

usually set up an IP wireless 
communication (Taxi radio) for normal 
voice-based communication with their taxi 
drivers. Even though taxis in Bangkok are 
not mandatory to equip with GPS devices, 
these established communication channels 
could also be used to transmit GPS data to 
enhance real-time taxi dispatching. In this 
research, traffic data is obtained from 
around 10,000 taxis, which are equipped 
with GPS devices, in Bangkok. The GPS 
devices will wirelessly transmit the latitude, 
longitude, altitude, traveling speed, 
heading, and timestamp of the equipped taxi 
to a designated computer server for every 45 
seconds.  

In this study, the urban and suburban 
road networks in Bangkok, which consist of 

3,000 links and cover more than 3,500 
origin-destination (O-D) pairs, are 
considered and the corresponding GPS data 
is collected. In the Bangkok network model, 
new links are usually defined wherever 
there is a change of road geometry (e.g., 
increase in several lanes), intersection with 
other roads (e.g., signalized junction, 
priority junction), and land use pattern (e.g. 
exit of a parking lot). The increasing detail 
of the modeled network (e.g., number of 
parking lot exits included) will substantially 
decrease the length of each link and, thus, 
cause the same network to have a larger 
number of links. As the number of links 
increases, there will be a higher chance that 
the real-time GPS data, especially the speed 
data, from probe taxi is not available for a 
certain link at a certain time period. With 
insufficient, or missing, link speed data at 
different traffic conditions, it is not possible 
to provide a reliable travel time prediction 
for the Bangkok network due to its highly 
varied traffic conditions. On the other hand, 
if unreasonably long links are defined, the 
average of collected speeds could not 
precisely represent the actual speed profile 
of the links. With such inaccurate average 
speeds for long links, it is not possible to 
achieve a reliable prediction of travel time. 
Thus, in this study, data availability and data 
accuracy are traded off in choosing the 
length of the links in the network. Apart 
from longitude and latitude, the altitude 
from GPS data will also be used in this 
study to separate speeds collected from 
links that are vertically overlapped. With 
this consideration, traffic links in this study 
will be categorized into three types: road (at 
grade), elevated (flyover), and toll road. 
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These link types and the other link 
characteristics (e.g., location of U-turn and 
road junction) will be stored as the local 
parameters of traffic link in the database. 

 
Table 2 Samples of GPS data obtained 

from probe taxi 

 
 

For each set of GPS data collected 
from probe taxis, which some samples are 
shown in Table 2, the map-matching 
algorithm is adopted to check whether the 
GPS device (i.e. taxi) is located on road 
segments and screen out those data that 
are not on the road segment (e.g., in the 
parking lot). The location information will 
also be used to locate the collected GPS 
data into different links for determining 
the average speeds that are used for travel 
time prediction. Apart from the location 
information, the collected vehicle speeds 
will also be used in this study and will be 
considered as the spot speeds of the vehicles 
at the corresponding location (link) and 
time. Before these spot speeds could be 
used to estimate the historical link speeds for 
travel time prediction, filtering procedure 
will be adopted to filter out outlying and/or 
erroneous speed data. For instance, if a 
GPS device transmitted back a zero 
vehicle speed while most of the other 
speed data on the same link and in the time 
period are greater than 80 kph, this speed 
data will be considered as erroneous and 
filtered out.  

After filtering out the outlying and 
erroneous spot speeds, a stratified 

sampling technique is applied to the 
remaining spot speeds for sampling a 
balanced number of spot speeds from each 
speed interval within each time period. 
Such stratified sampling of spot speeds is 
crucial for this study as the spot speeds 
within Bangkok network usually have a 
large variation (even they are from the 
same link and in the same time period) due 
to the frequent interruptions of traffic 
flows. For example, considering a link 
with a signalized intersection located at its 
downstream end, vehicles will queue up in 
front of the stop line of the intersection (i.e. 
at the downstream end of the link) during 
the red times. As the queue is building up, 
the number of vehicles (probed taxis) 
within the queues will increase and become 
larger than those that have not joined the 
queue. As a result, there will be a large 
proportion of spot speeds collected from 
the probed taxis that are in the queue as 
compared to those that are not. Thus, if a 
simple average of spot speeds is used to 
define the speed of that link, this estimated 
speed will be underestimated. To overcome 
such an issue, the stratified sampling 
technique divides the spot speeds into 
several speed intervals and randomly 
chooses the same number of data from 
each interval for estimating the average 
speed of the link (Table 3). 

 
Table 3 Probe vehicle data stratified by 

speed intervals 
Speed 

interval 
Number of 
spot speed 

data 

Randomly 
chosen spot 

speeds  
0 – 12 12 1, 6, 11 
13 – 25 3 15, 22, 25 
26 – 38 6 28, 30, 33 

 

GPS_ID Latitude Longitude Timestamp Speed (km/hr) 
1311042 13.581726 100.867721 2011-12-15 10:00:13 84 
1310992 13.581680 100.867248 2011-12-15 10:00:14 114 
1311751 13.581893 100.867095 2011-12-15 10:00:22 85 
65679 13.582565 100.861358 2011-12-15 10:00:26 77 
1311401 13.583236 100.860351 2011-12-15 10:01:07 93 
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The average link speed will be 
estimated for every 5 minutes and classified 
by different day of the week for further 
uses in travel time prediction. 

 
2.2 Definition of speed interval pattern 

In this study, a traffic pattern, which 
is used to match the current traffic 
condition with the historical database for 
travel time prediction, is defined by speed 
interval pattern. For each of the spot speeds 
and historical average speeds, the 
corresponding speed interval is defined as: 
 

, , /k k
ab t ab tv v s =    (1) 

 
where ,

k
ab tv  is the speed interval of link ab 

(or the link from a to b) in time interval t 
and day k, ,

k
ab tv  is the spot speed 

(historical average speed) of link ab in 
time interval t, s is the width of speed 
interval, and x denotes the largest integer 
that is less than x. For example, if the spot 
speed of link ab ( ,

k
ab tv ) equals to 21 kph 

and the width of speed interval (s) is taken 
as 5 kph, the speed interval ( ,

k
ab tv ) for this 

spot speed will be equal to 4. In this study, 
for each of the time interval (say 5 minutes 
duration), the speed interval of the 
average speed, which is determined by the 
stratified sampling technique described in 
the previous section, is determined for 
each of the links (Fig 1a). 

In this study, the speed interval 
pattern is defined by the speed intervals of a 
set of links that are spatially and/or 
temporally correlated to the link under 
concern (i.e., the link for travel time 

prediction). In defining the spatial 
correlation between links, this study has 
adopted the idea of connection level. Fig.1b 
shows the connection level of the 
surrounding links to the link ab. In this 
figure, link bc, bd, and be are the links 
with connection level (i) equals to 1 as 
they are directly connected to node b, 
which is the end node of the link ab. Other 
links in Fig. 1b (e.g., cg, cf, etc) have the 
connection level equals to 2 as they are 
connected to the end nodes of links in the 
previous connection level (i.e., i = 1). 
Under such a definition, the connection 
level of all links within the network 
concerning link ab could be established. 
Compare to the spatial correlation, the 
definition of temporal correlation of link 
speed intervals is simpler. In this study, 
link speed intervals are assumed to be 
temporally correlated in time interval.  

 
Fig. 1 Speed Intervals and Spatial Connections 
 

 
 

Fig. 2 Temporally correlated speed intervals 
for link ab at day k and time interval t 
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Fig. 2 shows the examples of 
temporally correlated speed intervals on 
different days and time intervals for the 
speed interval measured on link ab at 
day k and time interval t.   

In this study, the speed interval 
pattern is defined by the speed interval of 
the set of links that are spatially and/or 
temporally correlated to the link under 
concern.  

 

 
 
Fig. 3 Spatially and temporally correlated 

speed interval pattern in different days 
 

Fig. 3 shows the example of speed 
interval pattern on day k-1 and k-2 for 
speed interval measured on link ab at 
day k and time interval t. In the speed 
interval patterns given in Fig. 3, it is 
assumed that: 1) speed interval of links 
with a connection-level equals to 1 (i.e. i = 
1) is spatially correlated to the speed 
interval of link ab and, 2) the current speed 
intervals are temporally correlated to the 3 
preceding time intervals (i.e. t-1, t-2 and t-
3). 

 
2.3 Speed interval pattern matching 

(SIPM) for travel time prediction 
Based on the definition of speed 

interval pattern (Section 2.2), speed interval 
pattern for the current time interval is 
established and the historical database, 
which is built based on the data 

collection/processing method introduced in 
section 2.1, is searched for finding the most 
similar pattern (i.e., matching of speed 
interval pattern). Due to the large number of 
links in the Bangkok road network, an 
efficient and effective pattern matching 
algorithm should be proposed to ensure a 
fast matching process for real-time 
applications. In this study, the similarity of 
two-speed interval pattern (e.g., the current 
and historical speed interval pattern) is 
measured by a mismatch value, k

lm , 
defined as: 

 

', ',
1 1 '

,
l
i

P I
k k n
l l t p l t p

p i l L

m v v k K− −
= = ∈

= − ∀ ∈    (2) 

where k
lm  is the mismatch of speed interval 

pattern derived from link l at current 
time t and day n as compare to the 
corresponding speed interval on day, P is the 
number of preceding time intervals that are 
considered to have temporal correlation with 
the current time interval, I is the connection 
levels that are considered to have spatial 
correlation, l

iL  is the set of links with 
connection-level i concerning link l, and K is 
the set of days in the database to be compared 
for determining the mismatch value. 
Typically, two different sets of K will be 
considered: 1) set of specific days on a week, 

{ 7, 14, 21,..., }K n n n n K= − − − −  , and 
2) set of unclassified days,  

{ 1, 2, 3,..., }K n n n n K= − − − −  . Based 
on the above definition of mismatch value 
( k

lm ), the SIPM for travel time prediction of 
link l could be formulated as following 
constrained minimization problem: 



RMUTP Research Journal, Vol. 15, No. 1, January-June 2021                  201 
 

 

( ) k k
l l l

k K
Minimize Z m

∈

=δ
δ δ               (3a) 

 
Subject to     1k

l
k K∈

=δ                              (3b) 

where 1k
l =δ  if speed interval pattern of 

day k is chosen as the match of current 
pattern (i.e. the corresponding speed 
interval pattern of day k is used to evaluate 
the mismatch value, k

lm , through 
equation (2)), otherwise equal to zero. 
Minimizing equation (3a) guarantees that 
the chosen speed interval pattern, which is 
determined by the variable, k

lδ , gives the 
smallest mismatch value (i.e. most similar 
pattern). Constraint (3b) is to ensure that 
only one historical speed interval pattern 
is used to match with the current one. The 
above minimization problem will be set 
up and solved for all links within the 
transportation network that need a speed 
interval matching for travel time 
prediction. Note that the formulation of 
speed interval matching problem 
(equation (3)) is general optimization 
framework of which additional constraint 
could be easily added to refine the feasible 
solution set. For instance, an additional 
constraint,  

',1 3 , ' , [1,2,..., ], [1,2,..., ]k l
l t p iv k K l L p P i I−≤ ≤ ∀ ∈ ∈ ∈ ∈

, could be added to limit the number of 
speed intervals, or the search space, in the 
database for speeding up the searching 
process.  

As the mismatch value k
lm  is 

defined by speed intervals, which are 
integer variables, the above minimization 
problem (equation (3)) likely has multiple 

solutions (i.e., multiple days in the history 
with the speed interval patterns that give 
the same mismatch value as compared 
with the current pattern). 

Thus, to handle cases with multiple 
matches, the procedure in Fig. 4 is 
adopted to match/estimate the speed 
pattern that is used for travel time 
prediction.  

 
Fig. 4 Speed interval pattern search for 
travel time prediction 
 

For the iterative loop on the left-
hand side of Fig. 4, the algorithm will 
compute the mismatch value ( k

lm ) of link 
l for each day k∈K in a reverse 
chronological order (i.e., starting from the 
most recent day and then evaluate back in 
time). Within these iterative steps, the 
procedure will terminate whenever a 
speed interval pattern in the historical 
database ( *k k= ) is completely matched 

with the current pattern (i.e., 
*

0k
lm = ). 

Then, speeds on that day will be taken as 
the speed pattern used in travel time 
prediction ( pred

lv ), which is defined as:  
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where pt  is the number of future time 
intervals that travel time prediction is 
required. If the speed interval pattern is 
not a complete match with the current 
pattern (i.e., 

*

0k
lm ≠ ), the estimated 

mismatch value will be included in a set 
Ml and the mismatch value of next day (or 
k) will be calculated.  

After the mismatch value of all days 
in the set, K is evaluated and none of these 
days has a speed interval pattern that is 
completely matched with the current 
pattern, the procedure in the right part of 
Fig. 4 will carry out to estimate the speed 
pattern used for travel time prediction 
( pred

lv ). M0 defines a set that contains the 
smallest element(s) of Ml, which is the set 
of mismatch values for all days within K. 
If the size of M0 (i.e., |M0|) is equal to 1, 
which indicates that there is only one 
solution for the matching problem (3), the 
speeds of that day (k0), which is  

( )0 0 0 0
, 1 , 2 ,, ,......, p

Tk k k k
l l t l t l t t

v v v+ + +
=v , 

will be taken as the speed pattern used in 
travel time prediction ( pred

lv ).  The size of 
M0 is larger than unity, which indicates 
that there exists multiple solutions for the 
matching problem (3), pred

lv  will be 
estimated by three different methods: 
random sample, average value, and 
closest speed pattern. For random sample, 
a day ( 0

rndk ) is randomly chosen from the 

set K0, which is the set of days within K 
with minimum mismatch values, for 
providing the speeds  

( )0 0 0 0
, 1 , 2 ,, ,......,

rnd rnd rnd rnd

p

T
k k k k
l l t l t l t t

v v v+ + +
=v  

 used in travel time prediction. For 
average value, each element of pred

lv  will 
be taken as the average of the 
corresponding element of all the speed 
patterns within K0 (i.e.

0

, ' , ' , '
0

1 , ' 1,pred avg i p
l t l t l t

i K
v v v t t t t

M ∈

 = = ∀ ∈ + +  ). 

For closest speed pattern, the day ( min
0k ) is 

chosen such that the speed pattern, not 
speed interval pattern, is the most similar 
(or the closest) to the current speed pattern 
(i.e., min

0 ', ',
1 1 '

arg min
l
i

P I
k n
l t p l t p

k K p i l L

k v v− −
∈ = = ∈

= − ).  

Then the speeds on that day (i.e., 

( )min min min min
0 0 0 0

, 1 , 2 ,, ,......, p

T
k k k k
l l t l t l t t

v v v+ + +
=v ), will be 

used for travel time prediction. With the 
speed vector, pred

lv , estimated by various 
methods in this procedure, the travel time 
for link l in the future time intervals (i.e., 

1t + , 2t + , …, etc) could be predicted by 
dividing the link length with the 
corresponding speed in pred

lv .  
 

2.4 Architecture for travel time 
prediction system in Bangkok 
In this study, as the travel time 

prediction system will be implemented to 
the large-scale Bangkok network that 
consists of 3,000 links, the feasibility of 
real-time application will not only rely on 
the efficiency of prediction algorithm 
(Section 2.3) but also depend on the 

(4) 
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efficient flow of data between all related 
large-scale databases.  

 

 
 

Fig. 5 Architecture for travel time prediction 
system in Bangkok 

 
Fig. 5 shows the architecture of the 

real-time travel time prediction system for 
the implementation in Bangkok. In this 
study, data collected from GPS, AVI and 
various point sensors (e.g., Autoscope, 
loop detector, microwave sensors) are 
used to provide the necessary link travel 
time and/or link speed data (Fig. 5). 
Before these data could be used for travel 
time prediction, they are filtered by using 
the filtering procedure described in 
Section 2.1 to provide link speeds (link 
travel times) for different time intervals. 
Based on the transportation network 
extracted from the map, the link speeds 
(link travel times) from different data 
sources are combined to provide the 
network-wide speed pattern for each time 
interval and day. These filtering and 
combining processes will be carried out in 
real-time and the created speed patterns 
will then be stored in the database as 
historical speed patterns for travel time 

prediction. To carry out travel time 
prediction, speed patterns of the current 
and preceding time intervals are taken 
from the database for forming the speed 
interval patterns as described in Section 
2.2. With the speed interval patterns, 
pattern search is carried out on the chosen 
set of speed interval patterns in the 
database for travel time prediction 
(Section 2.3).  

 
3. Empirical studies 

The proposed SIPM algorithm and 
the corresponding system architecture are 
implemented in the Bangkok road 
network for travel time prediction based 
on the collected/estimated speed data. In 
this section, the performance of the 
proposed model is evaluated in link travel 
time prediction (Section 3.1) and path 
travel time prediction (Section 3.2). 

 
3.1 Link travel time prediction 

To test the performance of the 
proposed model in the prediction of link 
travel time, four different types of links 
are considered: 1) link with free-flow 
condition on a multi-lane road without 
weaving, on- and off-ramp (Link A); 2) 
link with free-flow condition on a local 
side road connected to community areas 
(Link B); 3) main road connected to 
business areas with traffic signals (Link 
C), and; 4) link in central business district 
with traffic signals and U-turns (Link D). 
The characteristics of these links are 
shown in Table 4 and their corresponding 
geographical locations are shown in Fig. 
6.  
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Table 4 Links for travel time prediction 
 

Link From /To Direction* Distance 
(km) 

A Bang Khun 
Thian – 
Bang Khru 

Inbound 5.7 

B Bangkok 
University 
Statium – 
Tollway 
Rangsit 

Inbound 2.9 

C MRT 
Ratchada – 
The Emerald 
Hotel 

Inbound 2.6 

D Pratumnam 
– 
Ratchatawee 

Outbound 1.1 

*Inbound (outbound) refers to traffic travelling 
towards (out of) the centre of Bangkok city 
 

 
   

Fig. 6 Links and paths adopted in travel 
time prediction 

   
The Road network in Bangkok is 

relatively complex as the upstream and 
downstream ends of links may connect to 
various types of roads, for example, 
elevated roads, toll-way ramps, and 
community streets. Fig. 7 shows the set of 

links that are correlated to Pratunam – 
Ratchatawee link (Link D) at connection 
level i = 1. Among these correlated links, 
which the traffic flow directions are 
marked by the arrow in Fig. 7, 
Link ef represents the flyover at the 
intersection of Ram Inthra Road and Ramintra-
At narong Expressway (Intersection a).  

 

 
 
Fig. 7 Spatially correlated links of Link 

D (Connection level i = 1) 
 

To demonstrate the variation of 
speed interval pattern over time, the speed 
interval pattern (s = 5 kph, I = 1, P = 1) of 
Link D during time interval 09:20 ~ 09:25 
is compared with the corresponding speed 
interval patterns in the past 52 weeks and 
the mismatch values are evaluated (Fig. 
8).  

 

 
 
Fig. 8 Variation of mismatch values for 

the speed interval pattern of Link D 
during 09:20 ~ 09:25 
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In Fig. 8, while the majority of the 
mismatch values are between 30 and 50, 
the minimum mismatch value (i.e., 20) is 
found when the speed interval pattern of 
21 weeks ago is considered. This indicates 
that traffic pattern on that day (21 weeks 
ago) is the most similar to the current 
pattern and, thus, could potentially be 
used in travel time prediction. 
 
Table 5 Testing of pattern search parameters 

for travel time prediction on Link D 
 
 

 

 

 
 
Table 5 shows the impact of different 

pattern search parameters (P, I and K ) on 
the performance of travel time prediction 
on Link D. In this table, the mean absolute 
percentage error (MAPE) is estimated by 
comparing the predicted and observed 
travel times in time interval 09:00 ~ 09:05 
on 10 different Monday mornings. The 
algorithm was developed in Java and 
executed on a Linux operating system 
with 3.2 GHz quad-core processor. The 
CPU time in Table 5 records the required 
time (in seconds) for carrying out the 
proposed algorithm in finding the 
predicted travel time. Comparing Set 1 
and 2 in Table 5, it could be seen that the 
MAPE decreases as the number of 

temporally correlated time intervals (P) is 
increased from 1 to 3. Such a decrease 
suggests that the speed interval patterns of 
Link D are temporally correlated with the 
preceding 15 minutes (3-time intervals). 
Thus, setting P = 3 could better describe 
(i.e., more information) the current traffic 
condition for finding a closer (more 
similar) pattern in the historical database 
and, thus, resulted in a reduction in 
MAPE. For case P = 5 (i.e., Set 3), despite 
more preceding time intervals are used in 
forming the speed interval patterns, the 
MAPE is larger than that of the case P = 
3. The reason for having such an increase 
in MAPE comes from the low correlation 
of the speed intervals in the two additional 
time intervals (i.e., t-4 and t-5) with the 
current one. Thus, including these two-
time intervals in the speed interval pattern 
may result in an incorrect match that gives 
an inaccurate prediction of travel time. 
Comparing the CPU time of Set 1, 2 and 
3, it could be seen that CPU time increases 
as the speed interval pattern are becoming 
more complex (i.e., a more preceding time 
interval is considered).  

Considering the MAPE of Set 2, 4 
and 5, it could be seen that as the search 
space increases (i.e., K increases), 
prediction error reduces and CPU time 
increases. It is because, as the search 
space increases, the number of historical 
speed interval patterns will increase and, 
thus, there will be a higher chance to have 
a historical pattern that is similar to the 
current pattern (i.e., small or zero 
mismatch value) for improving the 
accuracy of travel time prediction (i.e., 
reduction in MAPE). Considering Set 5 

Set 
P  

(No. of time 
intervals) 

K  
(No. of day) 

I              
(Correlation 

level) 
MAPE 

(%) 
CPU time 
(seconds) 

 1 3 5 12 24 48 1 2   

1         21.71 20.3 

2         20.06 22.4 

3         22.18 25.7 

4         19.26 31.4 

5         17.13 41.3 

6         17.40 56.4 
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and 6 in Table 5, despite the increase in 
computation time, the increase in the 
spatial connection level (i.e., I) could not 
improve the accuracy of travel time 
prediction on Link D (i.e., MAPE 
increases as I is increased from 1 to 2). 
Similar to the explanation for the impact 
of P, such the increase in MAPE could be 
explained by the non-correlation of speed 
intervals between the second-level links 
( 2

DL ) and Link D.  
Sum up, the proposed algorithm 

gives the best prediction of travel time for 
Link D when P = 3, I = 1 and 48K = . 
Thus, this set of searching parameters will 
be adopted in the remaining empirical 
studies of this paper. In this initial 
experiment, apart from the fact that 0M  
is usually very small (mostly equal to 1), 
it is also found that speed interval patterns 
that give the minimum mismatch value 
(i.e., 0

k
lm M∈ ) will have similar accuracy 

on the travel time prediction. Thus, unless 
otherwise stated, the speed used for travel 
time prediction ( , '

pred
l tv ) will be taken as the 

average of speed patterns with minimum 
mismatch value (i.e., , ' , '

pred avg
l t l tv v= ) for 

remaining empirical studies. With the 
above set up, the proposed SIPM 
algorithm (Section 2.3) is adopted to 
predict travel times of the 4 links (Link A, 
B, C, and D) during 09:05 ~ 09:30 (5 
intervals) on 10 different Monday mornings. 
Note that the travel time predictions are 
made during the time interval 09:00 ~ 09:05.  

Table 6 shows the MAPE of the 
proposed SIPM algorithm and 3-interval 
moving average of speed (MA) for travel 

time prediction of Link A ~ D during 
09:05 ~ 09:30. In Table 6, it could be seen 
that the performance of MA in travel time 
prediction decrease (i.e., MAPE increase) 
as the predicted time interval increases. It 
is because MA approach is directly 
depended on the speeds of the preceding 
time intervals for travel time predictions. 
 
Table 6 Errors (MAPE) of link travel time  

    predictions for 5 future time intervals  
    (09:05 ~ 09:30) 

 

 
*MA = moving average of speed 

 

Thus, error in the first few future time 
intervals (e.g., 09:05 ~ 09:10 in this test) 
will propagate to the subsequent 
predictions and cause a substantial 
increase in MAPE. For the SIPM 
algorithm, the MAPEs are in general 
smaller than that for the MA approach and 
they are not necessarily increased with the 
number of predicted future time intervals 
(Table 6). It is because in SIPM 
algorithm, speeds from preceding time 
intervals are only used in searching the 
historical database but not directly be used 
in predicting speeds and travel times. 
Thus, error in the first few predicted future 
time intervals will not directly propagate 
to the subsequent intervals to cause an 
increase in MAPE. Also, as the SIPM 
algorithm will independently search the 
historical database for travel time prediction 
in each of the future time intervals, it is 
possible to have a decrease in MAPE even 
when the number of future time interval 
increases (e.g., Link A 1st and 2nd future 
time interval). 

Link 
SIPM MA 

Future time interval Future time interval 
1 2 3 4 5 1 2 3 4 5 

A 13.21 12.10 13.85 14.61 14.20 12.85 14.55 16.03 21.20 22.45 
B 14.50 15.22 13.92 14.68 15.32 12.90 12.17 15.46 19.25 21.10 
C 16.18 16.39 16.45 17.46 15.84 15.41 20.94 23.88 25.42 29.57 
D 18.20 19.23 18.69 21.40 20.22 22.45 26.40 32.10 30.56 34.20 

* 
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Comparing the MAPEs of SIPM 
algorithm for travel time predictions of 
Link A to Link D, it could be seen that 
Link A has the smallest MAPEs among 
the four predicted links. It is because, as 
traffic on Link A is not interrupted (i.e., no 
weaving sections, on-ramp and off-ramp), 
the speeds along Link A will relatively 
stable and could be closely represented by 
the speeds collected at certain location on 
Link A. Thus, speed interval patterns that 
are similar to the current traffic condition 
could be found in the database to provide 
a more accurate prediction of future travel 
times. On the other hand, the MAPEs for 
Link C and D are higher than that of Link 
A and B. It is because the traffic  

Signals on Link C and D cause extra 
delays (i.e., deceleration of vehicles and 
waiting at the stop lines) that could not be 
reflected by the collected speeds on that 
link. Thus, the speed interval pattern on 
that link may not truly reflect their actual 
traffic conditions and causes an increase 
in MAPE of the travel time predicted by 
SIPM algorithm.  

Fig. 9 shows the variation of actual 
and predicted link travel times, which are 
calculated from the collected and predicted 
speeds for every 5 minutes, of the four links 
(Link A ~ D) on Monday, 26th December 
2014, 06:00 – 24:00. In Fig. 9, it could be 
seen that the travel time predictions are 
relatively accurate in the morning and 
evening periods (i.e., 06:00 ~ 12:00 and 
18:00 ~ 24:00), while most of the 
discrepancies (i.e., the differences between 
grey squares and black crosses) appear 
between 12:00 and 18:00. It is because 
during the morning and evening periods, as  

 

 

 
 
Fig. 9 Actual and predicted link (Link A 

~ D) travel times on Monday, 26th 
December 2014, 06:00 ~ 24:00 

 
the links are highly congested with the peak 
period traffics, the traffic patterns (i.e., the 
spatial and temporal variation of flows) and 
the corresponding traffic characteristics (e.g., 
speed) are relatively stable. With such stable 
traffic characteristics, highly matched speed 
interval patterns could be found in the 
database for accurate prediction of travel 
times. On the other hand, as the travel 
patterns and traffic characteristics are largely 
varied during 12:00 ~ 18:00, prediction 
accuracies reduce in this period. Comparing 

Actual 

Actual 

Actual 

Predicted 

Predicted 

Predicted 

Actual 
Predicted 
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the prediction errors in Link A/Link B with 
that in Link C/Link D, it could be seen that 
the errors are much larger for the predictions 
in Link C and D. It is because Link C and D 
are located in the central business district 
(CBD) with lots of disturbances to the traffic 
(e.g., pedestrian crossings, bus stops, on-
street parking, etc). These disturbances will 
cause a large variety of speeds on these links 
and resulted in reduction in prediction 
accuracies. 

In Fig. 10, predicted travel times of 
the four links (Link A ~ D), which are 
predicted by the proposed SIPM algorithm, 
are plotted against their corresponding 
actual travel time. Based on the typical 
travel pattern in Bangkok, three 
representative peak periods: AM peak 
(09:00 ~ 09:05), inter-peak (14:00 ~ 14:05) 
and PM peak (18:00 ~ 18:05) are considered 
in this empirical study. In this figure, 30 sets 
of data are predicted for (collected from) 
each period as AM peak, inter-peak and PM 
peak, and the corresponding coefficient of 
determination (R2) is estimated. In this 
study, a large R2 value between the 
predicted and actual travel times indicates a 
high forecasting accuracy of the proposed 
SIPM algorithm. Considering the R2s in Fig. 
10, it could be seen that links with stable 
flow conditions (i.e., Link A and Link B 
with R2 between 0.80 and 0.86) have a 
higher forecasting accuracy than links under 
interrupted flow conditions (i.e., Link C and 
Link D with R2 between 0.64 and 0.75). 
Comparing among the AM peak and PM 
peak, it could be seen that the forecasting 
accuracy for PM peak is, in general, slightly 
lower than that for the AM peak.  

 

 

 

 
Fig. 10 Performance of link (Link A ~ D, 

respectively), travel time prediction by 
SIPM algorithm 
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 As the start time of work is quite 
similar (e.g., 09:00) for all travellers, the 
link volumes in AM peak, which are mainly 
home-based work trips, are relatively stable 
and give a better forecasting accuracy. On 
the other hand, as the PM travel demands 
are spread out for a longer period of time 
(e.g., people try to avoid the traffic by 
shifting their time to go home or go to 
other places first), the link volumes in PM 
peak is less stable than that in the AM 
peak and causes a reduction in forecasting 
accuracy. For the inter-peak, as the travel 
demand is mainly based on the non-
recurrent daily events (e.g., delivery of 
packages by courier), the link volumes 
and, thus, forecasting accuracies for this 
period are substantially varied. To sum up, 
the proposed SIPM algorithm gives a high 
forecasting accuracy on link travel time 
under stable traffic conditions that could 
either be achieved by uninterrupted traffic 
flow and/or congested travel conditions. 

 
3.2 Path travel time prediction 

With the testing of SIPM algorithm 
in travel time prediction on single links 
(Section 3.1), this section focuses on the 
more practical use of the algorithm on 
path travel time prediction. In this study, 
four different paths, which are all formed 
by a series of links, are tested: 1) Path E is 
a path with free-flow condition on a multi-
lane road without weaving, on- and off-
ramp (similar to Link A); 2) Path F is a 
path with free-flow condition on a local 
side road connected to community areas 
(similar to Link B); 3) Path G, which 
contains Link C, is arterial connected to 
business areas, and;  4) Path H is path in 

CBD with traffic signals and U-turns 
(similar to Link D). The characteristics of 
these paths are shown in Table 7 and their 
geographical locations are shown in Fig. 
6. 

 
Table 7 Paths for travel time prediction 
 

 
*Inbound (outbound) refers to traffic travelling 
towards (out of) the centre of Bangkok city 
 

To predict path travel times, the 
proposed algorithm will first predict the 
link travel time of each of the links within 
the network for the next time interval 
(e.g., 09:05 ~ 09:10). Then, based on the 
predicted departure time of the first links 
of the considered path, the speed interval 
pattern that is used for travel time 
prediction of the second link is generated. 
For example, if the predicted departure 
time of the first link is 09:11, the speed 
interval pattern for travel time prediction 
in the second link will be generated by 
taking 09:05 ~ 09:10 as the current time 
interval, t. The above steps will be 
repeated for all links within the considered 
paths and path travel times could be 
calculated by summing up the predicted 
travel time of all constituent links.  

Fig. 11 shows the variation of actual 
and predicted path travel times, which are 
calculated from the collected/predicted 
speeds for every 5 minutes, of the four 
paths (Path E ~ H) on Monday, 26th 
December 2014, 06:00 – 24:00. Owing to 
the same reasons discussed for link travel 
time prediction, the majority of 
discrepancies between actual and predicted 

Path From / To Direction* Links Distance (km) 
E Bang Khru – Bang Pli Inbound 4 19.7 
F Minburi – Watcharaphol Inbound 4 9.8 
G Ratchada 4 – Wongsawang Outbound 6 12.0 
H BTS Nana – Udom Suk Outbound 5 9.4 
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path travel times are concentrated in the 
period 12:00 ~ 18:00. Similarly, Path G 
and H, which are within CBD, tend to 
have lower prediction accuracies due to 
the frequent disturbances of traffic flows 
along these paths.  

 

 

 

 
 

Fig. 11 Actual and predicted path (Path 
E~ H) travel times on Monday, 26th 

December 2014, 06:00 ~ 24:00 
 

Comparing the prediction errors of 
link and path travel time (i.e., the 
difference between the actual and 
predicted travel times in Fig. 9 and 11), it 

could be seen that the prediction of path 
travel time is less accurate and start to 
have significant errors in 
morning/evening period. The main reason 
for having such reductions inaccuracy 
comes from accumulation of errors in link 
travel time prediction for each of the links 
within the path considered. 

In order to have a more detailed 
analysis of errors in path travel time 
predictions, Table 8 shows the mean 
absolute error (MAE) and MAPE of the 
four paths in AM period (07:00 ~ 09:00), 
Midday period (13:00 ~ 15:00) and PM 
period (17:00 ~ 19:00). Comparing the 
MAPE of each of the paths for different 
periods, it could be seen that the AM 
periods have the smallest error while the 
midday periods have the highest.  

 
Table 8 Errors of path travel time prediction 
 

Path Period* Time MAE MAPE 
 

E 
AM period 16.26 1.75 10.53 
Midday 
period 

20.52 2.76 13.33 

PM period 19.77 2.63 12.62 
 

F 
AM period 13.87 1.74 12.02 
Midday 
period 

14.02 2.47 16.81 

PM period 17.06 2.45 13.63 
 

G 
AM period 19.96 3.18 15.88 
Midday 
period 

23.17 5.31 23.51 

PM period 40.62 8.00 19.35 
 

H 
AM period 44.48 11.06 21.56 
Midday 
period 

34.48 10.51 30.91 

PM period 53.65 16.85 29.43 

 
 
As discussed in Section 3.1, the low 
MAPE in AM period could be explained 
by the stable flows, which comes from the 
concentration of demand during the AM  
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Fig. 12 Performance of path (Path E~H) 
travel time prediction by SIPM algorithm 

period, of the predicted path. For the PM 
periods, as the demand is spread out for a 
longer period of time, path flows are less 
stable than the AM periods and, thus, give 
a slightly higher MAPE. Lastly, the high 
MAPEs in midday periods are resulted 
from the unpredictable path volumes (e.g., 
business trips) at this time of the day. 
Thirty sets of path travel time data 
(predicted and actual) from each of the 
period (AM peak, inter-peak and PM peak) 
are plotted in Fig. 12 with the corresponding 
R2 estimated. Comparing the R2s for different 
time of the day and paths, it could be seen 
that performance of the proposed SIPM 
algorithm in path travel time prediction is 
similar to that in link travel time prediction 
(Section 3.1). 

 

4. Conclusions  
In this paper, the proposed system is 

an extension of the real-time travel time 
estimation system in BAL-Labs. [18] and 
K. Sringiwai et al. [19] to path travel time 
predictions for effective route planning in 
Bangkok. For predicting path travel times, 
this paper has proposed an algorithm for 
the matching of speed interval pattern 
(i.e., SIPM algorithm), which has 
included speeds (or speed intervals) that 
are spatially and temporally correlated to 
the current link speed, of the current 
traffic conditions with those in the 
historical database.  Historical speed 
interval pattern with the minimum 
mismatch value, which is determined by 
the sum of absolute difference of the speed 
intervals as compared to the current pattern, 
is considered to be the matched traffic 
condition and the speeds in the subsequent 
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time intervals of that time and day will be 
used for travel time prediction. For cases 
with multiple historical speed interval 
patterns that have achieved the same 
minimum mismatch value, this paper has 
proposed three different methods (i.e., 
random sample, average value, and 
closest speed pattern) in determining the 
speed pattern used for travel time 
prediction. 

To demonstrate the efficiency of the 
SIPM algorithm and the performance of 
corresponding travel time prediction 
system, empirical tests are carried out on 
four different links and paths in Bangkok. 
In these tests, it is found that the optimal 
speed interval pattern, which gives the 
minimum MAPE in link travel time 
prediction, should include 3 preceding 
time intervals (P) and links in the 1st 
connection level (I). Apart from the 
optimal speed interval pattern, these tests 
also show that the proposed algorithm for 
travel time predictions under 
uninterrupted flow conditions (MAPE: 
12% ~ 15% for links and 11% ~ 17% for 
paths) are more accurate than under the 
interrupted flow conditions in central 
business areas (MAPE: 16% ~ 21% for 
links and 16% ~ 31% for paths).  

Concerning the proposed real-time 
path travel time prediction algorithm, there 
are four directions of future work. First, the 
development of multi-threaded processing of 
the proposed algorithm should be completed 
to further reduce the computational time for 
practical implementation in real-time route 
planning system in Bangkok. Second, an 
adaptive traffic data fusion algorithm should 
be developed to make use of other potential 

sources of data (e.g., cell phone probes, GPS, 
traffic flow data, etc) for improving the 
accuracy of travel time prediction. Third, 
location-dependent speed interval pattern 
should be considered to improve the 
performance of travel time prediction on 
arterials and/or in congested areas. Lastly, 
this study aimed to capture parameters 
under uninterrupted flow conditions. The 
main effective variable is speed. The 
study of other variables and methods 
would make the prediction more accurate 
and would be included in the future study. 
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